kernel_optimize_test/drivers/scsi/libata-scsi.c

1681 lines
41 KiB
C
Raw Normal View History

/*
* libata-scsi.c - helper library for ATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
* Copyright 2003-2004 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from
* - http://www.t10.org/
* - http://www.t13.org/
*
*/
#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <scsi/scsi.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#include <asm/uaccess.h>
#include "libata.h"
typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc, u8 *scsicmd);
static struct ata_device *
ata_scsi_find_dev(struct ata_port *ap, struct scsi_device *scsidev);
/**
* ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd.
* @sdev: SCSI device for which BIOS geometry is to be determined
* @bdev: block device associated with @sdev
* @capacity: capacity of SCSI device
* @geom: location to which geometry will be output
*
* Generic bios head/sector/cylinder calculator
* used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS)
* mapping. Some situations may arise where the disk is not
* bootable if this is not used.
*
* LOCKING:
* Defined by the SCSI layer. We don't really care.
*
* RETURNS:
* Zero.
*/
int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
geom[0] = 255;
geom[1] = 63;
sector_div(capacity, 255*63);
geom[2] = capacity;
return 0;
}
int ata_scsi_ioctl(struct scsi_device *scsidev, int cmd, void __user *arg)
{
struct ata_port *ap;
struct ata_device *dev;
int val = -EINVAL, rc = -EINVAL;
ap = (struct ata_port *) &scsidev->host->hostdata[0];
if (!ap)
goto out;
dev = ata_scsi_find_dev(ap, scsidev);
if (!dev) {
rc = -ENODEV;
goto out;
}
switch (cmd) {
case ATA_IOC_GET_IO32:
val = 0;
if (copy_to_user(arg, &val, 1))
return -EFAULT;
return 0;
case ATA_IOC_SET_IO32:
val = (unsigned long) arg;
if (val != 0)
return -EINVAL;
return 0;
default:
rc = -ENOTTY;
break;
}
out:
return rc;
}
/**
* ata_scsi_qc_new - acquire new ata_queued_cmd reference
* @ap: ATA port to which the new command is attached
* @dev: ATA device to which the new command is attached
* @cmd: SCSI command that originated this ATA command
* @done: SCSI command completion function
*
* Obtain a reference to an unused ata_queued_cmd structure,
* which is the basic libata structure representing a single
* ATA command sent to the hardware.
*
* If a command was available, fill in the SCSI-specific
* portions of the structure with information on the
* current command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Command allocated, or %NULL if none available.
*/
struct ata_queued_cmd *ata_scsi_qc_new(struct ata_port *ap,
struct ata_device *dev,
struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct ata_queued_cmd *qc;
qc = ata_qc_new_init(ap, dev);
if (qc) {
qc->scsicmd = cmd;
qc->scsidone = done;
if (cmd->use_sg) {
qc->sg = (struct scatterlist *) cmd->request_buffer;
qc->n_elem = cmd->use_sg;
} else {
qc->sg = &qc->sgent;
qc->n_elem = 1;
}
} else {
cmd->result = (DID_OK << 16) | (QUEUE_FULL << 1);
done(cmd);
}
return qc;
}
/**
* ata_to_sense_error - convert ATA error to SCSI error
* @qc: Command that we are erroring out
* @drv_stat: value contained in ATA status register
*
* Converts an ATA error into a SCSI error. While we are at it
* we decode and dump the ATA error for the user so that they
* have some idea what really happened at the non make-believe
* layer.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_to_sense_error(struct ata_queued_cmd *qc, u8 drv_stat)
{
struct scsi_cmnd *cmd = qc->scsicmd;
u8 err = 0;
unsigned char *sb = cmd->sense_buffer;
/* Based on the 3ware driver translation table */
static unsigned char sense_table[][4] = {
/* BBD|ECC|ID|MAR */
{0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command
/* BBD|ECC|ID */
{0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command
/* ECC|MC|MARK */
{0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error
/* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */
{0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error
/* MC|ID|ABRT|TRK0|MARK */
{0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready
/* MCR|MARK */
{0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready
/* Bad address mark */
{0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found Address mark not found for data field
/* TRK0 */
{0x02, HARDWARE_ERROR, 0x00, 0x00}, // Track 0 not found Hardware error
/* Abort & !ICRC */
{0x04, ABORTED_COMMAND, 0x00, 0x00}, // Aborted command Aborted command
/* Media change request */
{0x08, NOT_READY, 0x04, 0x00}, // Media change request FIXME: faking offline
/* SRV */
{0x10, ABORTED_COMMAND, 0x14, 0x00}, // ID not found Recorded entity not found
/* Media change */
{0x08, NOT_READY, 0x04, 0x00}, // Media change FIXME: faking offline
/* ECC */
{0x40, MEDIUM_ERROR, 0x11, 0x04}, // Uncorrectable ECC error Unrecovered read error
/* BBD - block marked bad */
{0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error
{0xFF, 0xFF, 0xFF, 0xFF}, // END mark
};
static unsigned char stat_table[][4] = {
/* Must be first because BUSY means no other bits valid */
{0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now
{0x20, HARDWARE_ERROR, 0x00, 0x00}, // Device fault
{0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now
{0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered
{0xFF, 0xFF, 0xFF, 0xFF}, // END mark
};
int i = 0;
cmd->result = SAM_STAT_CHECK_CONDITION;
/*
* Is this an error we can process/parse
*/
if(drv_stat & ATA_ERR)
/* Read the err bits */
err = ata_chk_err(qc->ap);
/* Display the ATA level error info */
printk(KERN_WARNING "ata%u: status=0x%02x { ", qc->ap->id, drv_stat);
if(drv_stat & 0x80)
{
printk("Busy ");
err = 0; /* Data is not valid in this case */
}
else {
if(drv_stat & 0x40) printk("DriveReady ");
if(drv_stat & 0x20) printk("DeviceFault ");
if(drv_stat & 0x10) printk("SeekComplete ");
if(drv_stat & 0x08) printk("DataRequest ");
if(drv_stat & 0x04) printk("CorrectedError ");
if(drv_stat & 0x02) printk("Index ");
if(drv_stat & 0x01) printk("Error ");
}
printk("}\n");
if(err)
{
printk(KERN_WARNING "ata%u: error=0x%02x { ", qc->ap->id, err);
if(err & 0x04) printk("DriveStatusError ");
if(err & 0x80)
{
if(err & 0x04)
printk("BadCRC ");
else
printk("Sector ");
}
if(err & 0x40) printk("UncorrectableError ");
if(err & 0x10) printk("SectorIdNotFound ");
if(err & 0x02) printk("TrackZeroNotFound ");
if(err & 0x01) printk("AddrMarkNotFound ");
printk("}\n");
/* Should we dump sector info here too ?? */
}
/* Look for err */
while(sense_table[i][0] != 0xFF)
{
/* Look for best matches first */
if((sense_table[i][0] & err) == sense_table[i][0])
{
sb[0] = 0x70;
sb[2] = sense_table[i][1];
sb[7] = 0x0a;
sb[12] = sense_table[i][2];
sb[13] = sense_table[i][3];
return;
}
i++;
}
/* No immediate match */
if(err)
printk(KERN_DEBUG "ata%u: no sense translation for 0x%02x\n", qc->ap->id, err);
i = 0;
/* Fall back to interpreting status bits */
while(stat_table[i][0] != 0xFF)
{
if(stat_table[i][0] & drv_stat)
{
sb[0] = 0x70;
sb[2] = stat_table[i][1];
sb[7] = 0x0a;
sb[12] = stat_table[i][2];
sb[13] = stat_table[i][3];
return;
}
i++;
}
/* No error ?? */
printk(KERN_ERR "ata%u: called with no error (%02X)!\n", qc->ap->id, drv_stat);
/* additional-sense-code[-qualifier] */
sb[0] = 0x70;
sb[2] = MEDIUM_ERROR;
sb[7] = 0x0A;
if (cmd->sc_data_direction == DMA_FROM_DEVICE) {
sb[12] = 0x11; /* "unrecovered read error" */
sb[13] = 0x04;
} else {
sb[12] = 0x0C; /* "write error - */
sb[13] = 0x02; /* auto-reallocation failed" */
}
}
/**
* ata_scsi_slave_config - Set SCSI device attributes
* @sdev: SCSI device to examine
*
* This is called before we actually start reading
* and writing to the device, to configure certain
* SCSI mid-layer behaviors.
*
* LOCKING:
* Defined by SCSI layer. We don't really care.
*/
int ata_scsi_slave_config(struct scsi_device *sdev)
{
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
blk_queue_max_phys_segments(sdev->request_queue, LIBATA_MAX_PRD);
if (sdev->id < ATA_MAX_DEVICES) {
struct ata_port *ap;
struct ata_device *dev;
ap = (struct ata_port *) &sdev->host->hostdata[0];
dev = &ap->device[sdev->id];
/* TODO: 1024 is an arbitrary number, not the
* hardware maximum. This should be increased to
* 65534 when Jens Axboe's patch for dynamically
* determining max_sectors is merged.
*/
if ((dev->flags & ATA_DFLAG_LBA48) &&
((dev->flags & ATA_DFLAG_LOCK_SECTORS) == 0)) {
/*
* do not overwrite sdev->host->max_sectors, since
* other drives on this host may not support LBA48
*/
blk_queue_max_sectors(sdev->request_queue, 2048);
}
}
return 0; /* scsi layer doesn't check return value, sigh */
}
/**
* ata_scsi_error - SCSI layer error handler callback
* @host: SCSI host on which error occurred
*
* Handles SCSI-layer-thrown error events.
*
* LOCKING:
* Inherited from SCSI layer (none, can sleep)
*
* RETURNS:
* Zero.
*/
int ata_scsi_error(struct Scsi_Host *host)
{
struct ata_port *ap;
DPRINTK("ENTER\n");
ap = (struct ata_port *) &host->hostdata[0];
ap->ops->eng_timeout(ap);
/* TODO: this is per-command; when queueing is supported
* this code will either change or move to a more
* appropriate place
*/
host->host_failed--;
INIT_LIST_HEAD(&host->eh_cmd_q);
DPRINTK("EXIT\n");
return 0;
}
/**
* ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command
* @qc: Storage for translated ATA taskfile
* @scsicmd: SCSI command to translate
*
* Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY
* (to start). Perhaps these commands should be preceded by
* CHECK POWER MODE to see what power mode the device is already in.
* [See SAT revision 5 at www.t10.org]
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc,
u8 *scsicmd)
{
struct ata_taskfile *tf = &qc->tf;
tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
tf->protocol = ATA_PROT_NODATA;
if (scsicmd[1] & 0x1) {
; /* ignore IMMED bit, violates sat-r05 */
}
if (scsicmd[4] & 0x2)
return 1; /* LOEJ bit set not supported */
if (((scsicmd[4] >> 4) & 0xf) != 0)
return 1; /* power conditions not supported */
if (scsicmd[4] & 0x1) {
tf->nsect = 1; /* 1 sector, lba=0 */
tf->lbah = 0x0;
tf->lbam = 0x0;
tf->lbal = 0x0;
tf->device |= ATA_LBA;
tf->command = ATA_CMD_VERIFY; /* READ VERIFY */
} else {
tf->nsect = 0; /* time period value (0 implies now) */
tf->command = ATA_CMD_STANDBY;
/* Consider: ATA STANDBY IMMEDIATE command */
}
/*
* Standby and Idle condition timers could be implemented but that
* would require libata to implement the Power condition mode page
* and allow the user to change it. Changing mode pages requires
* MODE SELECT to be implemented.
*/
return 0;
}
/**
* ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command
* @qc: Storage for translated ATA taskfile
* @scsicmd: SCSI command to translate (ignored)
*
* Sets up an ATA taskfile to issue FLUSH CACHE or
* FLUSH CACHE EXT.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc, u8 *scsicmd)
{
struct ata_taskfile *tf = &qc->tf;
tf->flags |= ATA_TFLAG_DEVICE;
tf->protocol = ATA_PROT_NODATA;
if ((tf->flags & ATA_TFLAG_LBA48) &&
(ata_id_has_flush_ext(qc->dev->id)))
tf->command = ATA_CMD_FLUSH_EXT;
else
tf->command = ATA_CMD_FLUSH;
return 0;
}
/**
* ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one
* @qc: Storage for translated ATA taskfile
* @scsicmd: SCSI command to translate
*
* Converts SCSI VERIFY command to an ATA READ VERIFY command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc, u8 *scsicmd)
{
struct ata_taskfile *tf = &qc->tf;
unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48;
u64 dev_sectors = qc->dev->n_sectors;
u64 sect = 0;
u32 n_sect = 0;
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf->protocol = ATA_PROT_NODATA;
tf->device |= ATA_LBA;
if (scsicmd[0] == VERIFY) {
sect |= ((u64)scsicmd[2]) << 24;
sect |= ((u64)scsicmd[3]) << 16;
sect |= ((u64)scsicmd[4]) << 8;
sect |= ((u64)scsicmd[5]);
n_sect |= ((u32)scsicmd[7]) << 8;
n_sect |= ((u32)scsicmd[8]);
}
else if (scsicmd[0] == VERIFY_16) {
sect |= ((u64)scsicmd[2]) << 56;
sect |= ((u64)scsicmd[3]) << 48;
sect |= ((u64)scsicmd[4]) << 40;
sect |= ((u64)scsicmd[5]) << 32;
sect |= ((u64)scsicmd[6]) << 24;
sect |= ((u64)scsicmd[7]) << 16;
sect |= ((u64)scsicmd[8]) << 8;
sect |= ((u64)scsicmd[9]);
n_sect |= ((u32)scsicmd[10]) << 24;
n_sect |= ((u32)scsicmd[11]) << 16;
n_sect |= ((u32)scsicmd[12]) << 8;
n_sect |= ((u32)scsicmd[13]);
}
else
return 1;
if (!n_sect)
return 1;
if (sect >= dev_sectors)
return 1;
if ((sect + n_sect) > dev_sectors)
return 1;
if (lba48) {
if (n_sect > (64 * 1024))
return 1;
} else {
if (n_sect > 256)
return 1;
}
if (lba48) {
tf->command = ATA_CMD_VERIFY_EXT;
tf->hob_nsect = (n_sect >> 8) & 0xff;
tf->hob_lbah = (sect >> 40) & 0xff;
tf->hob_lbam = (sect >> 32) & 0xff;
tf->hob_lbal = (sect >> 24) & 0xff;
} else {
tf->command = ATA_CMD_VERIFY;
tf->device |= (sect >> 24) & 0xf;
}
tf->nsect = n_sect & 0xff;
tf->lbah = (sect >> 16) & 0xff;
tf->lbam = (sect >> 8) & 0xff;
tf->lbal = sect & 0xff;
return 0;
}
/**
* ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one
* @qc: Storage for translated ATA taskfile
* @scsicmd: SCSI command to translate
*
* Converts any of six SCSI read/write commands into the
* ATA counterpart, including starting sector (LBA),
* sector count, and taking into account the device's LBA48
* support.
*
* Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and
* %WRITE_16 are currently supported.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, non-zero on error.
*/
static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc, u8 *scsicmd)
{
struct ata_taskfile *tf = &qc->tf;
unsigned int lba48 = tf->flags & ATA_TFLAG_LBA48;
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
tf->protocol = qc->dev->xfer_protocol;
tf->device |= ATA_LBA;
if (scsicmd[0] == READ_10 || scsicmd[0] == READ_6 ||
scsicmd[0] == READ_16) {
tf->command = qc->dev->read_cmd;
} else {
tf->command = qc->dev->write_cmd;
tf->flags |= ATA_TFLAG_WRITE;
}
if (scsicmd[0] == READ_10 || scsicmd[0] == WRITE_10) {
if (lba48) {
tf->hob_nsect = scsicmd[7];
tf->hob_lbal = scsicmd[2];
qc->nsect = ((unsigned int)scsicmd[7] << 8) |
scsicmd[8];
} else {
/* if we don't support LBA48 addressing, the request
* -may- be too large. */
if ((scsicmd[2] & 0xf0) || scsicmd[7])
return 1;
/* stores LBA27:24 in lower 4 bits of device reg */
tf->device |= scsicmd[2];
qc->nsect = scsicmd[8];
}
tf->nsect = scsicmd[8];
tf->lbal = scsicmd[5];
tf->lbam = scsicmd[4];
tf->lbah = scsicmd[3];
VPRINTK("ten-byte command\n");
if (qc->nsect == 0) /* we don't support length==0 cmds */
return 1;
return 0;
}
if (scsicmd[0] == READ_6 || scsicmd[0] == WRITE_6) {
qc->nsect = tf->nsect = scsicmd[4];
if (!qc->nsect) {
qc->nsect = 256;
if (lba48)
tf->hob_nsect = 1;
}
tf->lbal = scsicmd[3];
tf->lbam = scsicmd[2];
tf->lbah = scsicmd[1] & 0x1f; /* mask out reserved bits */
VPRINTK("six-byte command\n");
return 0;
}
if (scsicmd[0] == READ_16 || scsicmd[0] == WRITE_16) {
/* rule out impossible LBAs and sector counts */
if (scsicmd[2] || scsicmd[3] || scsicmd[10] || scsicmd[11])
return 1;
if (lba48) {
tf->hob_nsect = scsicmd[12];
tf->hob_lbal = scsicmd[6];
tf->hob_lbam = scsicmd[5];
tf->hob_lbah = scsicmd[4];
qc->nsect = ((unsigned int)scsicmd[12] << 8) |
scsicmd[13];
} else {
/* once again, filter out impossible non-zero values */
if (scsicmd[4] || scsicmd[5] || scsicmd[12] ||
(scsicmd[6] & 0xf0))
return 1;
/* stores LBA27:24 in lower 4 bits of device reg */
tf->device |= scsicmd[6];
qc->nsect = scsicmd[13];
}
tf->nsect = scsicmd[13];
tf->lbal = scsicmd[9];
tf->lbam = scsicmd[8];
tf->lbah = scsicmd[7];
VPRINTK("sixteen-byte command\n");
if (qc->nsect == 0) /* we don't support length==0 cmds */
return 1;
return 0;
}
DPRINTK("no-byte command\n");
return 1;
}
static int ata_scsi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
{
struct scsi_cmnd *cmd = qc->scsicmd;
if (unlikely(drv_stat & (ATA_ERR | ATA_BUSY | ATA_DRQ)))
ata_to_sense_error(qc, drv_stat);
else
cmd->result = SAM_STAT_GOOD;
qc->scsidone(cmd);
return 0;
}
/**
* ata_scsi_translate - Translate then issue SCSI command to ATA device
* @ap: ATA port to which the command is addressed
* @dev: ATA device to which the command is addressed
* @cmd: SCSI command to execute
* @done: SCSI command completion function
* @xlat_func: Actor which translates @cmd to an ATA taskfile
*
* Our ->queuecommand() function has decided that the SCSI
* command issued can be directly translated into an ATA
* command, rather than handled internally.
*
* This function sets up an ata_queued_cmd structure for the
* SCSI command, and sends that ata_queued_cmd to the hardware.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_scsi_translate(struct ata_port *ap, struct ata_device *dev,
struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *),
ata_xlat_func_t xlat_func)
{
struct ata_queued_cmd *qc;
u8 *scsicmd = cmd->cmnd;
VPRINTK("ENTER\n");
qc = ata_scsi_qc_new(ap, dev, cmd, done);
if (!qc)
return;
/* data is present; dma-map it */
if (cmd->sc_data_direction == DMA_FROM_DEVICE ||
cmd->sc_data_direction == DMA_TO_DEVICE) {
if (unlikely(cmd->request_bufflen < 1)) {
printk(KERN_WARNING "ata%u(%u): WARNING: zero len r/w req\n",
ap->id, dev->devno);
goto err_out;
}
if (cmd->use_sg)
ata_sg_init(qc, cmd->request_buffer, cmd->use_sg);
else
ata_sg_init_one(qc, cmd->request_buffer,
cmd->request_bufflen);
qc->dma_dir = cmd->sc_data_direction;
}
qc->complete_fn = ata_scsi_qc_complete;
if (xlat_func(qc, scsicmd))
goto err_out;
/* select device, send command to hardware */
if (ata_qc_issue(qc))
goto err_out;
VPRINTK("EXIT\n");
return;
err_out:
ata_qc_free(qc);
ata_bad_cdb(cmd, done);
DPRINTK("EXIT - badcmd\n");
}
/**
* ata_scsi_rbuf_get - Map response buffer.
* @cmd: SCSI command containing buffer to be mapped.
* @buf_out: Pointer to mapped area.
*
* Maps buffer contained within SCSI command @cmd.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Length of response buffer.
*/
static unsigned int ata_scsi_rbuf_get(struct scsi_cmnd *cmd, u8 **buf_out)
{
u8 *buf;
unsigned int buflen;
if (cmd->use_sg) {
struct scatterlist *sg;
sg = (struct scatterlist *) cmd->request_buffer;
buf = kmap_atomic(sg->page, KM_USER0) + sg->offset;
buflen = sg->length;
} else {
buf = cmd->request_buffer;
buflen = cmd->request_bufflen;
}
*buf_out = buf;
return buflen;
}
/**
* ata_scsi_rbuf_put - Unmap response buffer.
* @cmd: SCSI command containing buffer to be unmapped.
* @buf: buffer to unmap
*
* Unmaps response buffer contained within @cmd.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static inline void ata_scsi_rbuf_put(struct scsi_cmnd *cmd, u8 *buf)
{
if (cmd->use_sg) {
struct scatterlist *sg;
sg = (struct scatterlist *) cmd->request_buffer;
kunmap_atomic(buf - sg->offset, KM_USER0);
}
}
/**
* ata_scsi_rbuf_fill - wrapper for SCSI command simulators
* @args: device IDENTIFY data / SCSI command of interest.
* @actor: Callback hook for desired SCSI command simulator
*
* Takes care of the hard work of simulating a SCSI command...
* Mapping the response buffer, calling the command's handler,
* and handling the handler's return value. This return value
* indicates whether the handler wishes the SCSI command to be
* completed successfully, or not.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_scsi_rbuf_fill(struct ata_scsi_args *args,
unsigned int (*actor) (struct ata_scsi_args *args,
u8 *rbuf, unsigned int buflen))
{
u8 *rbuf;
unsigned int buflen, rc;
struct scsi_cmnd *cmd = args->cmd;
buflen = ata_scsi_rbuf_get(cmd, &rbuf);
memset(rbuf, 0, buflen);
rc = actor(args, rbuf, buflen);
ata_scsi_rbuf_put(cmd, rbuf);
if (rc)
ata_bad_cdb(cmd, args->done);
else {
cmd->result = SAM_STAT_GOOD;
args->done(cmd);
}
}
/**
* ata_scsiop_inq_std - Simulate INQUIRY command
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns standard device identification data associated
* with non-EVPD INQUIRY command output.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
u8 hdr[] = {
TYPE_DISK,
0,
0x5, /* claim SPC-3 version compatibility */
2,
95 - 4
};
/* set scsi removeable (RMB) bit per ata bit */
if (ata_id_removeable(args->id))
hdr[1] |= (1 << 7);
VPRINTK("ENTER\n");
memcpy(rbuf, hdr, sizeof(hdr));
if (buflen > 35) {
memcpy(&rbuf[8], "ATA ", 8);
ata_dev_id_string(args->id, &rbuf[16], ATA_ID_PROD_OFS, 16);
ata_dev_id_string(args->id, &rbuf[32], ATA_ID_FW_REV_OFS, 4);
if (rbuf[32] == 0 || rbuf[32] == ' ')
memcpy(&rbuf[32], "n/a ", 4);
}
if (buflen > 63) {
const u8 versions[] = {
0x60, /* SAM-3 (no version claimed) */
0x03,
0x20, /* SBC-2 (no version claimed) */
0x02,
0x60 /* SPC-3 (no version claimed) */
};
memcpy(rbuf + 59, versions, sizeof(versions));
}
return 0;
}
/**
* ata_scsiop_inq_00 - Simulate INQUIRY EVPD page 0, list of pages
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns list of inquiry EVPD pages available.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
const u8 pages[] = {
0x00, /* page 0x00, this page */
0x80, /* page 0x80, unit serial no page */
0x83 /* page 0x83, device ident page */
};
rbuf[3] = sizeof(pages); /* number of supported EVPD pages */
if (buflen > 6)
memcpy(rbuf + 4, pages, sizeof(pages));
return 0;
}
/**
* ata_scsiop_inq_80 - Simulate INQUIRY EVPD page 80, device serial number
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns ATA device serial number.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
const u8 hdr[] = {
0,
0x80, /* this page code */
0,
ATA_SERNO_LEN, /* page len */
};
memcpy(rbuf, hdr, sizeof(hdr));
if (buflen > (ATA_SERNO_LEN + 4 - 1))
ata_dev_id_string(args->id, (unsigned char *) &rbuf[4],
ATA_ID_SERNO_OFS, ATA_SERNO_LEN);
return 0;
}
static const char *inq_83_str = "Linux ATA-SCSI simulator";
/**
* ata_scsiop_inq_83 - Simulate INQUIRY EVPD page 83, device identity
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Returns device identification. Currently hardcoded to
* return "Linux ATA-SCSI simulator".
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
rbuf[1] = 0x83; /* this page code */
rbuf[3] = 4 + strlen(inq_83_str); /* page len */
/* our one and only identification descriptor (vendor-specific) */
if (buflen > (strlen(inq_83_str) + 4 + 4 - 1)) {
rbuf[4 + 0] = 2; /* code set: ASCII */
rbuf[4 + 3] = strlen(inq_83_str);
memcpy(rbuf + 4 + 4, inq_83_str, strlen(inq_83_str));
}
return 0;
}
/**
2005-05-31 07:49:12 +08:00
* ata_scsiop_noop - Command handler that simply returns success.
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* No operation. Simply returns success to caller, to indicate
* that the caller should successfully complete this SCSI command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_noop(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
VPRINTK("ENTER\n");
return 0;
}
/**
* ata_msense_push - Push data onto MODE SENSE data output buffer
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
* @buf: Pointer to BLOB being added to output buffer
* @buflen: Length of BLOB
*
* Store MODE SENSE data on an output buffer.
*
* LOCKING:
* None.
*/
static void ata_msense_push(u8 **ptr_io, const u8 *last,
const u8 *buf, unsigned int buflen)
{
u8 *ptr = *ptr_io;
if ((ptr + buflen - 1) > last)
return;
memcpy(ptr, buf, buflen);
ptr += buflen;
*ptr_io = ptr;
}
/**
* ata_msense_caching - Simulate MODE SENSE caching info page
* @id: device IDENTIFY data
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a caching info page, which conditionally indicates
* write caching to the SCSI layer, depending on device
* capabilities.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_caching(u16 *id, u8 **ptr_io,
const u8 *last)
{
u8 page[] = {
0x8, /* page code */
0x12, /* page length */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 10 zeroes */
0, 0, 0, 0, 0, 0, 0, 0 /* 8 zeroes */
};
if (ata_id_wcache_enabled(id))
page[2] |= (1 << 2); /* write cache enable */
if (!ata_id_rahead_enabled(id))
page[12] |= (1 << 5); /* disable read ahead */
ata_msense_push(ptr_io, last, page, sizeof(page));
return sizeof(page);
}
/**
* ata_msense_ctl_mode - Simulate MODE SENSE control mode page
* @dev: Device associated with this MODE SENSE command
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a generic MODE SENSE control mode page.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_ctl_mode(u8 **ptr_io, const u8 *last)
{
const u8 page[] = {0xa, 0xa, 6, 0, 0, 0, 0, 0, 0xff, 0xff, 0, 30};
/* byte 2: set the descriptor format sense data bit (bit 2)
* since we need to support returning this format for SAT
* commands and any SCSI commands against a 48b LBA device.
*/
ata_msense_push(ptr_io, last, page, sizeof(page));
return sizeof(page);
}
/**
* ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page
* @dev: Device associated with this MODE SENSE command
* @ptr_io: (input/output) Location to store more output data
* @last: End of output data buffer
*
* Generate a generic MODE SENSE r/w error recovery page.
*
* LOCKING:
* None.
*/
static unsigned int ata_msense_rw_recovery(u8 **ptr_io, const u8 *last)
{
const u8 page[] = {
0x1, /* page code */
0xa, /* page length */
(1 << 7) | (1 << 6), /* note auto r/w reallocation */
0, 0, 0, 0, 0, 0, 0, 0, 0 /* 9 zeroes */
};
ata_msense_push(ptr_io, last, page, sizeof(page));
return sizeof(page);
}
/**
* ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate MODE SENSE commands.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
u8 *scsicmd = args->cmd->cmnd, *p, *last;
unsigned int page_control, six_byte, output_len;
VPRINTK("ENTER\n");
six_byte = (scsicmd[0] == MODE_SENSE);
/* we only support saved and current values (which we treat
* in the same manner)
*/
page_control = scsicmd[2] >> 6;
if ((page_control != 0) && (page_control != 3))
return 1;
if (six_byte)
output_len = 4;
else
output_len = 8;
p = rbuf + output_len;
last = rbuf + buflen - 1;
switch(scsicmd[2] & 0x3f) {
case 0x01: /* r/w error recovery */
output_len += ata_msense_rw_recovery(&p, last);
break;
case 0x08: /* caching */
output_len += ata_msense_caching(args->id, &p, last);
break;
case 0x0a: { /* control mode */
output_len += ata_msense_ctl_mode(&p, last);
break;
}
case 0x3f: /* all pages */
output_len += ata_msense_rw_recovery(&p, last);
output_len += ata_msense_caching(args->id, &p, last);
output_len += ata_msense_ctl_mode(&p, last);
break;
default: /* invalid page code */
return 1;
}
if (six_byte) {
output_len--;
rbuf[0] = output_len;
} else {
output_len -= 2;
rbuf[0] = output_len >> 8;
rbuf[1] = output_len;
}
return 0;
}
/**
* ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate READ CAPACITY commands.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
u64 n_sectors;
u32 tmp;
VPRINTK("ENTER\n");
if (ata_id_has_lba48(args->id))
n_sectors = ata_id_u64(args->id, 100);
else
n_sectors = ata_id_u32(args->id, 60);
n_sectors--; /* ATA TotalUserSectors - 1 */
if (args->cmd->cmnd[0] == READ_CAPACITY) {
if( n_sectors >= 0xffffffffULL )
tmp = 0xffffffff ; /* Return max count on overflow */
else
tmp = n_sectors ;
/* sector count, 32-bit */
rbuf[0] = tmp >> (8 * 3);
rbuf[1] = tmp >> (8 * 2);
rbuf[2] = tmp >> (8 * 1);
rbuf[3] = tmp;
/* sector size */
tmp = ATA_SECT_SIZE;
rbuf[6] = tmp >> 8;
rbuf[7] = tmp;
} else {
/* sector count, 64-bit */
tmp = n_sectors >> (8 * 4);
rbuf[2] = tmp >> (8 * 3);
rbuf[3] = tmp >> (8 * 2);
rbuf[4] = tmp >> (8 * 1);
rbuf[5] = tmp;
tmp = n_sectors;
rbuf[6] = tmp >> (8 * 3);
rbuf[7] = tmp >> (8 * 2);
rbuf[8] = tmp >> (8 * 1);
rbuf[9] = tmp;
/* sector size */
tmp = ATA_SECT_SIZE;
rbuf[12] = tmp >> 8;
rbuf[13] = tmp;
}
return 0;
}
/**
* ata_scsiop_report_luns - Simulate REPORT LUNS command
* @args: device IDENTIFY data / SCSI command of interest.
* @rbuf: Response buffer, to which simulated SCSI cmd output is sent.
* @buflen: Response buffer length.
*
* Simulate REPORT LUNS command.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf,
unsigned int buflen)
{
VPRINTK("ENTER\n");
rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */
return 0;
}
/**
* ata_scsi_badcmd - End a SCSI request with an error
* @cmd: SCSI request to be handled
* @done: SCSI command completion function
* @asc: SCSI-defined additional sense code
* @ascq: SCSI-defined additional sense code qualifier
*
* Helper function that completes a SCSI command with
* %SAM_STAT_CHECK_CONDITION, with a sense key %ILLEGAL_REQUEST
* and the specified additional sense codes.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 asc, u8 ascq)
{
DPRINTK("ENTER\n");
cmd->result = SAM_STAT_CHECK_CONDITION;
cmd->sense_buffer[0] = 0x70;
cmd->sense_buffer[2] = ILLEGAL_REQUEST;
cmd->sense_buffer[7] = 14 - 8; /* addnl. sense len. FIXME: correct? */
cmd->sense_buffer[12] = asc;
cmd->sense_buffer[13] = ascq;
done(cmd);
}
static int atapi_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
{
struct scsi_cmnd *cmd = qc->scsicmd;
if (unlikely(drv_stat & (ATA_ERR | ATA_BUSY | ATA_DRQ))) {
DPRINTK("request check condition\n");
cmd->result = SAM_STAT_CHECK_CONDITION;
qc->scsidone(cmd);
return 1;
} else {
u8 *scsicmd = cmd->cmnd;
if (scsicmd[0] == INQUIRY) {
u8 *buf = NULL;
unsigned int buflen;
buflen = ata_scsi_rbuf_get(cmd, &buf);
buf[2] = 0x5;
buf[3] = (buf[3] & 0xf0) | 2;
ata_scsi_rbuf_put(cmd, buf);
}
cmd->result = SAM_STAT_GOOD;
}
qc->scsidone(cmd);
return 0;
}
/**
* atapi_xlat - Initialize PACKET taskfile
* @qc: command structure to be initialized
* @scsicmd: SCSI CDB associated with this PACKET command
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, non-zero on failure.
*/
static unsigned int atapi_xlat(struct ata_queued_cmd *qc, u8 *scsicmd)
{
struct scsi_cmnd *cmd = qc->scsicmd;
struct ata_device *dev = qc->dev;
int using_pio = (dev->flags & ATA_DFLAG_PIO);
int nodata = (cmd->sc_data_direction == DMA_NONE);
if (!using_pio)
/* Check whether ATAPI DMA is safe */
if (ata_check_atapi_dma(qc))
using_pio = 1;
memcpy(&qc->cdb, scsicmd, qc->ap->cdb_len);
qc->complete_fn = atapi_qc_complete;
qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
if (cmd->sc_data_direction == DMA_TO_DEVICE) {
qc->tf.flags |= ATA_TFLAG_WRITE;
DPRINTK("direction: write\n");
}
qc->tf.command = ATA_CMD_PACKET;
/* no data, or PIO data xfer */
if (using_pio || nodata) {
if (nodata)
qc->tf.protocol = ATA_PROT_ATAPI_NODATA;
else
qc->tf.protocol = ATA_PROT_ATAPI;
qc->tf.lbam = (8 * 1024) & 0xff;
qc->tf.lbah = (8 * 1024) >> 8;
}
/* DMA data xfer */
else {
qc->tf.protocol = ATA_PROT_ATAPI_DMA;
qc->tf.feature |= ATAPI_PKT_DMA;
#ifdef ATAPI_ENABLE_DMADIR
/* some SATA bridges need us to indicate data xfer direction */
if (cmd->sc_data_direction != DMA_TO_DEVICE)
qc->tf.feature |= ATAPI_DMADIR;
#endif
}
qc->nbytes = cmd->bufflen;
return 0;
}
/**
* ata_scsi_find_dev - lookup ata_device from scsi_cmnd
* @ap: ATA port to which the device is attached
* @scsidev: SCSI device from which we derive the ATA device
*
* Given various information provided in struct scsi_cmnd,
* map that onto an ATA bus, and using that mapping
* determine which ata_device is associated with the
* SCSI command to be sent.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Associated ATA device, or %NULL if not found.
*/
static struct ata_device *
ata_scsi_find_dev(struct ata_port *ap, struct scsi_device *scsidev)
{
struct ata_device *dev;
/* skip commands not addressed to targets we simulate */
if (likely(scsidev->id < ATA_MAX_DEVICES))
dev = &ap->device[scsidev->id];
else
return NULL;
if (unlikely((scsidev->channel != 0) ||
(scsidev->lun != 0)))
return NULL;
if (unlikely(!ata_dev_present(dev)))
return NULL;
if (!atapi_enabled) {
if (unlikely(dev->class == ATA_DEV_ATAPI))
return NULL;
}
return dev;
}
/**
* ata_get_xlat_func - check if SCSI to ATA translation is possible
* @dev: ATA device
* @cmd: SCSI command opcode to consider
*
* Look up the SCSI command given, and determine whether the
* SCSI command is to be translated or simulated.
*
* RETURNS:
* Pointer to translation function if possible, %NULL if not.
*/
static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd)
{
switch (cmd) {
case READ_6:
case READ_10:
case READ_16:
case WRITE_6:
case WRITE_10:
case WRITE_16:
return ata_scsi_rw_xlat;
case SYNCHRONIZE_CACHE:
if (ata_try_flush_cache(dev))
return ata_scsi_flush_xlat;
break;
case VERIFY:
case VERIFY_16:
return ata_scsi_verify_xlat;
case START_STOP:
return ata_scsi_start_stop_xlat;
}
return NULL;
}
/**
* ata_scsi_dump_cdb - dump SCSI command contents to dmesg
* @ap: ATA port to which the command was being sent
* @cmd: SCSI command to dump
*
* Prints the contents of a SCSI command via printk().
*/
static inline void ata_scsi_dump_cdb(struct ata_port *ap,
struct scsi_cmnd *cmd)
{
#ifdef ATA_DEBUG
struct scsi_device *scsidev = cmd->device;
u8 *scsicmd = cmd->cmnd;
DPRINTK("CDB (%u:%d,%d,%d) %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
ap->id,
scsidev->channel, scsidev->id, scsidev->lun,
scsicmd[0], scsicmd[1], scsicmd[2], scsicmd[3],
scsicmd[4], scsicmd[5], scsicmd[6], scsicmd[7],
scsicmd[8]);
#endif
}
/**
* ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device
* @cmd: SCSI command to be sent
* @done: Completion function, called when command is complete
*
* In some cases, this function translates SCSI commands into
* ATA taskfiles, and queues the taskfiles to be sent to
* hardware. In other cases, this function simulates a
* SCSI device by evaluating and responding to certain
* SCSI commands. This creates the overall effect of
* ATA and ATAPI devices appearing as SCSI devices.
*
* LOCKING:
* Releases scsi-layer-held lock, and obtains host_set lock.
*
* RETURNS:
* Zero.
*/
int ata_scsi_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct ata_port *ap;
struct ata_device *dev;
struct scsi_device *scsidev = cmd->device;
ap = (struct ata_port *) &scsidev->host->hostdata[0];
ata_scsi_dump_cdb(ap, cmd);
dev = ata_scsi_find_dev(ap, scsidev);
if (unlikely(!dev)) {
cmd->result = (DID_BAD_TARGET << 16);
done(cmd);
goto out_unlock;
}
if (dev->class == ATA_DEV_ATA) {
ata_xlat_func_t xlat_func = ata_get_xlat_func(dev,
cmd->cmnd[0]);
if (xlat_func)
ata_scsi_translate(ap, dev, cmd, done, xlat_func);
else
ata_scsi_simulate(dev->id, cmd, done);
} else
ata_scsi_translate(ap, dev, cmd, done, atapi_xlat);
out_unlock:
return 0;
}
/**
* ata_scsi_simulate - simulate SCSI command on ATA device
* @id: current IDENTIFY data for target device.
* @cmd: SCSI command being sent to device.
* @done: SCSI command completion function.
*
* Interprets and directly executes a select list of SCSI commands
* that can be handled internally.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_scsi_simulate(u16 *id,
struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct ata_scsi_args args;
u8 *scsicmd = cmd->cmnd;
args.id = id;
args.cmd = cmd;
args.done = done;
switch(scsicmd[0]) {
/* no-op's, complete with success */
case SYNCHRONIZE_CACHE:
case REZERO_UNIT:
case SEEK_6:
case SEEK_10:
case TEST_UNIT_READY:
case FORMAT_UNIT: /* FIXME: correct? */
case SEND_DIAGNOSTIC: /* FIXME: correct? */
ata_scsi_rbuf_fill(&args, ata_scsiop_noop);
break;
case INQUIRY:
if (scsicmd[1] & 2) /* is CmdDt set? */
ata_bad_cdb(cmd, done);
else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std);
else if (scsicmd[2] == 0x00)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00);
else if (scsicmd[2] == 0x80)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80);
else if (scsicmd[2] == 0x83)
ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83);
else
ata_bad_cdb(cmd, done);
break;
case MODE_SENSE:
case MODE_SENSE_10:
ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense);
break;
case MODE_SELECT: /* unconditionally return */
case MODE_SELECT_10: /* bad-field-in-cdb */
ata_bad_cdb(cmd, done);
break;
case READ_CAPACITY:
ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap);
break;
case SERVICE_ACTION_IN:
if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16)
ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap);
else
ata_bad_cdb(cmd, done);
break;
case REPORT_LUNS:
ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns);
break;
/* mandantory commands we haven't implemented yet */
case REQUEST_SENSE:
/* all other commands */
default:
ata_bad_scsiop(cmd, done);
break;
}
}