kernel_optimize_test/net/dsa/dsa2.c

789 lines
15 KiB
C
Raw Normal View History

/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include "dsa_priv.h"
static LIST_HEAD(dsa_tree_list);
static DEFINE_MUTEX(dsa2_mutex);
static const struct devlink_ops dsa_devlink_ops = {
};
static struct dsa_switch_tree *dsa_tree_find(int index)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_tree_list, list)
if (dst->index == index)
return dst;
return NULL;
}
static struct dsa_switch_tree *dsa_tree_alloc(int index)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->index = index;
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dsa_tree_list, &dst->list);
/* Initialize the reference counter to the number of switches, not 1 */
kref_init(&dst->refcount);
refcount_set(&dst->refcount.refcount, 0);
return dst;
}
static void dsa_tree_free(struct dsa_switch_tree *dst)
{
list_del(&dst->list);
kfree(dst);
}
static struct dsa_switch_tree *dsa_tree_touch(int index)
{
struct dsa_switch_tree *dst;
dst = dsa_tree_find(index);
if (!dst)
dst = dsa_tree_alloc(index);
return dst;
}
static void dsa_tree_get(struct dsa_switch_tree *dst)
{
kref_get(&dst->refcount);
}
static void dsa_tree_release(struct kref *ref)
{
struct dsa_switch_tree *dst;
dst = container_of(ref, struct dsa_switch_tree, refcount);
dsa_tree_free(dst);
}
static void dsa_tree_put(struct dsa_switch_tree *dst)
{
kref_put(&dst->refcount, dsa_tree_release);
}
static bool dsa_port_is_dsa(struct dsa_port *port)
{
return port->type == DSA_PORT_TYPE_DSA;
}
static bool dsa_port_is_cpu(struct dsa_port *port)
{
return port->type == DSA_PORT_TYPE_CPU;
}
static bool dsa_port_is_user(struct dsa_port *dp)
{
return dp->type == DSA_PORT_TYPE_USER;
}
static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
struct device_node *dn)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dp->dn == dn)
return dp;
}
}
return NULL;
}
static bool dsa_port_setup_routing_table(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
struct device_node *dn = dp->dn;
struct of_phandle_iterator it;
struct dsa_port *link_dp;
int err;
of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
link_dp = dsa_tree_find_port_by_node(dst, it.node);
if (!link_dp) {
of_node_put(it.node);
return false;
}
ds->rtable[link_dp->ds->index] = dp->index;
}
return true;
}
static bool dsa_switch_setup_routing_table(struct dsa_switch *ds)
{
bool complete = true;
struct dsa_port *dp;
int i;
for (i = 0; i < DSA_MAX_SWITCHES; i++)
ds->rtable[i] = DSA_RTABLE_NONE;
for (i = 0; i < ds->num_ports; i++) {
dp = &ds->ports[i];
if (dsa_port_is_dsa(dp)) {
complete = dsa_port_setup_routing_table(dp);
if (!complete)
break;
}
}
return complete;
}
static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
bool complete = true;
int device;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
complete = dsa_switch_setup_routing_table(ds);
if (!complete)
break;
}
return complete;
}
static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dsa_port_is_cpu(dp))
return dp;
}
}
return NULL;
}
static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
/* DSA currently only supports a single CPU port */
dst->cpu_dp = dsa_tree_find_first_cpu(dst);
if (!dst->cpu_dp) {
pr_warn("Tree has no master device\n");
return -EINVAL;
}
/* Assign the default CPU port to all ports of the fabric */
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dsa_port_is_user(dp))
dp->cpu_dp = dst->cpu_dp;
}
}
return 0;
}
static void dsa_tree_teardown_default_cpu(struct dsa_switch_tree *dst)
{
/* DSA currently only supports a single CPU port */
dst->cpu_dp = NULL;
}
static int dsa_port_setup(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
int err;
memset(&dp->devlink_port, 0, sizeof(dp->devlink_port));
err = devlink_port_register(ds->devlink, &dp->devlink_port, dp->index);
if (err)
return err;
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
case DSA_PORT_TYPE_DSA:
err = dsa_port_fixed_link_register_of(dp);
if (err) {
dev_err(ds->dev, "failed to register fixed link for port %d.%d\n",
ds->index, dp->index);
return err;
}
break;
case DSA_PORT_TYPE_USER:
err = dsa_slave_create(dp);
if (err)
dev_err(ds->dev, "failed to create slave for port %d.%d\n",
ds->index, dp->index);
else
devlink_port_type_eth_set(&dp->devlink_port, dp->slave);
break;
}
return 0;
}
static void dsa_port_teardown(struct dsa_port *dp)
{
devlink_port_unregister(&dp->devlink_port);
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
case DSA_PORT_TYPE_DSA:
dsa_port_fixed_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_USER:
if (dp->slave) {
dsa_slave_destroy(dp->slave);
dp->slave = NULL;
}
break;
}
}
static int dsa_switch_setup(struct dsa_switch *ds)
{
int err;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before ops->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask |= dsa_user_ports(ds);
/* Add the switch to devlink before calling setup, so that setup can
* add dpipe tables
*/
ds->devlink = devlink_alloc(&dsa_devlink_ops, 0);
if (!ds->devlink)
return -ENOMEM;
err = devlink_register(ds->devlink, ds->dev);
if (err)
return err;
err = ds->ops->setup(ds);
if (err < 0)
return err;
err = dsa_switch_register_notifier(ds);
if (err)
return err;
if (!ds->slave_mii_bus && ds->ops->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!ds->slave_mii_bus)
return -ENOMEM;
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
return err;
}
return 0;
}
static void dsa_switch_teardown(struct dsa_switch *ds)
{
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
dsa_switch_unregister_notifier(ds);
if (ds->devlink) {
devlink_unregister(ds->devlink);
devlink_free(ds->devlink);
ds->devlink = NULL;
}
}
static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
int err;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
err = dsa_switch_setup(ds);
if (err)
return err;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
err = dsa_port_setup(dp);
if (err)
return err;
}
}
return 0;
}
static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
dsa_port_teardown(dp);
}
dsa_switch_teardown(ds);
}
}
static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp = dst->cpu_dp;
struct net_device *master = cpu_dp->master;
/* DSA currently supports a single pair of CPU port and master device */
return dsa_master_setup(master, cpu_dp);
}
static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp = dst->cpu_dp;
struct net_device *master = cpu_dp->master;
return dsa_master_teardown(master);
}
static int dsa_tree_setup(struct dsa_switch_tree *dst)
{
bool complete;
int err;
if (dst->setup) {
pr_err("DSA: tree %d already setup! Disjoint trees?\n",
dst->index);
return -EEXIST;
}
complete = dsa_tree_setup_routing_table(dst);
if (!complete)
return 0;
err = dsa_tree_setup_default_cpu(dst);
if (err)
return err;
err = dsa_tree_setup_switches(dst);
if (err)
return err;
err = dsa_tree_setup_master(dst);
if (err)
return err;
dst->setup = true;
pr_info("DSA: tree %d setup\n", dst->index);
return 0;
}
static void dsa_tree_teardown(struct dsa_switch_tree *dst)
{
if (!dst->setup)
return;
dsa_tree_teardown_master(dst);
dsa_tree_teardown_switches(dst);
dsa_tree_teardown_default_cpu(dst);
pr_info("DSA: tree %d torn down\n", dst->index);
dst->setup = false;
}
static void dsa_tree_remove_switch(struct dsa_switch_tree *dst,
unsigned int index)
{
dsa_tree_teardown(dst);
dst->ds[index] = NULL;
dsa_tree_put(dst);
}
static int dsa_tree_add_switch(struct dsa_switch_tree *dst,
struct dsa_switch *ds)
{
unsigned int index = ds->index;
int err;
if (dst->ds[index])
return -EBUSY;
dsa_tree_get(dst);
dst->ds[index] = ds;
err = dsa_tree_setup(dst);
if (err)
dsa_tree_remove_switch(dst, index);
return err;
}
static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
{
if (!name)
name = "eth%d";
dp->type = DSA_PORT_TYPE_USER;
dp->name = name;
return 0;
}
static int dsa_port_parse_dsa(struct dsa_port *dp)
{
dp->type = DSA_PORT_TYPE_DSA;
return 0;
}
static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
const struct dsa_device_ops *tag_ops;
enum dsa_tag_protocol tag_protocol;
tag_protocol = ds->ops->get_tag_protocol(ds);
tag_ops = dsa_resolve_tag_protocol(tag_protocol);
if (IS_ERR(tag_ops)) {
dev_warn(ds->dev, "No tagger for this switch\n");
return PTR_ERR(tag_ops);
}
dp->type = DSA_PORT_TYPE_CPU;
dp->rcv = tag_ops->rcv;
dp->tag_ops = tag_ops;
dp->master = master;
dp->dst = dst;
return 0;
}
static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
{
struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
const char *name = of_get_property(dn, "label", NULL);
bool link = of_property_read_bool(dn, "link");
dp->dn = dn;
if (ethernet) {
struct net_device *master;
master = of_find_net_device_by_node(ethernet);
if (!master)
return -EPROBE_DEFER;
return dsa_port_parse_cpu(dp, master);
}
if (link)
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
struct device_node *dn)
{
struct device_node *ports, *port;
struct dsa_port *dp;
u32 reg;
int err;
ports = of_get_child_by_name(dn, "ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return -EINVAL;
}
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
return err;
if (reg >= ds->num_ports)
return -EINVAL;
dp = &ds->ports[reg];
err = dsa_port_parse_of(dp, port);
if (err)
return err;
}
return 0;
}
static int dsa_switch_parse_member_of(struct dsa_switch *ds,
struct device_node *dn)
{
u32 m[2] = { 0, 0 };
int sz;
/* Don't error out if this optional property isn't found */
sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
if (sz < 0 && sz != -EINVAL)
return sz;
ds->index = m[1];
if (ds->index >= DSA_MAX_SWITCHES)
return -EINVAL;
ds->dst = dsa_tree_touch(m[0]);
if (!ds->dst)
return -ENOMEM;
return 0;
}
static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
{
int err;
err = dsa_switch_parse_member_of(ds, dn);
if (err)
return err;
return dsa_switch_parse_ports_of(ds, dn);
}
static int dsa_port_parse(struct dsa_port *dp, const char *name,
struct device *dev)
{
if (!strcmp(name, "cpu")) {
struct net_device *master;
master = dsa_dev_to_net_device(dev);
if (!master)
return -EPROBE_DEFER;
dev_put(master);
return dsa_port_parse_cpu(dp, master);
}
if (!strcmp(name, "dsa"))
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports(struct dsa_switch *ds,
struct dsa_chip_data *cd)
{
bool valid_name_found = false;
struct dsa_port *dp;
struct device *dev;
const char *name;
unsigned int i;
int err;
for (i = 0; i < DSA_MAX_PORTS; i++) {
name = cd->port_names[i];
dev = cd->netdev[i];
dp = &ds->ports[i];
if (!name)
continue;
err = dsa_port_parse(dp, name, dev);
if (err)
return err;
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS)
return -EINVAL;
return 0;
}
static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
{
ds->cd = cd;
/* We don't support interconnected switches nor multiple trees via
* platform data, so this is the unique switch of the tree.
*/
ds->index = 0;
ds->dst = dsa_tree_touch(0);
if (!ds->dst)
return -ENOMEM;
return dsa_switch_parse_ports(ds, cd);
}
static int dsa_switch_add(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
return dsa_tree_add_switch(dst, ds);
}
static int _dsa_register_switch(struct dsa_switch *ds)
{
struct dsa_chip_data *pdata = ds->dev->platform_data;
struct device_node *np = ds->dev->of_node;
int err;
if (np)
err = dsa_switch_parse_of(ds, np);
else if (pdata)
err = dsa_switch_parse(ds, pdata);
else
err = -ENODEV;
if (err)
return err;
return dsa_switch_add(ds);
}
struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n)
{
size_t size = sizeof(struct dsa_switch) + n * sizeof(struct dsa_port);
struct dsa_switch *ds;
int i;
ds = devm_kzalloc(dev, size, GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = dev;
ds->num_ports = n;
for (i = 0; i < ds->num_ports; ++i) {
ds->ports[i].index = i;
ds->ports[i].ds = ds;
}
return ds;
}
EXPORT_SYMBOL_GPL(dsa_switch_alloc);
int dsa_register_switch(struct dsa_switch *ds)
{
int err;
mutex_lock(&dsa2_mutex);
err = _dsa_register_switch(ds);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void _dsa_unregister_switch(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
unsigned int index = ds->index;
dsa_tree_remove_switch(dst, index);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
_dsa_unregister_switch(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);