kernel_optimize_test/fs/fs_pin.c

103 lines
2.0 KiB
C
Raw Normal View History

#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include "internal.h"
#include "mount.h"
static DEFINE_SPINLOCK(pin_lock);
void pin_remove(struct fs_pin *pin)
{
spin_lock(&pin_lock);
hlist_del_init(&pin->m_list);
hlist_del_init(&pin->s_list);
spin_unlock(&pin_lock);
spin_lock_irq(&pin->wait.lock);
pin->done = 1;
wake_up_locked(&pin->wait);
spin_unlock_irq(&pin->wait.lock);
}
void pin_insert_group(struct fs_pin *pin, struct vfsmount *m, struct hlist_head *p)
{
spin_lock(&pin_lock);
if (p)
hlist_add_head(&pin->s_list, p);
hlist_add_head(&pin->m_list, &real_mount(m)->mnt_pins);
spin_unlock(&pin_lock);
}
void pin_insert(struct fs_pin *pin, struct vfsmount *m)
{
pin_insert_group(pin, m, &m->mnt_sb->s_pins);
}
void pin_kill(struct fs_pin *p)
{
wait_queue_entry_t wait;
if (!p) {
rcu_read_unlock();
return;
}
init_wait(&wait);
spin_lock_irq(&p->wait.lock);
if (likely(!p->done)) {
p->done = -1;
spin_unlock_irq(&p->wait.lock);
rcu_read_unlock();
p->kill(p);
return;
}
if (p->done > 0) {
spin_unlock_irq(&p->wait.lock);
rcu_read_unlock();
return;
}
__add_wait_queue(&p->wait, &wait);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&p->wait.lock);
rcu_read_unlock();
schedule();
rcu_read_lock();
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming So I've noticed a number of instances where it was not obvious from the code whether ->task_list was for a wait-queue head or a wait-queue entry. Furthermore, there's a number of wait-queue users where the lists are not for 'tasks' but other entities (poll tables, etc.), in which case the 'task_list' name is actively confusing. To clear this all up, name the wait-queue head and entry list structure fields unambiguously: struct wait_queue_head::task_list => ::head struct wait_queue_entry::task_list => ::entry For example, this code: rqw->wait.task_list.next != &wait->task_list ... is was pretty unclear (to me) what it's doing, while now it's written this way: rqw->wait.head.next != &wait->entry ... which makes it pretty clear that we are iterating a list until we see the head. Other examples are: list_for_each_entry_safe(pos, next, &x->task_list, task_list) { list_for_each_entry(wq, &fence->wait.task_list, task_list) { ... where it's unclear (to me) what we are iterating, and during review it's hard to tell whether it's trying to walk a wait-queue entry (which would be a bug), while now it's written as: list_for_each_entry_safe(pos, next, &x->head, entry) { list_for_each_entry(wq, &fence->wait.head, entry) { Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 18:06:46 +08:00
if (likely(list_empty(&wait.entry)))
break;
/* OK, we know p couldn't have been freed yet */
spin_lock_irq(&p->wait.lock);
if (p->done > 0) {
spin_unlock_irq(&p->wait.lock);
break;
}
}
rcu_read_unlock();
}
void mnt_pin_kill(struct mount *m)
{
while (1) {
struct hlist_node *p;
rcu_read_lock();
p = ACCESS_ONCE(m->mnt_pins.first);
if (!p) {
rcu_read_unlock();
break;
}
pin_kill(hlist_entry(p, struct fs_pin, m_list));
}
}
void group_pin_kill(struct hlist_head *p)
{
while (1) {
struct hlist_node *q;
rcu_read_lock();
q = ACCESS_ONCE(p->first);
if (!q) {
rcu_read_unlock();
break;
}
pin_kill(hlist_entry(q, struct fs_pin, s_list));
}
}