kernel_optimize_test/drivers/scsi/stex.c

1838 lines
43 KiB
C
Raw Normal View History

/*
* SuperTrak EX Series Storage Controller driver for Linux
*
* Copyright (C) 2005-2009 Promise Technology Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Written By:
* Ed Lin <promise_linux@promise.com>
*
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/pci.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#define DRV_NAME "stex"
#define ST_DRIVER_VERSION "4.6.0000.4"
#define ST_VER_MAJOR 4
#define ST_VER_MINOR 6
#define ST_OEM 0
#define ST_BUILD_VER 4
enum {
/* MU register offset */
IMR0 = 0x10, /* MU_INBOUND_MESSAGE_REG0 */
IMR1 = 0x14, /* MU_INBOUND_MESSAGE_REG1 */
OMR0 = 0x18, /* MU_OUTBOUND_MESSAGE_REG0 */
OMR1 = 0x1c, /* MU_OUTBOUND_MESSAGE_REG1 */
IDBL = 0x20, /* MU_INBOUND_DOORBELL */
IIS = 0x24, /* MU_INBOUND_INTERRUPT_STATUS */
IIM = 0x28, /* MU_INBOUND_INTERRUPT_MASK */
ODBL = 0x2c, /* MU_OUTBOUND_DOORBELL */
OIS = 0x30, /* MU_OUTBOUND_INTERRUPT_STATUS */
OIM = 0x3c, /* MU_OUTBOUND_INTERRUPT_MASK */
YIOA_STATUS = 0x00,
YH2I_INT = 0x20,
YINT_EN = 0x34,
YI2H_INT = 0x9c,
YI2H_INT_C = 0xa0,
YH2I_REQ = 0xc0,
YH2I_REQ_HI = 0xc4,
/* MU register value */
MU_INBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_INBOUND_DOORBELL_REQHEADCHANGED = (1 << 1),
MU_INBOUND_DOORBELL_STATUSTAILCHANGED = (1 << 2),
MU_INBOUND_DOORBELL_HMUSTOPPED = (1 << 3),
MU_INBOUND_DOORBELL_RESET = (1 << 4),
MU_OUTBOUND_DOORBELL_HANDSHAKE = (1 << 0),
MU_OUTBOUND_DOORBELL_REQUESTTAILCHANGED = (1 << 1),
MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED = (1 << 2),
MU_OUTBOUND_DOORBELL_BUSCHANGE = (1 << 3),
MU_OUTBOUND_DOORBELL_HASEVENT = (1 << 4),
MU_OUTBOUND_DOORBELL_REQUEST_RESET = (1 << 27),
/* MU status code */
MU_STATE_STARTING = 1,
MU_STATE_STARTED = 2,
MU_STATE_RESETTING = 3,
MU_STATE_FAILED = 4,
MU_MAX_DELAY = 120,
MU_HANDSHAKE_SIGNATURE = 0x55aaaa55,
MU_HANDSHAKE_SIGNATURE_HALF = 0x5a5a0000,
MU_HARD_RESET_WAIT = 30000,
HMU_PARTNER_TYPE = 2,
/* firmware returned values */
SRB_STATUS_SUCCESS = 0x01,
SRB_STATUS_ERROR = 0x04,
SRB_STATUS_BUSY = 0x05,
SRB_STATUS_INVALID_REQUEST = 0x06,
SRB_STATUS_SELECTION_TIMEOUT = 0x0A,
SRB_SEE_SENSE = 0x80,
/* task attribute */
TASK_ATTRIBUTE_SIMPLE = 0x0,
TASK_ATTRIBUTE_HEADOFQUEUE = 0x1,
TASK_ATTRIBUTE_ORDERED = 0x2,
TASK_ATTRIBUTE_ACA = 0x4,
SS_STS_NORMAL = 0x80000000,
SS_STS_DONE = 0x40000000,
SS_STS_HANDSHAKE = 0x20000000,
SS_HEAD_HANDSHAKE = 0x80,
SS_H2I_INT_RESET = 0x100,
SS_I2H_REQUEST_RESET = 0x2000,
SS_MU_OPERATIONAL = 0x80000000,
STEX_CDB_LENGTH = 16,
STATUS_VAR_LEN = 128,
/* sg flags */
SG_CF_EOT = 0x80, /* end of table */
SG_CF_64B = 0x40, /* 64 bit item */
SG_CF_HOST = 0x20, /* sg in host memory */
MSG_DATA_DIR_ND = 0,
MSG_DATA_DIR_IN = 1,
MSG_DATA_DIR_OUT = 2,
st_shasta = 0,
st_vsc = 1,
st_yosemite = 2,
st_seq = 3,
st_yel = 4,
PASSTHRU_REQ_TYPE = 0x00000001,
PASSTHRU_REQ_NO_WAKEUP = 0x00000100,
ST_INTERNAL_TIMEOUT = 180,
ST_TO_CMD = 0,
ST_FROM_CMD = 1,
/* vendor specific commands of Promise */
MGT_CMD = 0xd8,
SINBAND_MGT_CMD = 0xd9,
ARRAY_CMD = 0xe0,
CONTROLLER_CMD = 0xe1,
DEBUGGING_CMD = 0xe2,
PASSTHRU_CMD = 0xe3,
PASSTHRU_GET_ADAPTER = 0x05,
PASSTHRU_GET_DRVVER = 0x10,
CTLR_CONFIG_CMD = 0x03,
CTLR_SHUTDOWN = 0x0d,
CTLR_POWER_STATE_CHANGE = 0x0e,
CTLR_POWER_SAVING = 0x01,
PASSTHRU_SIGNATURE = 0x4e415041,
MGT_CMD_SIGNATURE = 0xba,
INQUIRY_EVPD = 0x01,
ST_ADDITIONAL_MEM = 0x200000,
ST_ADDITIONAL_MEM_MIN = 0x80000,
};
struct st_sgitem {
u8 ctrl; /* SG_CF_xxx */
u8 reserved[3];
__le32 count;
__le64 addr;
};
struct st_ss_sgitem {
__le32 addr;
__le32 addr_hi;
__le32 count;
};
struct st_sgtable {
__le16 sg_count;
__le16 max_sg_count;
__le32 sz_in_byte;
};
struct st_msg_header {
__le64 handle;
u8 flag;
u8 channel;
__le16 timeout;
u32 reserved;
};
struct handshake_frame {
__le64 rb_phy; /* request payload queue physical address */
__le16 req_sz; /* size of each request payload */
__le16 req_cnt; /* count of reqs the buffer can hold */
__le16 status_sz; /* size of each status payload */
__le16 status_cnt; /* count of status the buffer can hold */
__le64 hosttime; /* seconds from Jan 1, 1970 (GMT) */
u8 partner_type; /* who sends this frame */
u8 reserved0[7];
__le32 partner_ver_major;
__le32 partner_ver_minor;
__le32 partner_ver_oem;
__le32 partner_ver_build;
__le32 extra_offset; /* NEW */
__le32 extra_size; /* NEW */
__le32 scratch_size;
u32 reserved1;
};
struct req_msg {
__le16 tag;
u8 lun;
u8 target;
u8 task_attr;
u8 task_manage;
u8 data_dir;
u8 payload_sz; /* payload size in 4-byte, not used */
u8 cdb[STEX_CDB_LENGTH];
u32 variable[0];
};
struct status_msg {
__le16 tag;
u8 lun;
u8 target;
u8 srb_status;
u8 scsi_status;
u8 reserved;
u8 payload_sz; /* payload size in 4-byte */
u8 variable[STATUS_VAR_LEN];
};
struct ver_info {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 reserved[2];
};
struct st_frame {
u32 base[6];
u32 rom_addr;
struct ver_info drv_ver;
struct ver_info bios_ver;
u32 bus;
u32 slot;
u32 irq_level;
u32 irq_vec;
u32 id;
u32 subid;
u32 dimm_size;
u8 dimm_type;
u8 reserved[3];
u32 channel;
u32 reserved1;
};
struct st_drvver {
u32 major;
u32 minor;
u32 oem;
u32 build;
u32 signature[2];
u8 console_id;
u8 host_no;
u8 reserved0[2];
u32 reserved[3];
};
struct st_ccb {
struct req_msg *req;
struct scsi_cmnd *cmd;
void *sense_buffer;
unsigned int sense_bufflen;
int sg_count;
u32 req_type;
u8 srb_status;
u8 scsi_status;
u8 reserved[2];
};
struct st_hba {
void __iomem *mmio_base; /* iomapped PCI memory space */
void *dma_mem;
dma_addr_t dma_handle;
size_t dma_size;
struct Scsi_Host *host;
struct pci_dev *pdev;
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
u32 req_head;
u32 req_tail;
u32 status_head;
u32 status_tail;
struct status_msg *status_buffer;
void *copy_buffer; /* temp buffer for driver-handled commands */
struct st_ccb *ccb;
struct st_ccb *wait_ccb;
__le32 *scratch;
char work_q_name[20];
struct workqueue_struct *work_q;
struct work_struct reset_work;
wait_queue_head_t reset_waitq;
unsigned int mu_status;
unsigned int cardtype;
int msi_enabled;
int out_req_cnt;
u32 extra_offset;
u16 rq_count;
u16 rq_size;
u16 sts_count;
};
struct st_card_info {
struct req_msg * (*alloc_rq) (struct st_hba *);
int (*map_sg)(struct st_hba *, struct req_msg *, struct st_ccb *);
void (*send) (struct st_hba *, struct req_msg *, u16);
unsigned int max_id;
unsigned int max_lun;
unsigned int max_channel;
u16 rq_count;
u16 rq_size;
u16 sts_count;
};
static int msi;
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "Enable Message Signaled Interrupts(0=off, 1=on)");
static const char console_inq_page[] =
{
0x03,0x00,0x03,0x03,0xFA,0x00,0x00,0x30,
0x50,0x72,0x6F,0x6D,0x69,0x73,0x65,0x20, /* "Promise " */
0x52,0x41,0x49,0x44,0x20,0x43,0x6F,0x6E, /* "RAID Con" */
0x73,0x6F,0x6C,0x65,0x20,0x20,0x20,0x20, /* "sole " */
0x31,0x2E,0x30,0x30,0x20,0x20,0x20,0x20, /* "1.00 " */
0x53,0x58,0x2F,0x52,0x53,0x41,0x46,0x2D, /* "SX/RSAF-" */
0x54,0x45,0x31,0x2E,0x30,0x30,0x20,0x20, /* "TE1.00 " */
0x0C,0x20,0x20,0x20,0x20,0x20,0x20,0x20
};
MODULE_AUTHOR("Ed Lin");
MODULE_DESCRIPTION("Promise Technology SuperTrak EX Controllers");
MODULE_LICENSE("GPL");
MODULE_VERSION(ST_DRIVER_VERSION);
static void stex_gettime(__le64 *time)
{
struct timeval tv;
do_gettimeofday(&tv);
*time = cpu_to_le64(tv.tv_sec);
}
static struct status_msg *stex_get_status(struct st_hba *hba)
{
struct status_msg *status = hba->status_buffer + hba->status_tail;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
return status;
}
static void stex_invalid_field(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
/* "Invalid field in cdb" */
scsi_build_sense_buffer(0, cmd->sense_buffer, ILLEGAL_REQUEST, 0x24,
0x0);
done(cmd);
}
static struct req_msg *stex_alloc_req(struct st_hba *hba)
{
struct req_msg *req = hba->dma_mem + hba->req_head * hba->rq_size;
++hba->req_head;
hba->req_head %= hba->rq_count+1;
return req;
}
static struct req_msg *stex_ss_alloc_req(struct st_hba *hba)
{
return (struct req_msg *)(hba->dma_mem +
hba->req_head * hba->rq_size + sizeof(struct st_msg_header));
}
static int stex_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr = cpu_to_le64(sg_dma_address(sg));
table[i].ctrl = SG_CF_64B | SG_CF_HOST;
}
table[--i].ctrl |= SG_CF_EOT;
}
return nseg;
}
static int stex_ss_map_sg(struct st_hba *hba,
struct req_msg *req, struct st_ccb *ccb)
{
struct scsi_cmnd *cmd;
struct scatterlist *sg;
struct st_sgtable *dst;
struct st_ss_sgitem *table;
int i, nseg;
cmd = ccb->cmd;
nseg = scsi_dma_map(cmd);
BUG_ON(nseg < 0);
if (nseg) {
dst = (struct st_sgtable *)req->variable;
ccb->sg_count = nseg;
dst->sg_count = cpu_to_le16((u16)nseg);
dst->max_sg_count = cpu_to_le16(hba->host->sg_tablesize);
dst->sz_in_byte = cpu_to_le32(scsi_bufflen(cmd));
table = (struct st_ss_sgitem *)(dst + 1);
scsi_for_each_sg(cmd, sg, nseg, i) {
table[i].count = cpu_to_le32((u32)sg_dma_len(sg));
table[i].addr =
cpu_to_le32(sg_dma_address(sg) & 0xffffffff);
table[i].addr_hi =
cpu_to_le32((sg_dma_address(sg) >> 16) >> 16);
}
}
return nseg;
}
static void stex_controller_info(struct st_hba *hba, struct st_ccb *ccb)
{
struct st_frame *p;
size_t count = sizeof(struct st_frame);
p = hba->copy_buffer;
scsi_sg_copy_to_buffer(ccb->cmd, p, count);
memset(p->base, 0, sizeof(u32)*6);
*(unsigned long *)(p->base) = pci_resource_start(hba->pdev, 0);
p->rom_addr = 0;
p->drv_ver.major = ST_VER_MAJOR;
p->drv_ver.minor = ST_VER_MINOR;
p->drv_ver.oem = ST_OEM;
p->drv_ver.build = ST_BUILD_VER;
p->bus = hba->pdev->bus->number;
p->slot = hba->pdev->devfn;
p->irq_level = 0;
p->irq_vec = hba->pdev->irq;
p->id = hba->pdev->vendor << 16 | hba->pdev->device;
p->subid =
hba->pdev->subsystem_vendor << 16 | hba->pdev->subsystem_device;
scsi_sg_copy_from_buffer(ccb->cmd, p, count);
}
static void
stex_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
writel(hba->req_head, hba->mmio_base + IMR0);
writel(MU_INBOUND_DOORBELL_REQHEADCHANGED, hba->mmio_base + IDBL);
readl(hba->mmio_base + IDBL); /* flush */
}
static void
stex_ss_send_cmd(struct st_hba *hba, struct req_msg *req, u16 tag)
{
struct scsi_cmnd *cmd;
struct st_msg_header *msg_h;
dma_addr_t addr;
req->tag = cpu_to_le16(tag);
hba->ccb[tag].req = req;
hba->out_req_cnt++;
cmd = hba->ccb[tag].cmd;
msg_h = (struct st_msg_header *)req - 1;
if (likely(cmd)) {
msg_h->channel = (u8)cmd->device->channel;
msg_h->timeout = cpu_to_le16(cmd->request->timeout/HZ);
}
addr = hba->dma_handle + hba->req_head * hba->rq_size;
addr += (hba->ccb[tag].sg_count+4)/11;
msg_h->handle = cpu_to_le64(addr);
++hba->req_head;
hba->req_head %= hba->rq_count+1;
writel((addr >> 16) >> 16, hba->mmio_base + YH2I_REQ_HI);
readl(hba->mmio_base + YH2I_REQ_HI); /* flush */
writel(addr, hba->mmio_base + YH2I_REQ);
readl(hba->mmio_base + YH2I_REQ); /* flush */
}
static int
stex_slave_alloc(struct scsi_device *sdev)
{
/* Cheat: usually extracted from Inquiry data */
sdev->tagged_supported = 1;
scsi_activate_tcq(sdev, sdev->host->can_queue);
return 0;
}
static int
stex_slave_config(struct scsi_device *sdev)
{
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
blk_queue_rq_timeout(sdev->request_queue, 60 * HZ);
sdev->tagged_supported = 1;
return 0;
}
static void
stex_slave_destroy(struct scsi_device *sdev)
{
scsi_deactivate_tcq(sdev, 1);
}
static int
stex_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct st_hba *hba;
struct Scsi_Host *host;
unsigned int id, lun;
struct req_msg *req;
u16 tag;
host = cmd->device->host;
id = cmd->device->id;
lun = cmd->device->lun;
hba = (struct st_hba *) &host->hostdata[0];
if (unlikely(hba->mu_status == MU_STATE_RESETTING))
return SCSI_MLQUEUE_HOST_BUSY;
switch (cmd->cmnd[0]) {
case MODE_SENSE_10:
{
static char ms10_caching_page[12] =
{ 0, 0x12, 0, 0, 0, 0, 0, 0, 0x8, 0xa, 0x4, 0 };
unsigned char page;
page = cmd->cmnd[2] & 0x3f;
if (page == 0x8 || page == 0x3f) {
scsi_sg_copy_from_buffer(cmd, ms10_caching_page,
sizeof(ms10_caching_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
}
case REPORT_LUNS:
/*
* The shasta firmware does not report actual luns in the
* target, so fail the command to force sequential lun scan.
* Also, the console device does not support this command.
*/
if (hba->cardtype == st_shasta || id == host->max_id - 1) {
stex_invalid_field(cmd, done);
return 0;
}
break;
case TEST_UNIT_READY:
if (id == host->max_id - 1) {
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
break;
case INQUIRY:
if (lun >= host->max_lun) {
cmd->result = DID_NO_CONNECT << 16;
done(cmd);
return 0;
}
if (id != host->max_id - 1)
break;
if (!lun && !cmd->device->channel &&
(cmd->cmnd[1] & INQUIRY_EVPD) == 0) {
scsi_sg_copy_from_buffer(cmd, (void *)console_inq_page,
sizeof(console_inq_page));
cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
done(cmd);
} else
stex_invalid_field(cmd, done);
return 0;
case PASSTHRU_CMD:
if (cmd->cmnd[1] == PASSTHRU_GET_DRVVER) {
struct st_drvver ver;
size_t cp_len = sizeof(ver);
ver.major = ST_VER_MAJOR;
ver.minor = ST_VER_MINOR;
ver.oem = ST_OEM;
ver.build = ST_BUILD_VER;
ver.signature[0] = PASSTHRU_SIGNATURE;
ver.console_id = host->max_id - 1;
ver.host_no = hba->host->host_no;
cp_len = scsi_sg_copy_from_buffer(cmd, &ver, cp_len);
cmd->result = sizeof(ver) == cp_len ?
DID_OK << 16 | COMMAND_COMPLETE << 8 :
DID_ERROR << 16 | COMMAND_COMPLETE << 8;
done(cmd);
return 0;
}
default:
break;
}
cmd->scsi_done = done;
tag = cmd->request->tag;
if (unlikely(tag >= host->can_queue))
return SCSI_MLQUEUE_HOST_BUSY;
req = hba->alloc_rq(hba);
req->lun = lun;
req->target = id;
/* cdb */
memcpy(req->cdb, cmd->cmnd, STEX_CDB_LENGTH);
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
req->data_dir = MSG_DATA_DIR_IN;
else if (cmd->sc_data_direction == DMA_TO_DEVICE)
req->data_dir = MSG_DATA_DIR_OUT;
else
req->data_dir = MSG_DATA_DIR_ND;
hba->ccb[tag].cmd = cmd;
hba->ccb[tag].sense_bufflen = SCSI_SENSE_BUFFERSIZE;
hba->ccb[tag].sense_buffer = cmd->sense_buffer;
if (!hba->map_sg(hba, req, &hba->ccb[tag])) {
hba->ccb[tag].sg_count = 0;
memset(&req->variable[0], 0, 8);
}
hba->send(hba, req, tag);
return 0;
}
static DEF_SCSI_QCMD(stex_queuecommand)
static void stex_scsi_done(struct st_ccb *ccb)
{
struct scsi_cmnd *cmd = ccb->cmd;
int result;
if (ccb->srb_status == SRB_STATUS_SUCCESS || ccb->srb_status == 0) {
result = ccb->scsi_status;
switch (ccb->scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DRIVER_SENSE << 24;
break;
case SAM_STAT_BUSY:
result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
default:
result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
}
else if (ccb->srb_status & SRB_SEE_SENSE)
result = DRIVER_SENSE << 24 | SAM_STAT_CHECK_CONDITION;
else switch (ccb->srb_status) {
case SRB_STATUS_SELECTION_TIMEOUT:
result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_BUSY:
result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
break;
case SRB_STATUS_INVALID_REQUEST:
case SRB_STATUS_ERROR:
default:
result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
break;
}
cmd->result = result;
cmd->scsi_done(cmd);
}
static void stex_copy_data(struct st_ccb *ccb,
struct status_msg *resp, unsigned int variable)
{
if (resp->scsi_status != SAM_STAT_GOOD) {
if (ccb->sense_buffer != NULL)
memcpy(ccb->sense_buffer, resp->variable,
min(variable, ccb->sense_bufflen));
return;
}
if (ccb->cmd == NULL)
return;
scsi_sg_copy_from_buffer(ccb->cmd, resp->variable, variable);
}
static void stex_check_cmd(struct st_hba *hba,
struct st_ccb *ccb, struct status_msg *resp)
{
if (ccb->cmd->cmnd[0] == MGT_CMD &&
resp->scsi_status != SAM_STAT_CHECK_CONDITION)
scsi_set_resid(ccb->cmd, scsi_bufflen(ccb->cmd) -
le32_to_cpu(*(__le32 *)&resp->variable[0]));
}
static void stex_mu_intr(struct st_hba *hba, u32 doorbell)
{
void __iomem *base = hba->mmio_base;
struct status_msg *resp;
struct st_ccb *ccb;
unsigned int size;
u16 tag;
if (unlikely(!(doorbell & MU_OUTBOUND_DOORBELL_STATUSHEADCHANGED)))
return;
/* status payloads */
hba->status_head = readl(base + OMR1);
if (unlikely(hba->status_head > hba->sts_count)) {
printk(KERN_WARNING DRV_NAME "(%s): invalid status head\n",
pci_name(hba->pdev));
return;
}
/*
* it's not a valid status payload if:
* 1. there are no pending requests(e.g. during init stage)
* 2. there are some pending requests, but the controller is in
* reset status, and its type is not st_yosemite
* firmware of st_yosemite in reset status will return pending requests
* to driver, so we allow it to pass
*/
if (unlikely(hba->out_req_cnt <= 0 ||
(hba->mu_status == MU_STATE_RESETTING &&
hba->cardtype != st_yosemite))) {
hba->status_tail = hba->status_head;
goto update_status;
}
while (hba->status_tail != hba->status_head) {
resp = stex_get_status(hba);
tag = le16_to_cpu(resp->tag);
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
size = resp->payload_sz * sizeof(u32); /* payload size */
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME "(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN; /* copy size */
if (size)
stex_copy_data(ccb, resp, size);
}
ccb->req = NULL;
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
if (likely(ccb->cmd != NULL)) {
if (hba->cardtype == st_yosemite)
stex_check_cmd(hba, ccb, resp);
if (unlikely(ccb->cmd->cmnd[0] == PASSTHRU_CMD &&
ccb->cmd->cmnd[1] == PASSTHRU_GET_ADAPTER))
stex_controller_info(hba, ccb);
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
update_status:
writel(hba->status_head, base + IMR1);
readl(base + IMR1); /* flush */
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t stex_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
data = readl(base + ODBL);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & MU_OUTBOUND_DOORBELL_REQUEST_RESET &&
hba->cardtype == st_shasta))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static void stex_ss_mu_intr(struct st_hba *hba)
{
struct status_msg *resp;
struct st_ccb *ccb;
__le32 *scratch;
unsigned int size;
int count = 0;
u32 value;
u16 tag;
if (unlikely(hba->out_req_cnt <= 0 ||
hba->mu_status == MU_STATE_RESETTING))
return;
while (count < hba->sts_count) {
scratch = hba->scratch + hba->status_tail;
value = le32_to_cpu(*scratch);
if (unlikely(!(value & SS_STS_NORMAL)))
return;
resp = hba->status_buffer + hba->status_tail;
*scratch = 0;
++count;
++hba->status_tail;
hba->status_tail %= hba->sts_count+1;
tag = (u16)value;
if (unlikely(tag >= hba->host->can_queue)) {
printk(KERN_WARNING DRV_NAME
"(%s): invalid tag\n", pci_name(hba->pdev));
continue;
}
hba->out_req_cnt--;
ccb = &hba->ccb[tag];
if (unlikely(hba->wait_ccb == ccb))
hba->wait_ccb = NULL;
if (unlikely(ccb->req == NULL)) {
printk(KERN_WARNING DRV_NAME
"(%s): lagging req\n", pci_name(hba->pdev));
continue;
}
ccb->req = NULL;
if (likely(value & SS_STS_DONE)) { /* normal case */
ccb->srb_status = SRB_STATUS_SUCCESS;
ccb->scsi_status = SAM_STAT_GOOD;
} else {
ccb->srb_status = resp->srb_status;
ccb->scsi_status = resp->scsi_status;
size = resp->payload_sz * sizeof(u32);
if (unlikely(size < sizeof(*resp) - STATUS_VAR_LEN ||
size > sizeof(*resp))) {
printk(KERN_WARNING DRV_NAME
"(%s): bad status size\n",
pci_name(hba->pdev));
} else {
size -= sizeof(*resp) - STATUS_VAR_LEN;
if (size)
stex_copy_data(ccb, resp, size);
}
if (likely(ccb->cmd != NULL))
stex_check_cmd(hba, ccb, resp);
}
if (likely(ccb->cmd != NULL)) {
scsi_dma_unmap(ccb->cmd);
stex_scsi_done(ccb);
} else
ccb->req_type = 0;
}
}
static irqreturn_t stex_ss_intr(int irq, void *__hba)
{
struct st_hba *hba = __hba;
void __iomem *base = hba->mmio_base;
u32 data;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
data = readl(base + YI2H_INT);
if (data && data != 0xffffffff) {
/* clear the interrupt */
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (unlikely(data & SS_I2H_REQUEST_RESET))
queue_work(hba->work_q, &hba->reset_work);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return IRQ_NONE;
}
static int stex_common_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct handshake_frame *h;
dma_addr_t status_phys;
u32 data;
unsigned long before;
if (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no handshake signature\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
}
udelay(10);
data = readl(base + OMR1);
if ((data & 0xffff0000) == MU_HANDSHAKE_SIGNATURE_HALF) {
data &= 0x0000ffff;
if (hba->host->can_queue > data) {
hba->host->can_queue = data;
hba->host->cmd_per_lun = data;
}
}
h = (struct handshake_frame *)hba->status_buffer;
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
stex_gettime(&h->hosttime);
h->partner_type = HMU_PARTNER_TYPE;
if (hba->extra_offset) {
h->extra_offset = cpu_to_le32(hba->extra_offset);
h->extra_size = cpu_to_le32(hba->dma_size - hba->extra_offset);
} else
h->extra_offset = h->extra_size = 0;
status_phys = hba->dma_handle + (hba->rq_count+1) * hba->rq_size;
writel(status_phys, base + IMR0);
readl(base + IMR0);
writel((status_phys >> 16) >> 16, base + IMR1);
readl(base + IMR1);
writel((status_phys >> 16) >> 16, base + OMR0); /* old fw compatible */
readl(base + OMR0);
writel(MU_INBOUND_DOORBELL_HANDSHAKE, base + IDBL);
readl(base + IDBL); /* flush */
udelay(10);
before = jiffies;
while (readl(base + OMR0) != MU_HANDSHAKE_SIGNATURE) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
return -1;
}
rmb();
msleep(1);
}
writel(0, base + IMR0);
readl(base + IMR0);
writel(0, base + OMR0);
readl(base + OMR0);
writel(0, base + IMR1);
readl(base + IMR1);
writel(0, base + OMR1);
readl(base + OMR1); /* flush */
return 0;
}
static int stex_ss_handshake(struct st_hba *hba)
{
void __iomem *base = hba->mmio_base;
struct st_msg_header *msg_h;
struct handshake_frame *h;
__le32 *scratch;
u32 data, scratch_size;
unsigned long before;
int ret = 0;
before = jiffies;
while ((readl(base + YIOA_STATUS) & SS_MU_OPERATIONAL) == 0) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): firmware not operational\n",
pci_name(hba->pdev));
return -1;
}
msleep(1);
}
msg_h = (struct st_msg_header *)hba->dma_mem;
msg_h->handle = cpu_to_le64(hba->dma_handle);
msg_h->flag = SS_HEAD_HANDSHAKE;
h = (struct handshake_frame *)(msg_h + 1);
h->rb_phy = cpu_to_le64(hba->dma_handle);
h->req_sz = cpu_to_le16(hba->rq_size);
h->req_cnt = cpu_to_le16(hba->rq_count+1);
h->status_sz = cpu_to_le16(sizeof(struct status_msg));
h->status_cnt = cpu_to_le16(hba->sts_count+1);
stex_gettime(&h->hosttime);
h->partner_type = HMU_PARTNER_TYPE;
h->extra_offset = h->extra_size = 0;
scratch_size = (hba->sts_count+1)*sizeof(u32);
h->scratch_size = cpu_to_le32(scratch_size);
data = readl(base + YINT_EN);
data &= ~4;
writel(data, base + YINT_EN);
writel((hba->dma_handle >> 16) >> 16, base + YH2I_REQ_HI);
readl(base + YH2I_REQ_HI);
writel(hba->dma_handle, base + YH2I_REQ);
readl(base + YH2I_REQ); /* flush */
scratch = hba->scratch;
before = jiffies;
while (!(le32_to_cpu(*scratch) & SS_STS_HANDSHAKE)) {
if (time_after(jiffies, before + MU_MAX_DELAY * HZ)) {
printk(KERN_ERR DRV_NAME
"(%s): no signature after handshake frame\n",
pci_name(hba->pdev));
ret = -1;
break;
}
rmb();
msleep(1);
}
memset(scratch, 0, scratch_size);
msg_h->flag = 0;
return ret;
}
static int stex_handshake(struct st_hba *hba)
{
int err;
unsigned long flags;
unsigned int mu_status;
err = (hba->cardtype == st_yel) ?
stex_ss_handshake(hba) : stex_common_handshake(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
if (err == 0) {
hba->req_head = 0;
hba->req_tail = 0;
hba->status_head = 0;
hba->status_tail = 0;
hba->out_req_cnt = 0;
hba->mu_status = MU_STATE_STARTED;
} else
hba->mu_status = MU_STATE_FAILED;
if (mu_status == MU_STATE_RESETTING)
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
static int stex_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
struct st_hba *hba = (struct st_hba *)host->hostdata;
u16 tag = cmd->request->tag;
void __iomem *base;
u32 data;
int result = SUCCESS;
unsigned long flags;
printk(KERN_INFO DRV_NAME
"(%s): aborting command\n", pci_name(hba->pdev));
scsi_print_command(cmd);
base = hba->mmio_base;
spin_lock_irqsave(host->host_lock, flags);
if (tag < host->can_queue &&
hba->ccb[tag].req && hba->ccb[tag].cmd == cmd)
hba->wait_ccb = &hba->ccb[tag];
else
goto out;
if (hba->cardtype == st_yel) {
data = readl(base + YI2H_INT);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + YI2H_INT_C);
stex_ss_mu_intr(hba);
} else {
data = readl(base + ODBL);
if (data == 0 || data == 0xffffffff)
goto fail_out;
writel(data, base + ODBL);
readl(base + ODBL); /* flush */
stex_mu_intr(hba, data);
}
if (hba->wait_ccb == NULL) {
printk(KERN_WARNING DRV_NAME
"(%s): lost interrupt\n", pci_name(hba->pdev));
goto out;
}
fail_out:
scsi_dma_unmap(cmd);
hba->wait_ccb->req = NULL; /* nullify the req's future return */
hba->wait_ccb = NULL;
result = FAILED;
out:
spin_unlock_irqrestore(host->host_lock, flags);
return result;
}
static void stex_hard_reset(struct st_hba *hba)
{
struct pci_bus *bus;
int i;
u16 pci_cmd;
u8 pci_bctl;
for (i = 0; i < 16; i++)
pci_read_config_dword(hba->pdev, i * 4,
&hba->pdev->saved_config_space[i]);
/* Reset secondary bus. Our controller(MU/ATU) is the only device on
secondary bus. Consult Intel 80331/3 developer's manual for detail */
bus = hba->pdev->bus;
pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &pci_bctl);
pci_bctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
/*
* 1 ms may be enough for 8-port controllers. But 16-port controllers
* require more time to finish bus reset. Use 100 ms here for safety
*/
msleep(100);
pci_bctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, pci_bctl);
for (i = 0; i < MU_HARD_RESET_WAIT; i++) {
pci_read_config_word(hba->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd != 0xffff && (pci_cmd & PCI_COMMAND_MASTER))
break;
msleep(1);
}
ssleep(5);
for (i = 0; i < 16; i++)
pci_write_config_dword(hba->pdev, i * 4,
hba->pdev->saved_config_space[i]);
}
static int stex_yos_reset(struct st_hba *hba)
{
void __iomem *base;
unsigned long flags, before;
int ret = 0;
base = hba->mmio_base;
writel(MU_INBOUND_DOORBELL_RESET, base + IDBL);
readl(base + IDBL); /* flush */
before = jiffies;
while (hba->out_req_cnt > 0) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
printk(KERN_WARNING DRV_NAME
"(%s): reset timeout\n", pci_name(hba->pdev));
ret = -1;
break;
}
msleep(1);
}
spin_lock_irqsave(hba->host->host_lock, flags);
if (ret == -1)
hba->mu_status = MU_STATE_FAILED;
else
hba->mu_status = MU_STATE_STARTED;
wake_up_all(&hba->reset_waitq);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
static void stex_ss_reset(struct st_hba *hba)
{
writel(SS_H2I_INT_RESET, hba->mmio_base + YH2I_INT);
readl(hba->mmio_base + YH2I_INT);
ssleep(5);
}
static int stex_do_reset(struct st_hba *hba)
{
struct st_ccb *ccb;
unsigned long flags;
unsigned int mu_status = MU_STATE_RESETTING;
u16 tag;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->mu_status == MU_STATE_STARTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
printk(KERN_INFO DRV_NAME "(%s): request reset during init\n",
pci_name(hba->pdev));
return 0;
}
while (hba->mu_status == MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
wait_event_timeout(hba->reset_waitq,
hba->mu_status != MU_STATE_RESETTING,
MU_MAX_DELAY * HZ);
spin_lock_irqsave(hba->host->host_lock, flags);
mu_status = hba->mu_status;
}
if (mu_status != MU_STATE_RESETTING) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return (mu_status == MU_STATE_STARTED) ? 0 : -1;
}
hba->mu_status = MU_STATE_RESETTING;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (hba->cardtype == st_yosemite)
return stex_yos_reset(hba);
if (hba->cardtype == st_shasta)
stex_hard_reset(hba);
else if (hba->cardtype == st_yel)
stex_ss_reset(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
for (tag = 0; tag < hba->host->can_queue; tag++) {
ccb = &hba->ccb[tag];
if (ccb->req == NULL)
continue;
ccb->req = NULL;
if (ccb->cmd) {
scsi_dma_unmap(ccb->cmd);
ccb->cmd->result = DID_RESET << 16;
ccb->cmd->scsi_done(ccb->cmd);
ccb->cmd = NULL;
}
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (stex_handshake(hba) == 0)
return 0;
printk(KERN_WARNING DRV_NAME "(%s): resetting: handshake failed\n",
pci_name(hba->pdev));
return -1;
}
static int stex_reset(struct scsi_cmnd *cmd)
{
struct st_hba *hba;
hba = (struct st_hba *) &cmd->device->host->hostdata[0];
printk(KERN_INFO DRV_NAME
"(%s): resetting host\n", pci_name(hba->pdev));
scsi_print_command(cmd);
return stex_do_reset(hba) ? FAILED : SUCCESS;
}
static void stex_reset_work(struct work_struct *work)
{
struct st_hba *hba = container_of(work, struct st_hba, reset_work);
stex_do_reset(hba);
}
static int stex_biosparam(struct scsi_device *sdev,
struct block_device *bdev, sector_t capacity, int geom[])
{
int heads = 255, sectors = 63;
if (capacity < 0x200000) {
heads = 64;
sectors = 32;
}
sector_div(capacity, heads * sectors);
geom[0] = heads;
geom[1] = sectors;
geom[2] = capacity;
return 0;
}
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = DRV_NAME,
.proc_name = DRV_NAME,
.bios_param = stex_biosparam,
.queuecommand = stex_queuecommand,
.slave_alloc = stex_slave_alloc,
.slave_configure = stex_slave_config,
.slave_destroy = stex_slave_destroy,
.eh_abort_handler = stex_abort,
.eh_host_reset_handler = stex_reset,
.this_id = -1,
};
static struct pci_device_id stex_pci_tbl[] = {
/* st_shasta */
{ 0x105a, 0x8350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX8350/8300/16350/16300 */
{ 0x105a, 0xc350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX12350 */
{ 0x105a, 0x4302, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX4350 */
{ 0x105a, 0xe350, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
st_shasta }, /* SuperTrak EX24350 */
/* st_vsc */
{ 0x105a, 0x7250, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_vsc },
/* st_yosemite */
{ 0x105a, 0x8650, 0x105a, PCI_ANY_ID, 0, 0, st_yosemite },
/* st_seq */
{ 0x105a, 0x3360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_seq },
/* st_yel */
{ 0x105a, 0x8650, 0x1033, PCI_ANY_ID, 0, 0, st_yel },
{ 0x105a, 0x8760, PCI_ANY_ID, PCI_ANY_ID, 0, 0, st_yel },
{ } /* terminate list */
};
static struct st_card_info stex_card_info[] = {
/* st_shasta */
{
.max_id = 17,
.max_lun = 8,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_vsc */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yosemite */
{
.max_id = 2,
.max_lun = 256,
.max_channel = 0,
.rq_count = 256,
.rq_size = 1048,
.sts_count = 256,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_seq */
{
.max_id = 129,
.max_lun = 1,
.max_channel = 0,
.rq_count = 32,
.rq_size = 1048,
.sts_count = 32,
.alloc_rq = stex_alloc_req,
.map_sg = stex_map_sg,
.send = stex_send_cmd,
},
/* st_yel */
{
.max_id = 129,
.max_lun = 256,
.max_channel = 3,
.rq_count = 801,
.rq_size = 512,
.sts_count = 801,
.alloc_rq = stex_ss_alloc_req,
.map_sg = stex_ss_map_sg,
.send = stex_ss_send_cmd,
},
};
static int stex_set_dma_mask(struct pci_dev * pdev)
{
int ret;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))
return 0;
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (!ret)
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
return ret;
}
static int stex_request_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
int status;
if (msi) {
status = pci_enable_msi(pdev);
if (status != 0)
printk(KERN_ERR DRV_NAME
"(%s): error %d setting up MSI\n",
pci_name(pdev), status);
else
hba->msi_enabled = 1;
} else
hba->msi_enabled = 0;
status = request_irq(pdev->irq, hba->cardtype == st_yel ?
stex_ss_intr : stex_intr, IRQF_SHARED, DRV_NAME, hba);
if (status != 0) {
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
return status;
}
static void stex_free_irq(struct st_hba *hba)
{
struct pci_dev *pdev = hba->pdev;
free_irq(pdev->irq, hba);
if (hba->msi_enabled)
pci_disable_msi(pdev);
}
static int __devinit
stex_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct st_hba *hba;
struct Scsi_Host *host;
const struct st_card_info *ci = NULL;
u32 sts_offset, cp_offset, scratch_offset;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
host = scsi_host_alloc(&driver_template, sizeof(struct st_hba));
if (!host) {
printk(KERN_ERR DRV_NAME "(%s): scsi_host_alloc failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_disable;
}
hba = (struct st_hba *)host->hostdata;
memset(hba, 0, sizeof(struct st_hba));
err = pci_request_regions(pdev, DRV_NAME);
if (err < 0) {
printk(KERN_ERR DRV_NAME "(%s): request regions failed\n",
pci_name(pdev));
goto out_scsi_host_put;
}
hba->mmio_base = pci_ioremap_bar(pdev, 0);
if ( !hba->mmio_base) {
printk(KERN_ERR DRV_NAME "(%s): memory map failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_release_regions;
}
err = stex_set_dma_mask(pdev);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): set dma mask failed\n",
pci_name(pdev));
goto out_iounmap;
}
hba->cardtype = (unsigned int) id->driver_data;
ci = &stex_card_info[hba->cardtype];
sts_offset = scratch_offset = (ci->rq_count+1) * ci->rq_size;
if (hba->cardtype == st_yel)
sts_offset += (ci->sts_count+1) * sizeof(u32);
cp_offset = sts_offset + (ci->sts_count+1) * sizeof(struct status_msg);
hba->dma_size = cp_offset + sizeof(struct st_frame);
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
hba->extra_offset = hba->dma_size;
hba->dma_size += ST_ADDITIONAL_MEM;
}
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
if (!hba->dma_mem) {
/* Retry minimum coherent mapping for st_seq and st_vsc */
if (hba->cardtype == st_seq ||
(hba->cardtype == st_vsc && (pdev->subsystem_device & 1))) {
printk(KERN_WARNING DRV_NAME
"(%s): allocating min buffer for controller\n",
pci_name(pdev));
hba->dma_size = hba->extra_offset
+ ST_ADDITIONAL_MEM_MIN;
hba->dma_mem = dma_alloc_coherent(&pdev->dev,
hba->dma_size, &hba->dma_handle, GFP_KERNEL);
}
if (!hba->dma_mem) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): dma mem alloc failed\n",
pci_name(pdev));
goto out_iounmap;
}
}
hba->ccb = kcalloc(ci->rq_count, sizeof(struct st_ccb), GFP_KERNEL);
if (!hba->ccb) {
err = -ENOMEM;
printk(KERN_ERR DRV_NAME "(%s): ccb alloc failed\n",
pci_name(pdev));
goto out_pci_free;
}
if (hba->cardtype == st_yel)
hba->scratch = (__le32 *)(hba->dma_mem + scratch_offset);
hba->status_buffer = (struct status_msg *)(hba->dma_mem + sts_offset);
hba->copy_buffer = hba->dma_mem + cp_offset;
hba->rq_count = ci->rq_count;
hba->rq_size = ci->rq_size;
hba->sts_count = ci->sts_count;
hba->alloc_rq = ci->alloc_rq;
hba->map_sg = ci->map_sg;
hba->send = ci->send;
hba->mu_status = MU_STATE_STARTING;
if (hba->cardtype == st_yel)
host->sg_tablesize = 38;
else
host->sg_tablesize = 32;
host->can_queue = ci->rq_count;
host->cmd_per_lun = ci->rq_count;
host->max_id = ci->max_id;
host->max_lun = ci->max_lun;
host->max_channel = ci->max_channel;
host->unique_id = host->host_no;
host->max_cmd_len = STEX_CDB_LENGTH;
hba->host = host;
hba->pdev = pdev;
init_waitqueue_head(&hba->reset_waitq);
snprintf(hba->work_q_name, sizeof(hba->work_q_name),
"stex_wq_%d", host->host_no);
hba->work_q = create_singlethread_workqueue(hba->work_q_name);
if (!hba->work_q) {
printk(KERN_ERR DRV_NAME "(%s): create workqueue failed\n",
pci_name(pdev));
err = -ENOMEM;
goto out_ccb_free;
}
INIT_WORK(&hba->reset_work, stex_reset_work);
err = stex_request_irq(hba);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): request irq failed\n",
pci_name(pdev));
goto out_free_wq;
}
err = stex_handshake(hba);
if (err)
goto out_free_irq;
err = scsi_init_shared_tag_map(host, host->can_queue);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): init shared queue failed\n",
pci_name(pdev));
goto out_free_irq;
}
pci_set_drvdata(pdev, hba);
err = scsi_add_host(host, &pdev->dev);
if (err) {
printk(KERN_ERR DRV_NAME "(%s): scsi_add_host failed\n",
pci_name(pdev));
goto out_free_irq;
}
scsi_scan_host(host);
return 0;
out_free_irq:
stex_free_irq(hba);
out_free_wq:
destroy_workqueue(hba->work_q);
out_ccb_free:
kfree(hba->ccb);
out_pci_free:
dma_free_coherent(&pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
out_iounmap:
iounmap(hba->mmio_base);
out_release_regions:
pci_release_regions(pdev);
out_scsi_host_put:
scsi_host_put(host);
out_disable:
pci_disable_device(pdev);
return err;
}
static void stex_hba_stop(struct st_hba *hba)
{
struct req_msg *req;
struct st_msg_header *msg_h;
unsigned long flags;
unsigned long before;
u16 tag = 0;
spin_lock_irqsave(hba->host->host_lock, flags);
req = hba->alloc_rq(hba);
if (hba->cardtype == st_yel) {
msg_h = (struct st_msg_header *)req - 1;
memset(msg_h, 0, hba->rq_size);
} else
memset(req, 0, hba->rq_size);
if (hba->cardtype == st_yosemite || hba->cardtype == st_yel) {
req->cdb[0] = MGT_CMD;
req->cdb[1] = MGT_CMD_SIGNATURE;
req->cdb[2] = CTLR_CONFIG_CMD;
req->cdb[3] = CTLR_SHUTDOWN;
} else {
req->cdb[0] = CONTROLLER_CMD;
req->cdb[1] = CTLR_POWER_STATE_CHANGE;
req->cdb[2] = CTLR_POWER_SAVING;
}
hba->ccb[tag].cmd = NULL;
hba->ccb[tag].sg_count = 0;
hba->ccb[tag].sense_bufflen = 0;
hba->ccb[tag].sense_buffer = NULL;
hba->ccb[tag].req_type = PASSTHRU_REQ_TYPE;
hba->send(hba, req, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
before = jiffies;
while (hba->ccb[tag].req_type & PASSTHRU_REQ_TYPE) {
if (time_after(jiffies, before + ST_INTERNAL_TIMEOUT * HZ)) {
hba->ccb[tag].req_type = 0;
return;
}
msleep(1);
}
}
static void stex_hba_free(struct st_hba *hba)
{
stex_free_irq(hba);
destroy_workqueue(hba->work_q);
iounmap(hba->mmio_base);
pci_release_regions(hba->pdev);
kfree(hba->ccb);
dma_free_coherent(&hba->pdev->dev, hba->dma_size,
hba->dma_mem, hba->dma_handle);
}
static void stex_remove(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
scsi_remove_host(hba->host);
pci_set_drvdata(pdev, NULL);
stex_hba_stop(hba);
stex_hba_free(hba);
scsi_host_put(hba->host);
pci_disable_device(pdev);
}
static void stex_shutdown(struct pci_dev *pdev)
{
struct st_hba *hba = pci_get_drvdata(pdev);
stex_hba_stop(hba);
}
MODULE_DEVICE_TABLE(pci, stex_pci_tbl);
static struct pci_driver stex_pci_driver = {
.name = DRV_NAME,
.id_table = stex_pci_tbl,
.probe = stex_probe,
.remove = __devexit_p(stex_remove),
.shutdown = stex_shutdown,
};
static int __init stex_init(void)
{
printk(KERN_INFO DRV_NAME
": Promise SuperTrak EX Driver version: %s\n",
ST_DRIVER_VERSION);
return pci_register_driver(&stex_pci_driver);
}
static void __exit stex_exit(void)
{
pci_unregister_driver(&stex_pci_driver);
}
module_init(stex_init);
module_exit(stex_exit);