2007-04-27 06:48:28 +08:00
|
|
|
/* AF_RXRPC implementation
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/net.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/poll.h>
|
|
|
|
#include <linux/proc_fs.h>
|
2007-10-17 14:29:46 +08:00
|
|
|
#include <linux/key-type.h>
|
2007-09-12 18:01:34 +08:00
|
|
|
#include <net/net_namespace.h>
|
2007-04-27 06:48:28 +08:00
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/af_rxrpc.h>
|
|
|
|
#include "ar-internal.h"
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("RxRPC network protocol");
|
|
|
|
MODULE_AUTHOR("Red Hat, Inc.");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS_NETPROTO(PF_RXRPC);
|
|
|
|
|
|
|
|
unsigned rxrpc_debug; // = RXRPC_DEBUG_KPROTO;
|
|
|
|
module_param_named(debug, rxrpc_debug, uint, S_IWUSR | S_IRUGO);
|
|
|
|
MODULE_PARM_DESC(rxrpc_debug, "RxRPC debugging mask");
|
|
|
|
|
|
|
|
static int sysctl_rxrpc_max_qlen __read_mostly = 10;
|
|
|
|
|
|
|
|
static struct proto rxrpc_proto;
|
|
|
|
static const struct proto_ops rxrpc_rpc_ops;
|
|
|
|
|
|
|
|
/* local epoch for detecting local-end reset */
|
|
|
|
__be32 rxrpc_epoch;
|
|
|
|
|
|
|
|
/* current debugging ID */
|
|
|
|
atomic_t rxrpc_debug_id;
|
|
|
|
|
|
|
|
/* count of skbs currently in use */
|
|
|
|
atomic_t rxrpc_n_skbs;
|
|
|
|
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
struct workqueue_struct *rxrpc_workqueue;
|
|
|
|
|
2007-04-27 06:48:28 +08:00
|
|
|
static void rxrpc_sock_destructor(struct sock *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* see if an RxRPC socket is currently writable
|
|
|
|
*/
|
|
|
|
static inline int rxrpc_writable(struct sock *sk)
|
|
|
|
{
|
|
|
|
return atomic_read(&sk->sk_wmem_alloc) < (size_t) sk->sk_sndbuf;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* wait for write bufferage to become available
|
|
|
|
*/
|
|
|
|
static void rxrpc_write_space(struct sock *sk)
|
|
|
|
{
|
|
|
|
_enter("%p", sk);
|
|
|
|
read_lock(&sk->sk_callback_lock);
|
|
|
|
if (rxrpc_writable(sk)) {
|
|
|
|
if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
|
|
|
|
wake_up_interruptible(sk->sk_sleep);
|
|
|
|
sk_wake_async(sk, 2, POLL_OUT);
|
|
|
|
}
|
|
|
|
read_unlock(&sk->sk_callback_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* validate an RxRPC address
|
|
|
|
*/
|
|
|
|
static int rxrpc_validate_address(struct rxrpc_sock *rx,
|
|
|
|
struct sockaddr_rxrpc *srx,
|
|
|
|
int len)
|
|
|
|
{
|
|
|
|
if (len < sizeof(struct sockaddr_rxrpc))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (srx->srx_family != AF_RXRPC)
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
|
|
|
|
if (srx->transport_type != SOCK_DGRAM)
|
|
|
|
return -ESOCKTNOSUPPORT;
|
|
|
|
|
|
|
|
len -= offsetof(struct sockaddr_rxrpc, transport);
|
|
|
|
if (srx->transport_len < sizeof(sa_family_t) ||
|
|
|
|
srx->transport_len > len)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (srx->transport.family != rx->proto)
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
|
|
|
|
switch (srx->transport.family) {
|
|
|
|
case AF_INET:
|
|
|
|
_debug("INET: %x @ %u.%u.%u.%u",
|
|
|
|
ntohs(srx->transport.sin.sin_port),
|
|
|
|
NIPQUAD(srx->transport.sin.sin_addr));
|
|
|
|
if (srx->transport_len > 8)
|
|
|
|
memset((void *)&srx->transport + 8, 0,
|
|
|
|
srx->transport_len - 8);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case AF_INET6:
|
|
|
|
default:
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* bind a local address to an RxRPC socket
|
|
|
|
*/
|
|
|
|
static int rxrpc_bind(struct socket *sock, struct sockaddr *saddr, int len)
|
|
|
|
{
|
|
|
|
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *) saddr;
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
struct rxrpc_local *local;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sk), *prx;
|
|
|
|
__be16 service_id;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("%p,%p,%d", rx, saddr, len);
|
|
|
|
|
|
|
|
ret = rxrpc_validate_address(rx, srx, len);
|
|
|
|
if (ret < 0)
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
|
|
|
|
if (rx->sk.sk_state != RXRPC_UNCONNECTED) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto error_unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(&rx->srx, srx, sizeof(rx->srx));
|
|
|
|
|
|
|
|
/* find a local transport endpoint if we don't have one already */
|
|
|
|
local = rxrpc_lookup_local(&rx->srx);
|
|
|
|
if (IS_ERR(local)) {
|
|
|
|
ret = PTR_ERR(local);
|
|
|
|
goto error_unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
rx->local = local;
|
|
|
|
if (srx->srx_service) {
|
|
|
|
service_id = htons(srx->srx_service);
|
|
|
|
write_lock_bh(&local->services_lock);
|
|
|
|
list_for_each_entry(prx, &local->services, listen_link) {
|
|
|
|
if (prx->service_id == service_id)
|
|
|
|
goto service_in_use;
|
|
|
|
}
|
|
|
|
|
|
|
|
rx->service_id = service_id;
|
|
|
|
list_add_tail(&rx->listen_link, &local->services);
|
|
|
|
write_unlock_bh(&local->services_lock);
|
|
|
|
|
|
|
|
rx->sk.sk_state = RXRPC_SERVER_BOUND;
|
|
|
|
} else {
|
|
|
|
rx->sk.sk_state = RXRPC_CLIENT_BOUND;
|
|
|
|
}
|
|
|
|
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
_leave(" = 0");
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
service_in_use:
|
|
|
|
ret = -EADDRINUSE;
|
|
|
|
write_unlock_bh(&local->services_lock);
|
|
|
|
error_unlock:
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
error:
|
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set the number of pending calls permitted on a listening socket
|
|
|
|
*/
|
|
|
|
static int rxrpc_listen(struct socket *sock, int backlog)
|
|
|
|
{
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sk);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("%p,%d", rx, backlog);
|
|
|
|
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
|
|
|
|
switch (rx->sk.sk_state) {
|
|
|
|
case RXRPC_UNCONNECTED:
|
|
|
|
ret = -EADDRNOTAVAIL;
|
|
|
|
break;
|
|
|
|
case RXRPC_CLIENT_BOUND:
|
|
|
|
case RXRPC_CLIENT_CONNECTED:
|
|
|
|
default:
|
|
|
|
ret = -EBUSY;
|
|
|
|
break;
|
|
|
|
case RXRPC_SERVER_BOUND:
|
|
|
|
ASSERT(rx->local != NULL);
|
|
|
|
sk->sk_max_ack_backlog = backlog;
|
|
|
|
rx->sk.sk_state = RXRPC_SERVER_LISTENING;
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* find a transport by address
|
|
|
|
*/
|
|
|
|
static struct rxrpc_transport *rxrpc_name_to_transport(struct socket *sock,
|
|
|
|
struct sockaddr *addr,
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
int addr_len, int flags,
|
|
|
|
gfp_t gfp)
|
2007-04-27 06:48:28 +08:00
|
|
|
{
|
|
|
|
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *) addr;
|
|
|
|
struct rxrpc_transport *trans;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
|
|
|
|
struct rxrpc_peer *peer;
|
|
|
|
|
|
|
|
_enter("%p,%p,%d,%d", rx, addr, addr_len, flags);
|
|
|
|
|
|
|
|
ASSERT(rx->local != NULL);
|
|
|
|
ASSERT(rx->sk.sk_state > RXRPC_UNCONNECTED);
|
|
|
|
|
|
|
|
if (rx->srx.transport_type != srx->transport_type)
|
|
|
|
return ERR_PTR(-ESOCKTNOSUPPORT);
|
|
|
|
if (rx->srx.transport.family != srx->transport.family)
|
|
|
|
return ERR_PTR(-EAFNOSUPPORT);
|
|
|
|
|
|
|
|
/* find a remote transport endpoint from the local one */
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
peer = rxrpc_get_peer(srx, gfp);
|
2007-04-27 06:48:28 +08:00
|
|
|
if (IS_ERR(peer))
|
|
|
|
return ERR_PTR(PTR_ERR(peer));
|
|
|
|
|
|
|
|
/* find a transport */
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
trans = rxrpc_get_transport(rx->local, peer, gfp);
|
2007-04-27 06:48:28 +08:00
|
|
|
rxrpc_put_peer(peer);
|
|
|
|
_leave(" = %p", trans);
|
|
|
|
return trans;
|
|
|
|
}
|
|
|
|
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
/**
|
|
|
|
* rxrpc_kernel_begin_call - Allow a kernel service to begin a call
|
|
|
|
* @sock: The socket on which to make the call
|
|
|
|
* @srx: The address of the peer to contact (defaults to socket setting)
|
|
|
|
* @key: The security context to use (defaults to socket setting)
|
|
|
|
* @user_call_ID: The ID to use
|
|
|
|
*
|
|
|
|
* Allow a kernel service to begin a call on the nominated socket. This just
|
|
|
|
* sets up all the internal tracking structures and allocates connection and
|
|
|
|
* call IDs as appropriate. The call to be used is returned.
|
|
|
|
*
|
|
|
|
* The default socket destination address and security may be overridden by
|
|
|
|
* supplying @srx and @key.
|
|
|
|
*/
|
|
|
|
struct rxrpc_call *rxrpc_kernel_begin_call(struct socket *sock,
|
|
|
|
struct sockaddr_rxrpc *srx,
|
|
|
|
struct key *key,
|
|
|
|
unsigned long user_call_ID,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct rxrpc_conn_bundle *bundle;
|
|
|
|
struct rxrpc_transport *trans;
|
|
|
|
struct rxrpc_call *call;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
|
|
|
|
__be16 service_id;
|
|
|
|
|
|
|
|
_enter(",,%x,%lx", key_serial(key), user_call_ID);
|
|
|
|
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
|
|
|
|
if (srx) {
|
|
|
|
trans = rxrpc_name_to_transport(sock, (struct sockaddr *) srx,
|
|
|
|
sizeof(*srx), 0, gfp);
|
|
|
|
if (IS_ERR(trans)) {
|
|
|
|
call = ERR_PTR(PTR_ERR(trans));
|
|
|
|
trans = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
trans = rx->trans;
|
|
|
|
if (!trans) {
|
|
|
|
call = ERR_PTR(-ENOTCONN);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
atomic_inc(&trans->usage);
|
|
|
|
}
|
|
|
|
|
|
|
|
service_id = rx->service_id;
|
|
|
|
if (srx)
|
|
|
|
service_id = htons(srx->srx_service);
|
|
|
|
|
|
|
|
if (!key)
|
|
|
|
key = rx->key;
|
|
|
|
if (key && !key->payload.data)
|
|
|
|
key = NULL; /* a no-security key */
|
|
|
|
|
|
|
|
bundle = rxrpc_get_bundle(rx, trans, key, service_id, gfp);
|
|
|
|
if (IS_ERR(bundle)) {
|
|
|
|
call = ERR_PTR(PTR_ERR(bundle));
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
call = rxrpc_get_client_call(rx, trans, bundle, user_call_ID, true,
|
|
|
|
gfp);
|
|
|
|
rxrpc_put_bundle(trans, bundle);
|
|
|
|
out:
|
|
|
|
rxrpc_put_transport(trans);
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
_leave(" = %p", call);
|
|
|
|
return call;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_begin_call);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rxrpc_kernel_end_call - Allow a kernel service to end a call it was using
|
|
|
|
* @call: The call to end
|
|
|
|
*
|
|
|
|
* Allow a kernel service to end a call it was using. The call must be
|
|
|
|
* complete before this is called (the call should be aborted if necessary).
|
|
|
|
*/
|
|
|
|
void rxrpc_kernel_end_call(struct rxrpc_call *call)
|
|
|
|
{
|
|
|
|
_enter("%d{%d}", call->debug_id, atomic_read(&call->usage));
|
|
|
|
rxrpc_remove_user_ID(call->socket, call);
|
|
|
|
rxrpc_put_call(call);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_end_call);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rxrpc_kernel_intercept_rx_messages - Intercept received RxRPC messages
|
|
|
|
* @sock: The socket to intercept received messages on
|
|
|
|
* @interceptor: The function to pass the messages to
|
|
|
|
*
|
|
|
|
* Allow a kernel service to intercept messages heading for the Rx queue on an
|
|
|
|
* RxRPC socket. They get passed to the specified function instead.
|
|
|
|
* @interceptor should free the socket buffers it is given. @interceptor is
|
|
|
|
* called with the socket receive queue spinlock held and softirqs disabled -
|
|
|
|
* this ensures that the messages will be delivered in the right order.
|
|
|
|
*/
|
|
|
|
void rxrpc_kernel_intercept_rx_messages(struct socket *sock,
|
|
|
|
rxrpc_interceptor_t interceptor)
|
|
|
|
{
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
rx->interceptor = interceptor;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(rxrpc_kernel_intercept_rx_messages);
|
|
|
|
|
2007-04-27 06:48:28 +08:00
|
|
|
/*
|
|
|
|
* connect an RxRPC socket
|
|
|
|
* - this just targets it at a specific destination; no actual connection
|
|
|
|
* negotiation takes place
|
|
|
|
*/
|
|
|
|
static int rxrpc_connect(struct socket *sock, struct sockaddr *addr,
|
|
|
|
int addr_len, int flags)
|
|
|
|
{
|
|
|
|
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *) addr;
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
struct rxrpc_transport *trans;
|
|
|
|
struct rxrpc_local *local;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sk);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("%p,%p,%d,%d", rx, addr, addr_len, flags);
|
|
|
|
|
|
|
|
ret = rxrpc_validate_address(rx, srx, addr_len);
|
|
|
|
if (ret < 0) {
|
|
|
|
_leave(" = %d [bad addr]", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
|
|
|
|
switch (rx->sk.sk_state) {
|
|
|
|
case RXRPC_UNCONNECTED:
|
|
|
|
/* find a local transport endpoint if we don't have one already */
|
|
|
|
ASSERTCMP(rx->local, ==, NULL);
|
|
|
|
rx->srx.srx_family = AF_RXRPC;
|
|
|
|
rx->srx.srx_service = 0;
|
|
|
|
rx->srx.transport_type = srx->transport_type;
|
|
|
|
rx->srx.transport_len = sizeof(sa_family_t);
|
|
|
|
rx->srx.transport.family = srx->transport.family;
|
|
|
|
local = rxrpc_lookup_local(&rx->srx);
|
|
|
|
if (IS_ERR(local)) {
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
return PTR_ERR(local);
|
|
|
|
}
|
|
|
|
rx->local = local;
|
|
|
|
rx->sk.sk_state = RXRPC_CLIENT_BOUND;
|
|
|
|
case RXRPC_CLIENT_BOUND:
|
|
|
|
break;
|
|
|
|
case RXRPC_CLIENT_CONNECTED:
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
return -EISCONN;
|
|
|
|
default:
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
return -EBUSY; /* server sockets can't connect as well */
|
|
|
|
}
|
|
|
|
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
trans = rxrpc_name_to_transport(sock, addr, addr_len, flags,
|
|
|
|
GFP_KERNEL);
|
2007-04-27 06:48:28 +08:00
|
|
|
if (IS_ERR(trans)) {
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
_leave(" = %ld", PTR_ERR(trans));
|
|
|
|
return PTR_ERR(trans);
|
|
|
|
}
|
|
|
|
|
|
|
|
rx->trans = trans;
|
|
|
|
rx->service_id = htons(srx->srx_service);
|
|
|
|
rx->sk.sk_state = RXRPC_CLIENT_CONNECTED;
|
|
|
|
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* send a message through an RxRPC socket
|
|
|
|
* - in a client this does a number of things:
|
|
|
|
* - finds/sets up a connection for the security specified (if any)
|
|
|
|
* - initiates a call (ID in control data)
|
|
|
|
* - ends the request phase of a call (if MSG_MORE is not set)
|
|
|
|
* - sends a call data packet
|
|
|
|
* - may send an abort (abort code in control data)
|
|
|
|
*/
|
|
|
|
static int rxrpc_sendmsg(struct kiocb *iocb, struct socket *sock,
|
|
|
|
struct msghdr *m, size_t len)
|
|
|
|
{
|
|
|
|
struct rxrpc_transport *trans;
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter(",{%d},,%zu", rx->sk.sk_state, len);
|
|
|
|
|
|
|
|
if (m->msg_flags & MSG_OOB)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
if (m->msg_name) {
|
|
|
|
ret = rxrpc_validate_address(rx, m->msg_name, m->msg_namelen);
|
|
|
|
if (ret < 0) {
|
|
|
|
_leave(" = %d [bad addr]", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
trans = NULL;
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
|
|
|
|
if (m->msg_name) {
|
|
|
|
ret = -EISCONN;
|
|
|
|
trans = rxrpc_name_to_transport(sock, m->msg_name,
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
m->msg_namelen, 0, GFP_KERNEL);
|
2007-04-27 06:48:28 +08:00
|
|
|
if (IS_ERR(trans)) {
|
|
|
|
ret = PTR_ERR(trans);
|
|
|
|
trans = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
trans = rx->trans;
|
|
|
|
if (trans)
|
|
|
|
atomic_inc(&trans->usage);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (rx->sk.sk_state) {
|
|
|
|
case RXRPC_SERVER_LISTENING:
|
|
|
|
if (!m->msg_name) {
|
|
|
|
ret = rxrpc_server_sendmsg(iocb, rx, m, len);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RXRPC_SERVER_BOUND:
|
|
|
|
case RXRPC_CLIENT_BOUND:
|
|
|
|
if (!m->msg_name) {
|
|
|
|
ret = -ENOTCONN;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RXRPC_CLIENT_CONNECTED:
|
|
|
|
ret = rxrpc_client_sendmsg(iocb, rx, trans, m, len);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = -ENOTCONN;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
if (trans)
|
|
|
|
rxrpc_put_transport(trans);
|
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set RxRPC socket options
|
|
|
|
*/
|
|
|
|
static int rxrpc_setsockopt(struct socket *sock, int level, int optname,
|
|
|
|
char __user *optval, int optlen)
|
|
|
|
{
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
|
|
|
|
unsigned min_sec_level;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter(",%d,%d,,%d", level, optname, optlen);
|
|
|
|
|
|
|
|
lock_sock(&rx->sk);
|
|
|
|
ret = -EOPNOTSUPP;
|
|
|
|
|
|
|
|
if (level == SOL_RXRPC) {
|
|
|
|
switch (optname) {
|
|
|
|
case RXRPC_EXCLUSIVE_CONNECTION:
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (optlen != 0)
|
|
|
|
goto error;
|
|
|
|
ret = -EISCONN;
|
|
|
|
if (rx->sk.sk_state != RXRPC_UNCONNECTED)
|
|
|
|
goto error;
|
|
|
|
set_bit(RXRPC_SOCK_EXCLUSIVE_CONN, &rx->flags);
|
|
|
|
goto success;
|
|
|
|
|
|
|
|
case RXRPC_SECURITY_KEY:
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (rx->key)
|
|
|
|
goto error;
|
|
|
|
ret = -EISCONN;
|
|
|
|
if (rx->sk.sk_state != RXRPC_UNCONNECTED)
|
|
|
|
goto error;
|
|
|
|
ret = rxrpc_request_key(rx, optval, optlen);
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
case RXRPC_SECURITY_KEYRING:
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (rx->key)
|
|
|
|
goto error;
|
|
|
|
ret = -EISCONN;
|
|
|
|
if (rx->sk.sk_state != RXRPC_UNCONNECTED)
|
|
|
|
goto error;
|
|
|
|
ret = rxrpc_server_keyring(rx, optval, optlen);
|
|
|
|
goto error;
|
|
|
|
|
|
|
|
case RXRPC_MIN_SECURITY_LEVEL:
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (optlen != sizeof(unsigned))
|
|
|
|
goto error;
|
|
|
|
ret = -EISCONN;
|
|
|
|
if (rx->sk.sk_state != RXRPC_UNCONNECTED)
|
|
|
|
goto error;
|
|
|
|
ret = get_user(min_sec_level,
|
|
|
|
(unsigned __user *) optval);
|
|
|
|
if (ret < 0)
|
|
|
|
goto error;
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (min_sec_level > RXRPC_SECURITY_MAX)
|
|
|
|
goto error;
|
|
|
|
rx->min_sec_level = min_sec_level;
|
|
|
|
goto success;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
success:
|
|
|
|
ret = 0;
|
|
|
|
error:
|
|
|
|
release_sock(&rx->sk);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* permit an RxRPC socket to be polled
|
|
|
|
*/
|
|
|
|
static unsigned int rxrpc_poll(struct file *file, struct socket *sock,
|
|
|
|
poll_table *wait)
|
|
|
|
{
|
|
|
|
unsigned int mask;
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
|
|
|
|
poll_wait(file, sk->sk_sleep, wait);
|
|
|
|
mask = 0;
|
|
|
|
|
|
|
|
/* the socket is readable if there are any messages waiting on the Rx
|
|
|
|
* queue */
|
|
|
|
if (!skb_queue_empty(&sk->sk_receive_queue))
|
|
|
|
mask |= POLLIN | POLLRDNORM;
|
|
|
|
|
|
|
|
/* the socket is writable if there is space to add new data to the
|
|
|
|
* socket; there is no guarantee that any particular call in progress
|
|
|
|
* on the socket may have space in the Tx ACK window */
|
|
|
|
if (rxrpc_writable(sk))
|
|
|
|
mask |= POLLOUT | POLLWRNORM;
|
|
|
|
|
|
|
|
return mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* create an RxRPC socket
|
|
|
|
*/
|
2007-10-09 14:24:22 +08:00
|
|
|
static int rxrpc_create(struct net *net, struct socket *sock, int protocol)
|
2007-04-27 06:48:28 +08:00
|
|
|
{
|
|
|
|
struct rxrpc_sock *rx;
|
|
|
|
struct sock *sk;
|
|
|
|
|
|
|
|
_enter("%p,%d", sock, protocol);
|
|
|
|
|
2007-10-09 14:24:22 +08:00
|
|
|
if (net != &init_net)
|
|
|
|
return -EAFNOSUPPORT;
|
|
|
|
|
2007-04-27 06:48:28 +08:00
|
|
|
/* we support transport protocol UDP only */
|
|
|
|
if (protocol != PF_INET)
|
|
|
|
return -EPROTONOSUPPORT;
|
|
|
|
|
|
|
|
if (sock->type != SOCK_DGRAM)
|
|
|
|
return -ESOCKTNOSUPPORT;
|
|
|
|
|
|
|
|
sock->ops = &rxrpc_rpc_ops;
|
|
|
|
sock->state = SS_UNCONNECTED;
|
|
|
|
|
2007-10-09 14:24:22 +08:00
|
|
|
sk = sk_alloc(net, PF_RXRPC, GFP_KERNEL, &rxrpc_proto, 1);
|
2007-04-27 06:48:28 +08:00
|
|
|
if (!sk)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
sock_init_data(sock, sk);
|
|
|
|
sk->sk_state = RXRPC_UNCONNECTED;
|
|
|
|
sk->sk_write_space = rxrpc_write_space;
|
|
|
|
sk->sk_max_ack_backlog = sysctl_rxrpc_max_qlen;
|
|
|
|
sk->sk_destruct = rxrpc_sock_destructor;
|
|
|
|
|
|
|
|
rx = rxrpc_sk(sk);
|
|
|
|
rx->proto = protocol;
|
|
|
|
rx->calls = RB_ROOT;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&rx->listen_link);
|
|
|
|
INIT_LIST_HEAD(&rx->secureq);
|
|
|
|
INIT_LIST_HEAD(&rx->acceptq);
|
|
|
|
rwlock_init(&rx->call_lock);
|
|
|
|
memset(&rx->srx, 0, sizeof(rx->srx));
|
|
|
|
|
|
|
|
_leave(" = 0 [%p]", rx);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RxRPC socket destructor
|
|
|
|
*/
|
|
|
|
static void rxrpc_sock_destructor(struct sock *sk)
|
|
|
|
{
|
|
|
|
_enter("%p", sk);
|
|
|
|
|
|
|
|
rxrpc_purge_queue(&sk->sk_receive_queue);
|
|
|
|
|
|
|
|
BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
|
|
|
|
BUG_TRAP(sk_unhashed(sk));
|
|
|
|
BUG_TRAP(!sk->sk_socket);
|
|
|
|
|
|
|
|
if (!sock_flag(sk, SOCK_DEAD)) {
|
|
|
|
printk("Attempt to release alive rxrpc socket: %p\n", sk);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release an RxRPC socket
|
|
|
|
*/
|
|
|
|
static int rxrpc_release_sock(struct sock *sk)
|
|
|
|
{
|
|
|
|
struct rxrpc_sock *rx = rxrpc_sk(sk);
|
|
|
|
|
|
|
|
_enter("%p{%d,%d}", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
|
|
|
|
|
|
|
|
/* declare the socket closed for business */
|
|
|
|
sock_orphan(sk);
|
|
|
|
sk->sk_shutdown = SHUTDOWN_MASK;
|
|
|
|
|
|
|
|
spin_lock_bh(&sk->sk_receive_queue.lock);
|
|
|
|
sk->sk_state = RXRPC_CLOSE;
|
|
|
|
spin_unlock_bh(&sk->sk_receive_queue.lock);
|
|
|
|
|
|
|
|
ASSERTCMP(rx->listen_link.next, !=, LIST_POISON1);
|
|
|
|
|
|
|
|
if (!list_empty(&rx->listen_link)) {
|
|
|
|
write_lock_bh(&rx->local->services_lock);
|
|
|
|
list_del(&rx->listen_link);
|
|
|
|
write_unlock_bh(&rx->local->services_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* try to flush out this socket */
|
|
|
|
rxrpc_release_calls_on_socket(rx);
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
flush_workqueue(rxrpc_workqueue);
|
2007-04-27 06:48:28 +08:00
|
|
|
rxrpc_purge_queue(&sk->sk_receive_queue);
|
|
|
|
|
|
|
|
if (rx->conn) {
|
|
|
|
rxrpc_put_connection(rx->conn);
|
|
|
|
rx->conn = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rx->bundle) {
|
|
|
|
rxrpc_put_bundle(rx->trans, rx->bundle);
|
|
|
|
rx->bundle = NULL;
|
|
|
|
}
|
|
|
|
if (rx->trans) {
|
|
|
|
rxrpc_put_transport(rx->trans);
|
|
|
|
rx->trans = NULL;
|
|
|
|
}
|
|
|
|
if (rx->local) {
|
|
|
|
rxrpc_put_local(rx->local);
|
|
|
|
rx->local = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
key_put(rx->key);
|
|
|
|
rx->key = NULL;
|
|
|
|
key_put(rx->securities);
|
|
|
|
rx->securities = NULL;
|
|
|
|
sock_put(sk);
|
|
|
|
|
|
|
|
_leave(" = 0");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release an RxRPC BSD socket on close() or equivalent
|
|
|
|
*/
|
|
|
|
static int rxrpc_release(struct socket *sock)
|
|
|
|
{
|
|
|
|
struct sock *sk = sock->sk;
|
|
|
|
|
|
|
|
_enter("%p{%p}", sock, sk);
|
|
|
|
|
|
|
|
if (!sk)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
sock->sk = NULL;
|
|
|
|
|
|
|
|
return rxrpc_release_sock(sk);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RxRPC network protocol
|
|
|
|
*/
|
|
|
|
static const struct proto_ops rxrpc_rpc_ops = {
|
|
|
|
.family = PF_UNIX,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.release = rxrpc_release,
|
|
|
|
.bind = rxrpc_bind,
|
|
|
|
.connect = rxrpc_connect,
|
|
|
|
.socketpair = sock_no_socketpair,
|
|
|
|
.accept = sock_no_accept,
|
|
|
|
.getname = sock_no_getname,
|
|
|
|
.poll = rxrpc_poll,
|
|
|
|
.ioctl = sock_no_ioctl,
|
|
|
|
.listen = rxrpc_listen,
|
|
|
|
.shutdown = sock_no_shutdown,
|
|
|
|
.setsockopt = rxrpc_setsockopt,
|
|
|
|
.getsockopt = sock_no_getsockopt,
|
|
|
|
.sendmsg = rxrpc_sendmsg,
|
|
|
|
.recvmsg = rxrpc_recvmsg,
|
|
|
|
.mmap = sock_no_mmap,
|
|
|
|
.sendpage = sock_no_sendpage,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct proto rxrpc_proto = {
|
|
|
|
.name = "RXRPC",
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.obj_size = sizeof(struct rxrpc_sock),
|
|
|
|
.max_header = sizeof(struct rxrpc_header),
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct net_proto_family rxrpc_family_ops = {
|
|
|
|
.family = PF_RXRPC,
|
|
|
|
.create = rxrpc_create,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* initialise and register the RxRPC protocol
|
|
|
|
*/
|
|
|
|
static int __init af_rxrpc_init(void)
|
|
|
|
{
|
|
|
|
struct sk_buff *dummy_skb;
|
|
|
|
int ret = -1;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(sizeof(struct rxrpc_skb_priv) > sizeof(dummy_skb->cb));
|
|
|
|
|
2007-07-25 08:47:43 +08:00
|
|
|
rxrpc_epoch = htonl(get_seconds());
|
2007-04-27 06:48:28 +08:00
|
|
|
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
ret = -ENOMEM;
|
2007-04-27 06:48:28 +08:00
|
|
|
rxrpc_call_jar = kmem_cache_create(
|
|
|
|
"rxrpc_call_jar", sizeof(struct rxrpc_call), 0,
|
2007-07-20 09:11:58 +08:00
|
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
2007-04-27 06:48:28 +08:00
|
|
|
if (!rxrpc_call_jar) {
|
|
|
|
printk(KERN_NOTICE "RxRPC: Failed to allocate call jar\n");
|
|
|
|
goto error_call_jar;
|
|
|
|
}
|
|
|
|
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
rxrpc_workqueue = create_workqueue("krxrpcd");
|
|
|
|
if (!rxrpc_workqueue) {
|
|
|
|
printk(KERN_NOTICE "RxRPC: Failed to allocate work queue\n");
|
|
|
|
goto error_work_queue;
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:48:28 +08:00
|
|
|
ret = proto_register(&rxrpc_proto, 1);
|
2007-07-19 09:44:44 +08:00
|
|
|
if (ret < 0) {
|
|
|
|
printk(KERN_CRIT "RxRPC: Cannot register protocol\n");
|
2007-04-27 06:48:28 +08:00
|
|
|
goto error_proto;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = sock_register(&rxrpc_family_ops);
|
|
|
|
if (ret < 0) {
|
2007-07-19 09:44:44 +08:00
|
|
|
printk(KERN_CRIT "RxRPC: Cannot register socket family\n");
|
2007-04-27 06:48:28 +08:00
|
|
|
goto error_sock;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = register_key_type(&key_type_rxrpc);
|
|
|
|
if (ret < 0) {
|
2007-07-19 09:44:44 +08:00
|
|
|
printk(KERN_CRIT "RxRPC: Cannot register client key type\n");
|
2007-04-27 06:48:28 +08:00
|
|
|
goto error_key_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = register_key_type(&key_type_rxrpc_s);
|
|
|
|
if (ret < 0) {
|
2007-07-19 09:44:44 +08:00
|
|
|
printk(KERN_CRIT "RxRPC: Cannot register server key type\n");
|
2007-04-27 06:48:28 +08:00
|
|
|
goto error_key_type_s;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
2007-09-12 18:01:34 +08:00
|
|
|
proc_net_fops_create(&init_net, "rxrpc_calls", 0, &rxrpc_call_seq_fops);
|
|
|
|
proc_net_fops_create(&init_net, "rxrpc_conns", 0, &rxrpc_connection_seq_fops);
|
2007-04-27 06:48:28 +08:00
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
error_key_type_s:
|
|
|
|
unregister_key_type(&key_type_rxrpc);
|
|
|
|
error_key_type:
|
|
|
|
sock_unregister(PF_RXRPC);
|
|
|
|
error_sock:
|
|
|
|
proto_unregister(&rxrpc_proto);
|
|
|
|
error_proto:
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
destroy_workqueue(rxrpc_workqueue);
|
|
|
|
error_work_queue:
|
2007-04-27 06:48:28 +08:00
|
|
|
kmem_cache_destroy(rxrpc_call_jar);
|
|
|
|
error_call_jar:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* unregister the RxRPC protocol
|
|
|
|
*/
|
|
|
|
static void __exit af_rxrpc_exit(void)
|
|
|
|
{
|
|
|
|
_enter("");
|
|
|
|
unregister_key_type(&key_type_rxrpc_s);
|
|
|
|
unregister_key_type(&key_type_rxrpc);
|
|
|
|
sock_unregister(PF_RXRPC);
|
|
|
|
proto_unregister(&rxrpc_proto);
|
|
|
|
rxrpc_destroy_all_calls();
|
|
|
|
rxrpc_destroy_all_connections();
|
|
|
|
rxrpc_destroy_all_transports();
|
|
|
|
rxrpc_destroy_all_peers();
|
|
|
|
rxrpc_destroy_all_locals();
|
|
|
|
|
|
|
|
ASSERTCMP(atomic_read(&rxrpc_n_skbs), ==, 0);
|
|
|
|
|
|
|
|
_debug("flush scheduled work");
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
flush_workqueue(rxrpc_workqueue);
|
2007-09-12 18:01:34 +08:00
|
|
|
proc_net_remove(&init_net, "rxrpc_conns");
|
|
|
|
proc_net_remove(&init_net, "rxrpc_calls");
|
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27 06:50:17 +08:00
|
|
|
destroy_workqueue(rxrpc_workqueue);
|
2007-04-27 06:48:28 +08:00
|
|
|
kmem_cache_destroy(rxrpc_call_jar);
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(af_rxrpc_init);
|
|
|
|
module_exit(af_rxrpc_exit);
|