kernel_optimize_test/crypto/lrw.c

442 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* LRW: as defined by Cyril Guyot in
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
*
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
*
* Based on ecb.c
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*/
/* This implementation is checked against the test vectors in the above
* document and by a test vector provided by Ken Buchanan at
* http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
*
* The test vectors are included in the testing module tcrypt.[ch] */
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
#define LRW_BLOCK_SIZE 16
struct priv {
struct crypto_skcipher *child;
/*
* optimizes multiplying a random (non incrementing, as at the
* start of a new sector) value with key2, we could also have
* used 4k optimization tables or no optimization at all. In the
* latter case we would have to store key2 here
*/
struct gf128mul_64k *table;
/*
* stores:
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
* key2*{ 0,0,...1,1,1,1,1 }, etc
* needed for optimized multiplication of incrementing values
* with key2
*/
be128 mulinc[128];
};
struct rctx {
be128 t;
struct skcipher_request subreq;
};
static inline void setbit128_bbe(void *b, int bit)
{
__set_bit(bit ^ (0x80 -
#ifdef __BIG_ENDIAN
BITS_PER_LONG
#else
BITS_PER_BYTE
#endif
), b);
}
static int setkey(struct crypto_skcipher *parent, const u8 *key,
unsigned int keylen)
{
struct priv *ctx = crypto_skcipher_ctx(parent);
struct crypto_skcipher *child = ctx->child;
int err, bsize = LRW_BLOCK_SIZE;
const u8 *tweak = key + keylen - bsize;
be128 tmp = { 0 };
int i;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, keylen - bsize);
crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
if (err)
return err;
if (ctx->table)
gf128mul_free_64k(ctx->table);
/* initialize multiplication table for Key2 */
ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
if (!ctx->table)
return -ENOMEM;
/* initialize optimization table */
for (i = 0; i < 128; i++) {
setbit128_bbe(&tmp, i);
ctx->mulinc[i] = tmp;
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
}
return 0;
}
/*
* Returns the number of trailing '1' bits in the words of the counter, which is
* represented by 4 32-bit words, arranged from least to most significant.
* At the same time, increments the counter by one.
*
* For example:
*
* u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
* int i = next_index(&counter);
* // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
*/
static int next_index(u32 *counter)
{
int i, res = 0;
for (i = 0; i < 4; i++) {
if (counter[i] + 1 != 0)
return res + ffz(counter[i]++);
counter[i] = 0;
res += 32;
}
/*
* If we get here, then x == 128 and we are incrementing the counter
* from all ones to all zeros. This means we must return index 127, i.e.
* the one corresponding to key2*{ 1,...,1 }.
*/
return 127;
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
/*
* We compute the tweak masks twice (both before and after the ECB encryption or
* decryption) to avoid having to allocate a temporary buffer and/or make
* mutliple calls to the 'ecb(..)' instance, which usually would be slower than
* just doing the next_index() calls again.
*/
static int xor_tweak(struct skcipher_request *req, bool second_pass)
{
const int bs = LRW_BLOCK_SIZE;
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct priv *ctx = crypto_skcipher_ctx(tfm);
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
struct rctx *rctx = skcipher_request_ctx(req);
be128 t = rctx->t;
struct skcipher_walk w;
__be32 *iv;
u32 counter[4];
int err;
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
if (second_pass) {
req = &rctx->subreq;
/* set to our TFM to enforce correct alignment: */
skcipher_request_set_tfm(req, tfm);
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
err = skcipher_walk_virt(&w, req, false);
if (err)
return err;
iv = (__be32 *)w.iv;
counter[0] = be32_to_cpu(iv[3]);
counter[1] = be32_to_cpu(iv[2]);
counter[2] = be32_to_cpu(iv[1]);
counter[3] = be32_to_cpu(iv[0]);
while (w.nbytes) {
unsigned int avail = w.nbytes;
be128 *wsrc;
be128 *wdst;
wsrc = w.src.virt.addr;
wdst = w.dst.virt.addr;
do {
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
be128_xor(wdst++, &t, wsrc++);
/* T <- I*Key2, using the optimization
* discussed in the specification */
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
} while ((avail -= bs) >= bs);
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
if (second_pass && w.nbytes == w.total) {
iv[0] = cpu_to_be32(counter[3]);
iv[1] = cpu_to_be32(counter[2]);
iv[2] = cpu_to_be32(counter[1]);
iv[3] = cpu_to_be32(counter[0]);
}
err = skcipher_walk_done(&w, avail);
}
return err;
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
static int xor_tweak_pre(struct skcipher_request *req)
{
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
return xor_tweak(req, false);
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
static int xor_tweak_post(struct skcipher_request *req)
{
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
return xor_tweak(req, true);
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
static void crypt_done(struct crypto_async_request *areq, int err)
{
struct skcipher_request *req = areq->data;
if (!err) {
struct rctx *rctx = skcipher_request_ctx(req);
rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
err = xor_tweak_post(req);
}
skcipher_request_complete(req, err);
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
static void init_crypt(struct skcipher_request *req)
{
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct rctx *rctx = skcipher_request_ctx(req);
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
struct skcipher_request *subreq = &rctx->subreq;
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
skcipher_request_set_tfm(subreq, ctx->child);
skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
skcipher_request_set_crypt(subreq, req->dst, req->dst,
req->cryptlen, req->iv);
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
/* calculate first value of T */
memcpy(&rctx->t, req->iv, sizeof(rctx->t));
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
/* T <- I*Key2 */
gf128mul_64k_bbe(&rctx->t, ctx->table);
}
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
static int encrypt(struct skcipher_request *req)
{
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
struct rctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
init_crypt(req);
return xor_tweak_pre(req) ?:
crypto_skcipher_encrypt(subreq) ?:
xor_tweak_post(req);
}
static int decrypt(struct skcipher_request *req)
{
crypto: lrw - Do not use auxiliary buffer This patch simplifies the LRW template to recompute the LRW tweaks from scratch in the second pass and thus also removes the need to allocate a dynamic buffer using kmalloc(). As discussed at [1], the use of kmalloc causes deadlocks with dm-crypt. PERFORMANCE MEASUREMENTS (x86_64) Performed using: https://gitlab.com/omos/linux-crypto-bench Crypto driver used: lrw(ecb-aes-aesni) The results show that the new code has about the same performance as the old code. For 512-byte message it seems to be even slightly faster, but that might be just noise. Before: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 200 203 lrw(aes) 320 64 202 204 lrw(aes) 384 64 204 205 lrw(aes) 256 512 415 415 lrw(aes) 320 512 432 440 lrw(aes) 384 512 449 451 lrw(aes) 256 4096 1838 1995 lrw(aes) 320 4096 2123 1980 lrw(aes) 384 4096 2100 2119 lrw(aes) 256 16384 7183 6954 lrw(aes) 320 16384 7844 7631 lrw(aes) 384 16384 8256 8126 lrw(aes) 256 32768 14772 14484 lrw(aes) 320 32768 15281 15431 lrw(aes) 384 32768 16469 16293 After: ALGORITHM KEY (b) DATA (B) TIME ENC (ns) TIME DEC (ns) lrw(aes) 256 64 197 196 lrw(aes) 320 64 200 197 lrw(aes) 384 64 203 199 lrw(aes) 256 512 385 380 lrw(aes) 320 512 401 395 lrw(aes) 384 512 415 415 lrw(aes) 256 4096 1869 1846 lrw(aes) 320 4096 2080 1981 lrw(aes) 384 4096 2160 2109 lrw(aes) 256 16384 7077 7127 lrw(aes) 320 16384 7807 7766 lrw(aes) 384 16384 8108 8357 lrw(aes) 256 32768 14111 14454 lrw(aes) 320 32768 15268 15082 lrw(aes) 384 32768 16581 16250 [1] https://lkml.org/lkml/2018/8/23/1315 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-13 16:51:34 +08:00
struct rctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq = &rctx->subreq;
init_crypt(req);
return xor_tweak_pre(req) ?:
crypto_skcipher_decrypt(subreq) ?:
xor_tweak_post(req);
}
static int init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
struct priv *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *cipher;
cipher = crypto_spawn_skcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
sizeof(struct rctx));
return 0;
}
static void exit_tfm(struct crypto_skcipher *tfm)
{
struct priv *ctx = crypto_skcipher_ctx(tfm);
if (ctx->table)
gf128mul_free_64k(ctx->table);
crypto_free_skcipher(ctx->child);
}
static void free(struct skcipher_instance *inst)
{
crypto_drop_skcipher(skcipher_instance_ctx(inst));
kfree(inst);
}
static int create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_skcipher_spawn *spawn;
struct skcipher_instance *inst;
struct crypto_attr_type *algt;
struct skcipher_alg *alg;
const char *cipher_name;
char ecb_name[CRYPTO_MAX_ALG_NAME];
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
return -EINVAL;
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return PTR_ERR(cipher_name);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return -ENOMEM;
spawn = skcipher_instance_ctx(inst);
crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
err = crypto_grab_skcipher(spawn, cipher_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
if (err == -ENOENT) {
err = -ENAMETOOLONG;
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
err = crypto_grab_skcipher(spawn, ecb_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
}
if (err)
goto err_free_inst;
alg = crypto_skcipher_spawn_alg(spawn);
err = -EINVAL;
if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
goto err_drop_spawn;
if (crypto_skcipher_alg_ivsize(alg))
goto err_drop_spawn;
err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
&alg->base);
if (err)
goto err_drop_spawn;
err = -EINVAL;
cipher_name = alg->base.cra_name;
/* Alas we screwed up the naming so we have to mangle the
* cipher name.
*/
if (!strncmp(cipher_name, "ecb(", 4)) {
unsigned len;
len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
if (len < 2 || len >= sizeof(ecb_name))
goto err_drop_spawn;
if (ecb_name[len - 1] != ')')
goto err_drop_spawn;
ecb_name[len - 1] = 0;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
err = -ENAMETOOLONG;
goto err_drop_spawn;
}
} else
goto err_drop_spawn;
inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
(__alignof__(be128) - 1);
inst->alg.ivsize = LRW_BLOCK_SIZE;
inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
LRW_BLOCK_SIZE;
inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
LRW_BLOCK_SIZE;
inst->alg.base.cra_ctxsize = sizeof(struct priv);
inst->alg.init = init_tfm;
inst->alg.exit = exit_tfm;
inst->alg.setkey = setkey;
inst->alg.encrypt = encrypt;
inst->alg.decrypt = decrypt;
inst->free = free;
err = skcipher_register_instance(tmpl, inst);
if (err)
goto err_drop_spawn;
out:
return err;
err_drop_spawn:
crypto_drop_skcipher(spawn);
err_free_inst:
kfree(inst);
goto out;
}
static struct crypto_template crypto_tmpl = {
.name = "lrw",
.create = create,
.module = THIS_MODULE,
};
static int __init crypto_module_init(void)
{
return crypto_register_template(&crypto_tmpl);
}
static void __exit crypto_module_exit(void)
{
crypto_unregister_template(&crypto_tmpl);
}
subsys_initcall(crypto_module_init);
module_exit(crypto_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");
MODULE_ALIAS_CRYPTO("lrw");