kernel_optimize_test/fs/proc/base.c

2145 lines
50 KiB
C
Raw Normal View History

/*
* linux/fs/proc/base.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* proc base directory handling functions
*
* 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
* Instead of using magical inumbers to determine the kind of object
* we allocate and fill in-core inodes upon lookup. They don't even
* go into icache. We cache the reference to task_struct upon lookup too.
* Eventually it should become a filesystem in its own. We don't use the
* rest of procfs anymore.
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
*
*
* Changelog:
* 17-Jan-2005
* Allan Bezerra
* Bruna Moreira <bruna.moreira@indt.org.br>
* Edjard Mota <edjard.mota@indt.org.br>
* Ilias Biris <ilias.biris@indt.org.br>
* Mauricio Lin <mauricio.lin@indt.org.br>
*
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
*
* A new process specific entry (smaps) included in /proc. It shows the
* size of rss for each memory area. The maps entry lacks information
* about physical memory size (rss) for each mapped file, i.e.,
* rss information for executables and library files.
* This additional information is useful for any tools that need to know
* about physical memory consumption for a process specific library.
*
* Changelog:
* 21-Feb-2005
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
* Pud inclusion in the page table walking.
*
* ChangeLog:
* 10-Mar-2005
* 10LE Instituto Nokia de Tecnologia - INdT:
* A better way to walks through the page table as suggested by Hugh Dickins.
*
* Simo Piiroinen <simo.piiroinen@nokia.com>:
* Smaps information related to shared, private, clean and dirty pages.
*
* Paul Mundt <paul.mundt@nokia.com>:
* Overall revision about smaps.
*/
#include <asm/uaccess.h>
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/string.h>
#include <linux/seq_file.h>
#include <linux/namei.h>
#include <linux/namespace.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/rcupdate.h>
#include <linux/kallsyms.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/seccomp.h>
#include <linux/cpuset.h>
#include <linux/audit.h>
#include "internal.h"
/*
* For hysterical raisins we keep the same inumbers as in the old procfs.
* Feel free to change the macro below - just keep the range distinct from
* inumbers of the rest of procfs (currently those are in 0x0000--0xffff).
* As soon as we'll get a separate superblock we will be able to forget
* about magical ranges too.
*/
#define fake_ino(pid,ino) (((pid)<<16)|(ino))
enum pid_directory_inos {
PROC_TGID_INO = 2,
PROC_TGID_TASK,
PROC_TGID_STATUS,
PROC_TGID_MEM,
#ifdef CONFIG_SECCOMP
PROC_TGID_SECCOMP,
#endif
PROC_TGID_CWD,
PROC_TGID_ROOT,
PROC_TGID_EXE,
PROC_TGID_FD,
PROC_TGID_ENVIRON,
PROC_TGID_AUXV,
PROC_TGID_CMDLINE,
PROC_TGID_STAT,
PROC_TGID_STATM,
PROC_TGID_MAPS,
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
PROC_TGID_NUMA_MAPS,
PROC_TGID_MOUNTS,
PROC_TGID_WCHAN,
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
PROC_TGID_SMAPS,
#ifdef CONFIG_SCHEDSTATS
PROC_TGID_SCHEDSTAT,
#endif
#ifdef CONFIG_CPUSETS
PROC_TGID_CPUSET,
#endif
#ifdef CONFIG_SECURITY
PROC_TGID_ATTR,
PROC_TGID_ATTR_CURRENT,
PROC_TGID_ATTR_PREV,
PROC_TGID_ATTR_EXEC,
PROC_TGID_ATTR_FSCREATE,
#endif
#ifdef CONFIG_AUDITSYSCALL
PROC_TGID_LOGINUID,
#endif
PROC_TGID_OOM_SCORE,
PROC_TGID_OOM_ADJUST,
PROC_TID_INO,
PROC_TID_STATUS,
PROC_TID_MEM,
#ifdef CONFIG_SECCOMP
PROC_TID_SECCOMP,
#endif
PROC_TID_CWD,
PROC_TID_ROOT,
PROC_TID_EXE,
PROC_TID_FD,
PROC_TID_ENVIRON,
PROC_TID_AUXV,
PROC_TID_CMDLINE,
PROC_TID_STAT,
PROC_TID_STATM,
PROC_TID_MAPS,
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
PROC_TID_NUMA_MAPS,
PROC_TID_MOUNTS,
PROC_TID_WCHAN,
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
PROC_TID_SMAPS,
#ifdef CONFIG_SCHEDSTATS
PROC_TID_SCHEDSTAT,
#endif
#ifdef CONFIG_CPUSETS
PROC_TID_CPUSET,
#endif
#ifdef CONFIG_SECURITY
PROC_TID_ATTR,
PROC_TID_ATTR_CURRENT,
PROC_TID_ATTR_PREV,
PROC_TID_ATTR_EXEC,
PROC_TID_ATTR_FSCREATE,
#endif
#ifdef CONFIG_AUDITSYSCALL
PROC_TID_LOGINUID,
#endif
PROC_TID_OOM_SCORE,
PROC_TID_OOM_ADJUST,
/* Add new entries before this */
PROC_TID_FD_DIR = 0x8000, /* 0x8000-0xffff */
};
struct pid_entry {
int type;
int len;
char *name;
mode_t mode;
};
#define E(type,name,mode) {(type),sizeof(name)-1,(name),(mode)}
static struct pid_entry tgid_base_stuff[] = {
E(PROC_TGID_TASK, "task", S_IFDIR|S_IRUGO|S_IXUGO),
E(PROC_TGID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR),
E(PROC_TGID_ENVIRON, "environ", S_IFREG|S_IRUSR),
E(PROC_TGID_AUXV, "auxv", S_IFREG|S_IRUSR),
E(PROC_TGID_STATUS, "status", S_IFREG|S_IRUGO),
E(PROC_TGID_CMDLINE, "cmdline", S_IFREG|S_IRUGO),
E(PROC_TGID_STAT, "stat", S_IFREG|S_IRUGO),
E(PROC_TGID_STATM, "statm", S_IFREG|S_IRUGO),
E(PROC_TGID_MAPS, "maps", S_IFREG|S_IRUGO),
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
#ifdef CONFIG_NUMA
E(PROC_TGID_NUMA_MAPS, "numa_maps", S_IFREG|S_IRUGO),
#endif
E(PROC_TGID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR),
#ifdef CONFIG_SECCOMP
E(PROC_TGID_SECCOMP, "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
#endif
E(PROC_TGID_CWD, "cwd", S_IFLNK|S_IRWXUGO),
E(PROC_TGID_ROOT, "root", S_IFLNK|S_IRWXUGO),
E(PROC_TGID_EXE, "exe", S_IFLNK|S_IRWXUGO),
E(PROC_TGID_MOUNTS, "mounts", S_IFREG|S_IRUGO),
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
E(PROC_TGID_SMAPS, "smaps", S_IFREG|S_IRUGO),
#ifdef CONFIG_SECURITY
E(PROC_TGID_ATTR, "attr", S_IFDIR|S_IRUGO|S_IXUGO),
#endif
#ifdef CONFIG_KALLSYMS
E(PROC_TGID_WCHAN, "wchan", S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SCHEDSTATS
E(PROC_TGID_SCHEDSTAT, "schedstat", S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_CPUSETS
E(PROC_TGID_CPUSET, "cpuset", S_IFREG|S_IRUGO),
#endif
E(PROC_TGID_OOM_SCORE, "oom_score",S_IFREG|S_IRUGO),
E(PROC_TGID_OOM_ADJUST,"oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
#ifdef CONFIG_AUDITSYSCALL
E(PROC_TGID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
#endif
{0,0,NULL,0}
};
static struct pid_entry tid_base_stuff[] = {
E(PROC_TID_FD, "fd", S_IFDIR|S_IRUSR|S_IXUSR),
E(PROC_TID_ENVIRON, "environ", S_IFREG|S_IRUSR),
E(PROC_TID_AUXV, "auxv", S_IFREG|S_IRUSR),
E(PROC_TID_STATUS, "status", S_IFREG|S_IRUGO),
E(PROC_TID_CMDLINE, "cmdline", S_IFREG|S_IRUGO),
E(PROC_TID_STAT, "stat", S_IFREG|S_IRUGO),
E(PROC_TID_STATM, "statm", S_IFREG|S_IRUGO),
E(PROC_TID_MAPS, "maps", S_IFREG|S_IRUGO),
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
#ifdef CONFIG_NUMA
E(PROC_TID_NUMA_MAPS, "numa_maps", S_IFREG|S_IRUGO),
#endif
E(PROC_TID_MEM, "mem", S_IFREG|S_IRUSR|S_IWUSR),
#ifdef CONFIG_SECCOMP
E(PROC_TID_SECCOMP, "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
#endif
E(PROC_TID_CWD, "cwd", S_IFLNK|S_IRWXUGO),
E(PROC_TID_ROOT, "root", S_IFLNK|S_IRWXUGO),
E(PROC_TID_EXE, "exe", S_IFLNK|S_IRWXUGO),
E(PROC_TID_MOUNTS, "mounts", S_IFREG|S_IRUGO),
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
E(PROC_TID_SMAPS, "smaps", S_IFREG|S_IRUGO),
#ifdef CONFIG_SECURITY
E(PROC_TID_ATTR, "attr", S_IFDIR|S_IRUGO|S_IXUGO),
#endif
#ifdef CONFIG_KALLSYMS
E(PROC_TID_WCHAN, "wchan", S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SCHEDSTATS
E(PROC_TID_SCHEDSTAT, "schedstat",S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_CPUSETS
E(PROC_TID_CPUSET, "cpuset", S_IFREG|S_IRUGO),
#endif
E(PROC_TID_OOM_SCORE, "oom_score",S_IFREG|S_IRUGO),
E(PROC_TID_OOM_ADJUST, "oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
#ifdef CONFIG_AUDITSYSCALL
E(PROC_TID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
#endif
{0,0,NULL,0}
};
#ifdef CONFIG_SECURITY
static struct pid_entry tgid_attr_stuff[] = {
E(PROC_TGID_ATTR_CURRENT, "current", S_IFREG|S_IRUGO|S_IWUGO),
E(PROC_TGID_ATTR_PREV, "prev", S_IFREG|S_IRUGO),
E(PROC_TGID_ATTR_EXEC, "exec", S_IFREG|S_IRUGO|S_IWUGO),
E(PROC_TGID_ATTR_FSCREATE, "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
{0,0,NULL,0}
};
static struct pid_entry tid_attr_stuff[] = {
E(PROC_TID_ATTR_CURRENT, "current", S_IFREG|S_IRUGO|S_IWUGO),
E(PROC_TID_ATTR_PREV, "prev", S_IFREG|S_IRUGO),
E(PROC_TID_ATTR_EXEC, "exec", S_IFREG|S_IRUGO|S_IWUGO),
E(PROC_TID_ATTR_FSCREATE, "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
{0,0,NULL,0}
};
#endif
#undef E
static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
struct task_struct *task = proc_task(inode);
struct files_struct *files;
struct file *file;
int fd = proc_type(inode) - PROC_TID_FD_DIR;
files = get_files_struct(task);
if (files) {
rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {
*mnt = mntget(file->f_vfsmnt);
*dentry = dget(file->f_dentry);
rcu_read_unlock();
put_files_struct(files);
return 0;
}
rcu_read_unlock();
put_files_struct(files);
}
return -ENOENT;
}
static struct fs_struct *get_fs_struct(struct task_struct *task)
{
struct fs_struct *fs;
task_lock(task);
fs = task->fs;
if(fs)
atomic_inc(&fs->count);
task_unlock(task);
return fs;
}
static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
struct fs_struct *fs = get_fs_struct(proc_task(inode));
int result = -ENOENT;
if (fs) {
read_lock(&fs->lock);
*mnt = mntget(fs->pwdmnt);
*dentry = dget(fs->pwd);
read_unlock(&fs->lock);
result = 0;
put_fs_struct(fs);
}
return result;
}
static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
struct fs_struct *fs = get_fs_struct(proc_task(inode));
int result = -ENOENT;
if (fs) {
read_lock(&fs->lock);
*mnt = mntget(fs->rootmnt);
*dentry = dget(fs->root);
read_unlock(&fs->lock);
result = 0;
put_fs_struct(fs);
}
return result;
}
#define MAY_PTRACE(task) \
(task == current || \
(task->parent == current && \
(task->ptrace & PT_PTRACED) && \
(task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
security_ptrace(current,task) == 0))
static int proc_pid_environ(struct task_struct *task, char * buffer)
{
int res = 0;
struct mm_struct *mm = get_task_mm(task);
if (mm) {
unsigned int len = mm->env_end - mm->env_start;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
res = access_process_vm(task, mm->env_start, buffer, len, 0);
if (!ptrace_may_attach(task))
res = -ESRCH;
mmput(mm);
}
return res;
}
static int proc_pid_cmdline(struct task_struct *task, char * buffer)
{
int res = 0;
unsigned int len;
struct mm_struct *mm = get_task_mm(task);
if (!mm)
goto out;
if (!mm->arg_end)
goto out_mm; /* Shh! No looking before we're done */
len = mm->arg_end - mm->arg_start;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
res = access_process_vm(task, mm->arg_start, buffer, len, 0);
// If the nul at the end of args has been overwritten, then
// assume application is using setproctitle(3).
if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
len = strnlen(buffer, res);
if (len < res) {
res = len;
} else {
len = mm->env_end - mm->env_start;
if (len > PAGE_SIZE - res)
len = PAGE_SIZE - res;
res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
res = strnlen(buffer, res);
}
}
out_mm:
mmput(mm);
out:
return res;
}
static int proc_pid_auxv(struct task_struct *task, char *buffer)
{
int res = 0;
struct mm_struct *mm = get_task_mm(task);
if (mm) {
unsigned int nwords = 0;
do
nwords += 2;
while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
res = nwords * sizeof(mm->saved_auxv[0]);
if (res > PAGE_SIZE)
res = PAGE_SIZE;
memcpy(buffer, mm->saved_auxv, res);
mmput(mm);
}
return res;
}
#ifdef CONFIG_KALLSYMS
/*
* Provides a wchan file via kallsyms in a proper one-value-per-file format.
* Returns the resolved symbol. If that fails, simply return the address.
*/
static int proc_pid_wchan(struct task_struct *task, char *buffer)
{
char *modname;
const char *sym_name;
unsigned long wchan, size, offset;
char namebuf[KSYM_NAME_LEN+1];
wchan = get_wchan(task);
sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf);
if (sym_name)
return sprintf(buffer, "%s", sym_name);
return sprintf(buffer, "%lu", wchan);
}
#endif /* CONFIG_KALLSYMS */
#ifdef CONFIG_SCHEDSTATS
/*
* Provides /proc/PID/schedstat
*/
static int proc_pid_schedstat(struct task_struct *task, char *buffer)
{
return sprintf(buffer, "%lu %lu %lu\n",
task->sched_info.cpu_time,
task->sched_info.run_delay,
task->sched_info.pcnt);
}
#endif
/* The badness from the OOM killer */
unsigned long badness(struct task_struct *p, unsigned long uptime);
static int proc_oom_score(struct task_struct *task, char *buffer)
{
unsigned long points;
struct timespec uptime;
do_posix_clock_monotonic_gettime(&uptime);
points = badness(task, uptime.tv_sec);
return sprintf(buffer, "%lu\n", points);
}
/************************************************************************/
/* Here the fs part begins */
/************************************************************************/
/* permission checks */
static int proc_check_root(struct inode *inode)
{
struct dentry *de, *base, *root;
struct vfsmount *our_vfsmnt, *vfsmnt, *mnt;
int res = 0;
if (proc_root_link(inode, &root, &vfsmnt)) /* Ewww... */
return -ENOENT;
read_lock(&current->fs->lock);
our_vfsmnt = mntget(current->fs->rootmnt);
base = dget(current->fs->root);
read_unlock(&current->fs->lock);
spin_lock(&vfsmount_lock);
de = root;
mnt = vfsmnt;
while (vfsmnt != our_vfsmnt) {
if (vfsmnt == vfsmnt->mnt_parent)
goto out;
de = vfsmnt->mnt_mountpoint;
vfsmnt = vfsmnt->mnt_parent;
}
if (!is_subdir(de, base))
goto out;
spin_unlock(&vfsmount_lock);
exit:
dput(base);
mntput(our_vfsmnt);
dput(root);
mntput(mnt);
return res;
out:
spin_unlock(&vfsmount_lock);
res = -EACCES;
goto exit;
}
static int proc_permission(struct inode *inode, int mask, struct nameidata *nd)
{
if (generic_permission(inode, mask, NULL) != 0)
return -EACCES;
return proc_check_root(inode);
}
extern struct seq_operations proc_pid_maps_op;
static int maps_open(struct inode *inode, struct file *file)
{
struct task_struct *task = proc_task(inode);
int ret = seq_open(file, &proc_pid_maps_op);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = task;
}
return ret;
}
static struct file_operations proc_maps_operations = {
.open = maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
#ifdef CONFIG_NUMA
extern struct seq_operations proc_pid_numa_maps_op;
static int numa_maps_open(struct inode *inode, struct file *file)
{
struct task_struct *task = proc_task(inode);
int ret = seq_open(file, &proc_pid_numa_maps_op);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = task;
}
return ret;
}
static struct file_operations proc_numa_maps_operations = {
.open = numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
extern struct seq_operations proc_pid_smaps_op;
static int smaps_open(struct inode *inode, struct file *file)
{
struct task_struct *task = proc_task(inode);
int ret = seq_open(file, &proc_pid_smaps_op);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = task;
}
return ret;
}
static struct file_operations proc_smaps_operations = {
.open = smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
extern struct seq_operations mounts_op;
static int mounts_open(struct inode *inode, struct file *file)
{
struct task_struct *task = proc_task(inode);
int ret = seq_open(file, &mounts_op);
if (!ret) {
struct seq_file *m = file->private_data;
struct namespace *namespace;
task_lock(task);
namespace = task->namespace;
if (namespace)
get_namespace(namespace);
task_unlock(task);
if (namespace)
m->private = namespace;
else {
seq_release(inode, file);
ret = -EINVAL;
}
}
return ret;
}
static int mounts_release(struct inode *inode, struct file *file)
{
struct seq_file *m = file->private_data;
struct namespace *namespace = m->private;
put_namespace(namespace);
return seq_release(inode, file);
}
static struct file_operations proc_mounts_operations = {
.open = mounts_open,
.read = seq_read,
.llseek = seq_lseek,
.release = mounts_release,
};
#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
static ssize_t proc_info_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_dentry->d_inode;
unsigned long page;
ssize_t length;
struct task_struct *task = proc_task(inode);
if (count > PROC_BLOCK_SIZE)
count = PROC_BLOCK_SIZE;
if (!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
length = PROC_I(inode)->op.proc_read(task, (char*)page);
if (length >= 0)
length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
free_page(page);
return length;
}
static struct file_operations proc_info_file_operations = {
.read = proc_info_read,
};
static int mem_open(struct inode* inode, struct file* file)
{
file->private_data = (void*)((long)current->self_exec_id);
return 0;
}
static ssize_t mem_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = proc_task(file->f_dentry->d_inode);
char *page;
unsigned long src = *ppos;
int ret = -ESRCH;
struct mm_struct *mm;
if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
goto out;
ret = -ENOMEM;
page = (char *)__get_free_page(GFP_USER);
if (!page)
goto out;
ret = 0;
mm = get_task_mm(task);
if (!mm)
goto out_free;
ret = -EIO;
if (file->private_data != (void*)((long)current->self_exec_id))
goto out_put;
ret = 0;
while (count > 0) {
int this_len, retval;
this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
retval = access_process_vm(task, src, page, this_len, 0);
if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
if (!ret)
ret = -EIO;
break;
}
if (copy_to_user(buf, page, retval)) {
ret = -EFAULT;
break;
}
ret += retval;
src += retval;
buf += retval;
count -= retval;
}
*ppos = src;
out_put:
mmput(mm);
out_free:
free_page((unsigned long) page);
out:
return ret;
}
#define mem_write NULL
#ifndef mem_write
/* This is a security hazard */
static ssize_t mem_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
int copied = 0;
char *page;
struct task_struct *task = proc_task(file->f_dentry->d_inode);
unsigned long dst = *ppos;
if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
return -ESRCH;
page = (char *)__get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
while (count > 0) {
int this_len, retval;
this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
if (copy_from_user(page, buf, this_len)) {
copied = -EFAULT;
break;
}
retval = access_process_vm(task, dst, page, this_len, 1);
if (!retval) {
if (!copied)
copied = -EIO;
break;
}
copied += retval;
buf += retval;
dst += retval;
count -= retval;
}
*ppos = dst;
free_page((unsigned long) page);
return copied;
}
#endif
static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
{
switch (orig) {
case 0:
file->f_pos = offset;
break;
case 1:
file->f_pos += offset;
break;
default:
return -EINVAL;
}
force_successful_syscall_return();
return file->f_pos;
}
static struct file_operations proc_mem_operations = {
.llseek = mem_lseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
};
static ssize_t oom_adjust_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = proc_task(file->f_dentry->d_inode);
char buffer[8];
size_t len;
int oom_adjust = task->oomkilladj;
loff_t __ppos = *ppos;
len = sprintf(buffer, "%i\n", oom_adjust);
if (__ppos >= len)
return 0;
if (count > len-__ppos)
count = len-__ppos;
if (copy_to_user(buf, buffer + __ppos, count))
return -EFAULT;
*ppos = __ppos + count;
return count;
}
static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = proc_task(file->f_dentry->d_inode);
char buffer[8], *end;
int oom_adjust;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
memset(buffer, 0, 8);
if (count > 6)
count = 6;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
oom_adjust = simple_strtol(buffer, &end, 0);
if ((oom_adjust < -16 || oom_adjust > 15) && oom_adjust != OOM_DISABLE)
return -EINVAL;
if (*end == '\n')
end++;
task->oomkilladj = oom_adjust;
if (end - buffer == 0)
return -EIO;
return end - buffer;
}
static struct file_operations proc_oom_adjust_operations = {
.read = oom_adjust_read,
.write = oom_adjust_write,
};
static struct inode_operations proc_mem_inode_operations = {
.permission = proc_permission,
};
#ifdef CONFIG_AUDITSYSCALL
#define TMPBUFLEN 21
static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_dentry->d_inode;
struct task_struct *task = proc_task(inode);
ssize_t length;
char tmpbuf[TMPBUFLEN];
length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
audit_get_loginuid(task->audit_context));
return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}
static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_dentry->d_inode;
char *page, *tmp;
ssize_t length;
struct task_struct *task = proc_task(inode);
uid_t loginuid;
if (!capable(CAP_AUDIT_CONTROL))
return -EPERM;
if (current != task)
return -EPERM;
if (count > PAGE_SIZE)
count = PAGE_SIZE;
if (*ppos != 0) {
/* No partial writes. */
return -EINVAL;
}
page = (char*)__get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
length = -EFAULT;
if (copy_from_user(page, buf, count))
goto out_free_page;
loginuid = simple_strtoul(page, &tmp, 10);
if (tmp == page) {
length = -EINVAL;
goto out_free_page;
}
length = audit_set_loginuid(task, loginuid);
if (likely(length == 0))
length = count;
out_free_page:
free_page((unsigned long) page);
return length;
}
static struct file_operations proc_loginuid_operations = {
.read = proc_loginuid_read,
.write = proc_loginuid_write,
};
#endif
#ifdef CONFIG_SECCOMP
static ssize_t seccomp_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *tsk = proc_task(file->f_dentry->d_inode);
char __buf[20];
loff_t __ppos = *ppos;
size_t len;
/* no need to print the trailing zero, so use only len */
len = sprintf(__buf, "%u\n", tsk->seccomp.mode);
if (__ppos >= len)
return 0;
if (count > len - __ppos)
count = len - __ppos;
if (copy_to_user(buf, __buf + __ppos, count))
return -EFAULT;
*ppos = __ppos + count;
return count;
}
static ssize_t seccomp_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *tsk = proc_task(file->f_dentry->d_inode);
char __buf[20], *end;
unsigned int seccomp_mode;
/* can set it only once to be even more secure */
if (unlikely(tsk->seccomp.mode))
return -EPERM;
memset(__buf, 0, sizeof(__buf));
count = min(count, sizeof(__buf) - 1);
if (copy_from_user(__buf, buf, count))
return -EFAULT;
seccomp_mode = simple_strtoul(__buf, &end, 0);
if (*end == '\n')
end++;
if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) {
tsk->seccomp.mode = seccomp_mode;
set_tsk_thread_flag(tsk, TIF_SECCOMP);
} else
return -EINVAL;
if (unlikely(!(end - __buf)))
return -EIO;
return end - __buf;
}
static struct file_operations proc_seccomp_operations = {
.read = seccomp_read,
.write = seccomp_write,
};
#endif /* CONFIG_SECCOMP */
static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
int error = -EACCES;
/* We don't need a base pointer in the /proc filesystem */
path_release(nd);
if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
goto out;
error = proc_check_root(inode);
if (error)
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
nd->last_type = LAST_BIND;
out:
return ERR_PTR(error);
}
static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
char __user *buffer, int buflen)
{
struct inode * inode;
char *tmp = (char*)__get_free_page(GFP_KERNEL), *path;
int len;
if (!tmp)
return -ENOMEM;
inode = dentry->d_inode;
path = d_path(dentry, mnt, tmp, PAGE_SIZE);
len = PTR_ERR(path);
if (IS_ERR(path))
goto out;
len = tmp + PAGE_SIZE - 1 - path;
if (len > buflen)
len = buflen;
if (copy_to_user(buffer, path, len))
len = -EFAULT;
out:
free_page((unsigned long)tmp);
return len;
}
static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
{
int error = -EACCES;
struct inode *inode = dentry->d_inode;
struct dentry *de;
struct vfsmount *mnt = NULL;
lock_kernel();
if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
goto out;
error = proc_check_root(inode);
if (error)
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
if (error)
goto out;
error = do_proc_readlink(de, mnt, buffer, buflen);
dput(de);
mntput(mnt);
out:
unlock_kernel();
return error;
}
static struct inode_operations proc_pid_link_inode_operations = {
.readlink = proc_pid_readlink,
.follow_link = proc_pid_follow_link
};
#define NUMBUF 10
static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir)
{
struct inode *inode = filp->f_dentry->d_inode;
struct task_struct *p = proc_task(inode);
unsigned int fd, tid, ino;
int retval;
char buf[NUMBUF];
struct files_struct * files;
struct fdtable *fdt;
retval = -ENOENT;
if (!pid_alive(p))
goto out;
retval = 0;
tid = p->pid;
fd = filp->f_pos;
switch (fd) {
case 0:
if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
goto out;
filp->f_pos++;
case 1:
ino = fake_ino(tid, PROC_TID_INO);
if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
goto out;
filp->f_pos++;
default:
files = get_files_struct(p);
if (!files)
goto out;
rcu_read_lock();
fdt = files_fdtable(files);
for (fd = filp->f_pos-2;
fd < fdt->max_fds;
fd++, filp->f_pos++) {
unsigned int i,j;
if (!fcheck_files(files, fd))
continue;
rcu_read_unlock();
j = NUMBUF;
i = fd;
do {
j--;
buf[j] = '0' + (i % 10);
i /= 10;
} while (i);
ino = fake_ino(tid, PROC_TID_FD_DIR + fd);
if (filldir(dirent, buf+j, NUMBUF-j, fd+2, ino, DT_LNK) < 0) {
rcu_read_lock();
break;
}
rcu_read_lock();
}
rcu_read_unlock();
put_files_struct(files);
}
out:
return retval;
}
static int proc_pident_readdir(struct file *filp,
void *dirent, filldir_t filldir,
struct pid_entry *ents, unsigned int nents)
{
int i;
int pid;
struct dentry *dentry = filp->f_dentry;
struct inode *inode = dentry->d_inode;
struct pid_entry *p;
ino_t ino;
int ret;
ret = -ENOENT;
if (!pid_alive(proc_task(inode)))
goto out;
ret = 0;
pid = proc_task(inode)->pid;
i = filp->f_pos;
switch (i) {
case 0:
ino = inode->i_ino;
if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
goto out;
i++;
filp->f_pos++;
/* fall through */
case 1:
ino = parent_ino(dentry);
if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
goto out;
i++;
filp->f_pos++;
/* fall through */
default:
i -= 2;
if (i >= nents) {
ret = 1;
goto out;
}
p = ents + i;
while (p->name) {
if (filldir(dirent, p->name, p->len, filp->f_pos,
fake_ino(pid, p->type), p->mode >> 12) < 0)
goto out;
filp->f_pos++;
p++;
}
}
ret = 1;
out:
return ret;
}
static int proc_tgid_base_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
}
static int proc_tid_base_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
}
/* building an inode */
static int task_dumpable(struct task_struct *task)
{
int dumpable = 0;
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm)
dumpable = mm->dumpable;
task_unlock(task);
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:09:43 +08:00
if(dumpable == 1)
return 1;
return 0;
}
static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task, int ino)
{
struct inode * inode;
struct proc_inode *ei;
/* We need a new inode */
inode = new_inode(sb);
if (!inode)
goto out;
/* Common stuff */
ei = PROC_I(inode);
ei->task = NULL;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_ino = fake_ino(task->pid, ino);
if (!pid_alive(task))
goto out_unlock;
/*
* grab the reference to task.
*/
get_task_struct(task);
ei->task = task;
ei->type = ino;
inode->i_uid = 0;
inode->i_gid = 0;
if (ino == PROC_TGID_INO || ino == PROC_TID_INO || task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
}
security_task_to_inode(task, inode);
out:
return inode;
out_unlock:
ei->pde = NULL;
iput(inode);
return NULL;
}
/* dentry stuff */
/*
* Exceptional case: normally we are not allowed to unhash a busy
* directory. In this case, however, we can do it - no aliasing problems
* due to the way we treat inodes.
*
* Rewrite the inode's ownerships here because the owning task may have
* performed a setuid(), etc.
*/
static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task = proc_task(inode);
if (pid_alive(task)) {
if (proc_type(inode) == PROC_TGID_INO || proc_type(inode) == PROC_TID_INO || task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
} else {
inode->i_uid = 0;
inode->i_gid = 0;
}
security_task_to_inode(task, inode);
return 1;
}
d_drop(dentry);
return 0;
}
static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task = proc_task(inode);
int fd = proc_type(inode) - PROC_TID_FD_DIR;
struct files_struct *files;
files = get_files_struct(task);
if (files) {
rcu_read_lock();
if (fcheck_files(files, fd)) {
rcu_read_unlock();
put_files_struct(files);
if (task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
} else {
inode->i_uid = 0;
inode->i_gid = 0;
}
security_task_to_inode(task, inode);
return 1;
}
rcu_read_unlock();
put_files_struct(files);
}
d_drop(dentry);
return 0;
}
static void pid_base_iput(struct dentry *dentry, struct inode *inode)
{
struct task_struct *task = proc_task(inode);
spin_lock(&task->proc_lock);
if (task->proc_dentry == dentry)
task->proc_dentry = NULL;
spin_unlock(&task->proc_lock);
iput(inode);
}
static int pid_delete_dentry(struct dentry * dentry)
{
/* Is the task we represent dead?
* If so, then don't put the dentry on the lru list,
* kill it immediately.
*/
return !pid_alive(proc_task(dentry->d_inode));
}
static struct dentry_operations tid_fd_dentry_operations =
{
.d_revalidate = tid_fd_revalidate,
.d_delete = pid_delete_dentry,
};
static struct dentry_operations pid_dentry_operations =
{
.d_revalidate = pid_revalidate,
.d_delete = pid_delete_dentry,
};
static struct dentry_operations pid_base_dentry_operations =
{
.d_revalidate = pid_revalidate,
.d_iput = pid_base_iput,
.d_delete = pid_delete_dentry,
};
/* Lookups */
static unsigned name_to_int(struct dentry *dentry)
{
const char *name = dentry->d_name.name;
int len = dentry->d_name.len;
unsigned n = 0;
if (len > 1 && *name == '0')
goto out;
while (len-- > 0) {
unsigned c = *name++ - '0';
if (c > 9)
goto out;
if (n >= (~0U-9)/10)
goto out;
n *= 10;
n += c;
}
return n;
out:
return ~0U;
}
/* SMP-safe */
static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd)
{
struct task_struct *task = proc_task(dir);
unsigned fd = name_to_int(dentry);
struct file * file;
struct files_struct * files;
struct inode *inode;
struct proc_inode *ei;
if (fd == ~0U)
goto out;
if (!pid_alive(task))
goto out;
inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_FD_DIR+fd);
if (!inode)
goto out;
ei = PROC_I(inode);
files = get_files_struct(task);
if (!files)
goto out_unlock;
inode->i_mode = S_IFLNK;
rcu_read_lock();
file = fcheck_files(files, fd);
if (!file)
goto out_unlock2;
if (file->f_mode & 1)
inode->i_mode |= S_IRUSR | S_IXUSR;
if (file->f_mode & 2)
inode->i_mode |= S_IWUSR | S_IXUSR;
rcu_read_unlock();
put_files_struct(files);
inode->i_op = &proc_pid_link_inode_operations;
inode->i_size = 64;
ei->op.proc_get_link = proc_fd_link;
dentry->d_op = &tid_fd_dentry_operations;
d_add(dentry, inode);
return NULL;
out_unlock2:
rcu_read_unlock();
put_files_struct(files);
out_unlock:
iput(inode);
out:
return ERR_PTR(-ENOENT);
}
static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir);
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd);
static struct file_operations proc_fd_operations = {
.read = generic_read_dir,
.readdir = proc_readfd,
};
static struct file_operations proc_task_operations = {
.read = generic_read_dir,
.readdir = proc_task_readdir,
};
/*
* proc directories can do almost nothing..
*/
static struct inode_operations proc_fd_inode_operations = {
.lookup = proc_lookupfd,
.permission = proc_permission,
};
static struct inode_operations proc_task_inode_operations = {
.lookup = proc_task_lookup,
.permission = proc_permission,
};
#ifdef CONFIG_SECURITY
static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_dentry->d_inode;
unsigned long page;
ssize_t length;
struct task_struct *task = proc_task(inode);
if (count > PAGE_SIZE)
count = PAGE_SIZE;
if (!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
length = security_getprocattr(task,
(char*)file->f_dentry->d_name.name,
(void*)page, count);
if (length >= 0)
length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
free_page(page);
return length;
}
static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_dentry->d_inode;
char *page;
ssize_t length;
struct task_struct *task = proc_task(inode);
if (count > PAGE_SIZE)
count = PAGE_SIZE;
if (*ppos != 0) {
/* No partial writes. */
return -EINVAL;
}
page = (char*)__get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
length = -EFAULT;
if (copy_from_user(page, buf, count))
goto out;
length = security_setprocattr(task,
(char*)file->f_dentry->d_name.name,
(void*)page, count);
out:
free_page((unsigned long) page);
return length;
}
static struct file_operations proc_pid_attr_operations = {
.read = proc_pid_attr_read,
.write = proc_pid_attr_write,
};
static struct file_operations proc_tid_attr_operations;
static struct inode_operations proc_tid_attr_inode_operations;
static struct file_operations proc_tgid_attr_operations;
static struct inode_operations proc_tgid_attr_inode_operations;
#endif
static int get_tid_list(int index, unsigned int *tids, struct inode *dir);
/* SMP-safe */
static struct dentry *proc_pident_lookup(struct inode *dir,
struct dentry *dentry,
struct pid_entry *ents)
{
struct inode *inode;
int error;
struct task_struct *task = proc_task(dir);
struct pid_entry *p;
struct proc_inode *ei;
error = -ENOENT;
inode = NULL;
if (!pid_alive(task))
goto out;
for (p = ents; p->name; p++) {
if (p->len != dentry->d_name.len)
continue;
if (!memcmp(dentry->d_name.name, p->name, p->len))
break;
}
if (!p->name)
goto out;
error = -EINVAL;
inode = proc_pid_make_inode(dir->i_sb, task, p->type);
if (!inode)
goto out;
ei = PROC_I(inode);
inode->i_mode = p->mode;
/*
* Yes, it does not scale. And it should not. Don't add
* new entries into /proc/<tgid>/ without very good reasons.
*/
switch(p->type) {
case PROC_TGID_TASK:
inode->i_nlink = 2 + get_tid_list(2, NULL, dir);
inode->i_op = &proc_task_inode_operations;
inode->i_fop = &proc_task_operations;
break;
case PROC_TID_FD:
case PROC_TGID_FD:
inode->i_nlink = 2;
inode->i_op = &proc_fd_inode_operations;
inode->i_fop = &proc_fd_operations;
break;
case PROC_TID_EXE:
case PROC_TGID_EXE:
inode->i_op = &proc_pid_link_inode_operations;
ei->op.proc_get_link = proc_exe_link;
break;
case PROC_TID_CWD:
case PROC_TGID_CWD:
inode->i_op = &proc_pid_link_inode_operations;
ei->op.proc_get_link = proc_cwd_link;
break;
case PROC_TID_ROOT:
case PROC_TGID_ROOT:
inode->i_op = &proc_pid_link_inode_operations;
ei->op.proc_get_link = proc_root_link;
break;
case PROC_TID_ENVIRON:
case PROC_TGID_ENVIRON:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_environ;
break;
case PROC_TID_AUXV:
case PROC_TGID_AUXV:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_auxv;
break;
case PROC_TID_STATUS:
case PROC_TGID_STATUS:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_status;
break;
case PROC_TID_STAT:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_tid_stat;
break;
case PROC_TGID_STAT:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_tgid_stat;
break;
case PROC_TID_CMDLINE:
case PROC_TGID_CMDLINE:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_cmdline;
break;
case PROC_TID_STATM:
case PROC_TGID_STATM:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_statm;
break;
case PROC_TID_MAPS:
case PROC_TGID_MAPS:
inode->i_fop = &proc_maps_operations;
break;
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside This patch was recently discussed on linux-mm: http://marc.theaimsgroup.com/?t=112085728500002&r=1&w=2 I inherited a large code base from Ray for page migration. There was a small patch in there that I find to be very useful since it allows the display of the locality of the pages in use by a process. I reworked that patch and came up with a /proc/<pid>/numa_maps that gives more information about the vma's of a process. numa_maps is indexes by the start address found in /proc/<pid>/maps. F.e. with this patch you can see the page use of the "getty" process: margin:/proc/12008 # cat maps 00000000-00004000 r--p 00000000 00:00 0 2000000000000000-200000000002c000 r-xp 00000000 08:04 516 /lib/ld-2.3.3.so 2000000000038000-2000000000040000 rw-p 00028000 08:04 516 /lib/ld-2.3.3.so 2000000000040000-2000000000044000 rw-p 2000000000040000 00:00 0 2000000000058000-2000000000260000 r-xp 00000000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000260000-2000000000268000 ---p 00208000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000268000-2000000000274000 rw-p 00200000 08:04 54707842 /lib/tls/libc.so.6.1 2000000000274000-2000000000280000 rw-p 2000000000274000 00:00 0 2000000000280000-20000000002b4000 r--p 00000000 08:04 9126923 /usr/lib/locale/en_US.utf8/LC_CTYPE 2000000000300000-2000000000308000 r--s 00000000 08:04 60071467 /usr/lib/gconv/gconv-modules.cache 2000000000318000-2000000000328000 rw-p 2000000000318000 00:00 0 4000000000000000-4000000000008000 r-xp 00000000 08:04 29576399 /sbin/mingetty 6000000000004000-6000000000008000 rw-p 00004000 08:04 29576399 /sbin/mingetty 6000000000008000-600000000002c000 rw-p 6000000000008000 00:00 0 [heap] 60000fff7fffc000-60000fff80000000 rw-p 60000fff7fffc000 00:00 0 60000ffffff44000-60000ffffff98000 rw-p 60000ffffff44000 00:00 0 [stack] a000000000000000-a000000000020000 ---p 00000000 00:00 0 [vdso] cat numa_maps 2000000000000000 default MaxRef=43 Pages=11 Mapped=11 N0=4 N1=3 N2=2 N3=2 2000000000038000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000040000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 2000000000058000 default MaxRef=43 Pages=61 Mapped=61 N0=14 N1=15 N2=16 N3=16 2000000000268000 default MaxRef=1 Pages=2 Mapped=2 Anon=2 N0=2 2000000000274000 default MaxRef=1 Pages=3 Mapped=3 Anon=3 N0=3 2000000000280000 default MaxRef=8 Pages=3 Mapped=3 N0=3 2000000000300000 default MaxRef=8 Pages=2 Mapped=2 N0=2 2000000000318000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N2=1 4000000000000000 default MaxRef=6 Pages=2 Mapped=2 N1=2 6000000000004000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 6000000000008000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000fff7fffc000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 60000ffffff44000 default MaxRef=1 Pages=1 Mapped=1 Anon=1 N0=1 getty uses ld.so. The first vma is the code segment which is used by 43 other processes and the pages are evenly distributed over the 4 nodes. The second vma is the process specific data portion for ld.so. This is only one page. The display format is: <startaddress> Links to information in /proc/<pid>/map <memory policy> This can be "default" "interleave={}", "prefer=<node>" or "bind={<zones>}" MaxRef= <maximum reference to a page in this vma> Pages= <Nr of pages in use> Mapped= <Nr of pages with mapcount > Anon= <nr of anonymous pages> Nx= <Nr of pages on Node x> The content of the proc-file is self-evident. If this would be tied into the sparsemem system then the contents of this file would not be too useful. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:54:45 +08:00
#ifdef CONFIG_NUMA
case PROC_TID_NUMA_MAPS:
case PROC_TGID_NUMA_MAPS:
inode->i_fop = &proc_numa_maps_operations;
break;
#endif
case PROC_TID_MEM:
case PROC_TGID_MEM:
inode->i_op = &proc_mem_inode_operations;
inode->i_fop = &proc_mem_operations;
break;
#ifdef CONFIG_SECCOMP
case PROC_TID_SECCOMP:
case PROC_TGID_SECCOMP:
inode->i_fop = &proc_seccomp_operations;
break;
#endif /* CONFIG_SECCOMP */
case PROC_TID_MOUNTS:
case PROC_TGID_MOUNTS:
inode->i_fop = &proc_mounts_operations;
break;
[PATCH] add /proc/pid/smaps Add a "smaps" entry to /proc/pid: show howmuch memory is resident in each mapping. People that want to perform a memory consumption analysing can use it mainly if someone needs to figure out which libraries can be reduced for embedded systems. So the new features are the physical size of shared and clean [or dirty]; private and clean [or dirty]. Take a look the example below: # cat /proc/4576/smaps 08048000-080dc000 r-xp /bin/bash Size: 592 KB Rss: 500 KB Shared_Clean: 500 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB 080dc000-080e2000 rw-p /bin/bash Size: 24 KB Rss: 24 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 24 KB 080e2000-08116000 rw-p Size: 208 KB Rss: 208 KB Shared_Clean: 0 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 208 KB b7e2b000-b7e34000 r-xp /lib/tls/libnss_files-2.3.2.so Size: 36 KB Rss: 12 KB Shared_Clean: 12 KB Shared_Dirty: 0 KB Private_Clean: 0 KB Private_Dirty: 0 KB ... (Includes a cleanup from "Richard Purdie" <rpurdie@rpsys.net>) From: Torsten Foertsch <torsten.foertsch@gmx.net> show_smap calls first show_map and then prints its additional information to the seq_file. show_map checks if all it has to print fits into the buffer and if yes marks the current vma as written. While that is correct for show_map it is not for show_smap. Here the vma should be marked as written only after the additional information is also written. The attached patch cures the problem. It moves the functionality of the show_map function to a new function show_map_internal that is called with an additional struct mem_size_stats* argument. Then show_map calls show_map_internal with NULL as struct mem_size_stats* whereas show_smap calls it with a real pointer. Now the final if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; is done only if the whole entry fits into the buffer. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-04 06:55:10 +08:00
case PROC_TID_SMAPS:
case PROC_TGID_SMAPS:
inode->i_fop = &proc_smaps_operations;
break;
#ifdef CONFIG_SECURITY
case PROC_TID_ATTR:
inode->i_nlink = 2;
inode->i_op = &proc_tid_attr_inode_operations;
inode->i_fop = &proc_tid_attr_operations;
break;
case PROC_TGID_ATTR:
inode->i_nlink = 2;
inode->i_op = &proc_tgid_attr_inode_operations;
inode->i_fop = &proc_tgid_attr_operations;
break;
case PROC_TID_ATTR_CURRENT:
case PROC_TGID_ATTR_CURRENT:
case PROC_TID_ATTR_PREV:
case PROC_TGID_ATTR_PREV:
case PROC_TID_ATTR_EXEC:
case PROC_TGID_ATTR_EXEC:
case PROC_TID_ATTR_FSCREATE:
case PROC_TGID_ATTR_FSCREATE:
inode->i_fop = &proc_pid_attr_operations;
break;
#endif
#ifdef CONFIG_KALLSYMS
case PROC_TID_WCHAN:
case PROC_TGID_WCHAN:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_wchan;
break;
#endif
#ifdef CONFIG_SCHEDSTATS
case PROC_TID_SCHEDSTAT:
case PROC_TGID_SCHEDSTAT:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_pid_schedstat;
break;
#endif
#ifdef CONFIG_CPUSETS
case PROC_TID_CPUSET:
case PROC_TGID_CPUSET:
inode->i_fop = &proc_cpuset_operations;
break;
#endif
case PROC_TID_OOM_SCORE:
case PROC_TGID_OOM_SCORE:
inode->i_fop = &proc_info_file_operations;
ei->op.proc_read = proc_oom_score;
break;
case PROC_TID_OOM_ADJUST:
case PROC_TGID_OOM_ADJUST:
inode->i_fop = &proc_oom_adjust_operations;
break;
#ifdef CONFIG_AUDITSYSCALL
case PROC_TID_LOGINUID:
case PROC_TGID_LOGINUID:
inode->i_fop = &proc_loginuid_operations;
break;
#endif
default:
printk("procfs: impossible type (%d)",p->type);
iput(inode);
return ERR_PTR(-EINVAL);
}
dentry->d_op = &pid_dentry_operations;
d_add(dentry, inode);
return NULL;
out:
return ERR_PTR(error);
}
static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
return proc_pident_lookup(dir, dentry, tgid_base_stuff);
}
static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
return proc_pident_lookup(dir, dentry, tid_base_stuff);
}
static struct file_operations proc_tgid_base_operations = {
.read = generic_read_dir,
.readdir = proc_tgid_base_readdir,
};
static struct file_operations proc_tid_base_operations = {
.read = generic_read_dir,
.readdir = proc_tid_base_readdir,
};
static struct inode_operations proc_tgid_base_inode_operations = {
.lookup = proc_tgid_base_lookup,
};
static struct inode_operations proc_tid_base_inode_operations = {
.lookup = proc_tid_base_lookup,
};
#ifdef CONFIG_SECURITY
static int proc_tgid_attr_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tgid_attr_stuff,ARRAY_SIZE(tgid_attr_stuff));
}
static int proc_tid_attr_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tid_attr_stuff,ARRAY_SIZE(tid_attr_stuff));
}
static struct file_operations proc_tgid_attr_operations = {
.read = generic_read_dir,
.readdir = proc_tgid_attr_readdir,
};
static struct file_operations proc_tid_attr_operations = {
.read = generic_read_dir,
.readdir = proc_tid_attr_readdir,
};
static struct dentry *proc_tgid_attr_lookup(struct inode *dir,
struct dentry *dentry, struct nameidata *nd)
{
return proc_pident_lookup(dir, dentry, tgid_attr_stuff);
}
static struct dentry *proc_tid_attr_lookup(struct inode *dir,
struct dentry *dentry, struct nameidata *nd)
{
return proc_pident_lookup(dir, dentry, tid_attr_stuff);
}
static struct inode_operations proc_tgid_attr_inode_operations = {
.lookup = proc_tgid_attr_lookup,
};
static struct inode_operations proc_tid_attr_inode_operations = {
.lookup = proc_tid_attr_lookup,
};
#endif
/*
* /proc/self:
*/
static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
int buflen)
{
char tmp[30];
sprintf(tmp, "%d", current->tgid);
return vfs_readlink(dentry,buffer,buflen,tmp);
}
static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
{
char tmp[30];
sprintf(tmp, "%d", current->tgid);
return ERR_PTR(vfs_follow_link(nd,tmp));
}
static struct inode_operations proc_self_inode_operations = {
.readlink = proc_self_readlink,
.follow_link = proc_self_follow_link,
};
/**
[PATCH] DocBook: changes and extensions to the kernel documentation I have recompiled Linux kernel 2.6.11.5 documentation for me and our university students again. The documentation could be extended for more sources which are equipped by structured comments for recent 2.6 kernels. I have tried to proceed with that task. I have done that more times from 2.6.0 time and it gets boring to do same changes again and again. Linux kernel compiles after changes for i386 and ARM targets. I have added references to some more files into kernel-api book, I have added some section names as well. So please, check that changes do not break something and that categories are not too much skewed. I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved by kernel convention. Most of the other changes are modifications in the comments to make kernel-doc happy, accept some parameters description and do not bail out on errors. Changed <pid> to @pid in the description, moved some #ifdef before comments to correct function to comments bindings, etc. You can see result of the modified documentation build at http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz Some more sources are ready to be included into kernel-doc generated documentation. Sources has been added into kernel-api for now. Some more section names added and probably some more chaos introduced as result of quick cleanup work. Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz> Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 23:59:25 +08:00
* proc_pid_unhash - Unhash /proc/@pid entry from the dcache.
* @p: task that should be flushed.
*
[PATCH] DocBook: changes and extensions to the kernel documentation I have recompiled Linux kernel 2.6.11.5 documentation for me and our university students again. The documentation could be extended for more sources which are equipped by structured comments for recent 2.6 kernels. I have tried to proceed with that task. I have done that more times from 2.6.0 time and it gets boring to do same changes again and again. Linux kernel compiles after changes for i386 and ARM targets. I have added references to some more files into kernel-api book, I have added some section names as well. So please, check that changes do not break something and that categories are not too much skewed. I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved by kernel convention. Most of the other changes are modifications in the comments to make kernel-doc happy, accept some parameters description and do not bail out on errors. Changed <pid> to @pid in the description, moved some #ifdef before comments to correct function to comments bindings, etc. You can see result of the modified documentation build at http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz Some more sources are ready to be included into kernel-doc generated documentation. Sources has been added into kernel-api for now. Some more section names added and probably some more chaos introduced as result of quick cleanup work. Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz> Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 23:59:25 +08:00
* Drops the /proc/@pid dcache entry from the hash chains.
*
[PATCH] DocBook: changes and extensions to the kernel documentation I have recompiled Linux kernel 2.6.11.5 documentation for me and our university students again. The documentation could be extended for more sources which are equipped by structured comments for recent 2.6 kernels. I have tried to proceed with that task. I have done that more times from 2.6.0 time and it gets boring to do same changes again and again. Linux kernel compiles after changes for i386 and ARM targets. I have added references to some more files into kernel-api book, I have added some section names as well. So please, check that changes do not break something and that categories are not too much skewed. I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved by kernel convention. Most of the other changes are modifications in the comments to make kernel-doc happy, accept some parameters description and do not bail out on errors. Changed <pid> to @pid in the description, moved some #ifdef before comments to correct function to comments bindings, etc. You can see result of the modified documentation build at http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz Some more sources are ready to be included into kernel-doc generated documentation. Sources has been added into kernel-api for now. Some more section names added and probably some more chaos introduced as result of quick cleanup work. Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz> Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 23:59:25 +08:00
* Dropping /proc/@pid entries and detach_pid must be synchroneous,
* otherwise e.g. /proc/@pid/exe might point to the wrong executable,
* if the pid value is immediately reused. This is enforced by
* - caller must acquire spin_lock(p->proc_lock)
* - must be called before detach_pid()
* - proc_pid_lookup acquires proc_lock, and checks that
* the target is not dead by looking at the attach count
* of PIDTYPE_PID.
*/
struct dentry *proc_pid_unhash(struct task_struct *p)
{
struct dentry *proc_dentry;
proc_dentry = p->proc_dentry;
if (proc_dentry != NULL) {
spin_lock(&dcache_lock);
spin_lock(&proc_dentry->d_lock);
if (!d_unhashed(proc_dentry)) {
dget_locked(proc_dentry);
__d_drop(proc_dentry);
spin_unlock(&proc_dentry->d_lock);
} else {
spin_unlock(&proc_dentry->d_lock);
proc_dentry = NULL;
}
spin_unlock(&dcache_lock);
}
return proc_dentry;
}
/**
[PATCH] DocBook: changes and extensions to the kernel documentation I have recompiled Linux kernel 2.6.11.5 documentation for me and our university students again. The documentation could be extended for more sources which are equipped by structured comments for recent 2.6 kernels. I have tried to proceed with that task. I have done that more times from 2.6.0 time and it gets boring to do same changes again and again. Linux kernel compiles after changes for i386 and ARM targets. I have added references to some more files into kernel-api book, I have added some section names as well. So please, check that changes do not break something and that categories are not too much skewed. I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved by kernel convention. Most of the other changes are modifications in the comments to make kernel-doc happy, accept some parameters description and do not bail out on errors. Changed <pid> to @pid in the description, moved some #ifdef before comments to correct function to comments bindings, etc. You can see result of the modified documentation build at http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz Some more sources are ready to be included into kernel-doc generated documentation. Sources has been added into kernel-api for now. Some more section names added and probably some more chaos introduced as result of quick cleanup work. Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz> Signed-off-by: Martin Waitz <tali@admingilde.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 23:59:25 +08:00
* proc_pid_flush - recover memory used by stale /proc/@pid/x entries
* @proc_dentry: directoy to prune.
*
* Shrink the /proc directory that was used by the just killed thread.
*/
void proc_pid_flush(struct dentry *proc_dentry)
{
might_sleep();
if(proc_dentry != NULL) {
shrink_dcache_parent(proc_dentry);
dput(proc_dentry);
}
}
/* SMP-safe */
struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
struct task_struct *task;
struct inode *inode;
struct proc_inode *ei;
unsigned tgid;
int died;
if (dentry->d_name.len == 4 && !memcmp(dentry->d_name.name,"self",4)) {
inode = new_inode(dir->i_sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = PROC_I(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_ino = fake_ino(0, PROC_TGID_INO);
ei->pde = NULL;
inode->i_mode = S_IFLNK|S_IRWXUGO;
inode->i_uid = inode->i_gid = 0;
inode->i_size = 64;
inode->i_op = &proc_self_inode_operations;
d_add(dentry, inode);
return NULL;
}
tgid = name_to_int(dentry);
if (tgid == ~0U)
goto out;
read_lock(&tasklist_lock);
task = find_task_by_pid(tgid);
if (task)
get_task_struct(task);
read_unlock(&tasklist_lock);
if (!task)
goto out;
inode = proc_pid_make_inode(dir->i_sb, task, PROC_TGID_INO);
if (!inode) {
put_task_struct(task);
goto out;
}
inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
inode->i_op = &proc_tgid_base_inode_operations;
inode->i_fop = &proc_tgid_base_operations;
inode->i_flags|=S_IMMUTABLE;
#ifdef CONFIG_SECURITY
inode->i_nlink = 5;
#else
inode->i_nlink = 4;
#endif
dentry->d_op = &pid_base_dentry_operations;
died = 0;
d_add(dentry, inode);
spin_lock(&task->proc_lock);
task->proc_dentry = dentry;
if (!pid_alive(task)) {
dentry = proc_pid_unhash(task);
died = 1;
}
spin_unlock(&task->proc_lock);
put_task_struct(task);
if (died) {
proc_pid_flush(dentry);
goto out;
}
return NULL;
out:
return ERR_PTR(-ENOENT);
}
/* SMP-safe */
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
struct task_struct *task;
struct task_struct *leader = proc_task(dir);
struct inode *inode;
unsigned tid;
tid = name_to_int(dentry);
if (tid == ~0U)
goto out;
read_lock(&tasklist_lock);
task = find_task_by_pid(tid);
if (task)
get_task_struct(task);
read_unlock(&tasklist_lock);
if (!task)
goto out;
if (leader->tgid != task->tgid)
goto out_drop_task;
inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_INO);
if (!inode)
goto out_drop_task;
inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
inode->i_op = &proc_tid_base_inode_operations;
inode->i_fop = &proc_tid_base_operations;
inode->i_flags|=S_IMMUTABLE;
#ifdef CONFIG_SECURITY
inode->i_nlink = 4;
#else
inode->i_nlink = 3;
#endif
dentry->d_op = &pid_base_dentry_operations;
d_add(dentry, inode);
put_task_struct(task);
return NULL;
out_drop_task:
put_task_struct(task);
out:
return ERR_PTR(-ENOENT);
}
#define PROC_NUMBUF 10
#define PROC_MAXPIDS 20
/*
* Get a few tgid's to return for filldir - we need to hold the
* tasklist lock while doing this, and we must release it before
* we actually do the filldir itself, so we use a temp buffer..
*/
static int get_tgid_list(int index, unsigned long version, unsigned int *tgids)
{
struct task_struct *p;
int nr_tgids = 0;
index--;
read_lock(&tasklist_lock);
p = NULL;
if (version) {
p = find_task_by_pid(version);
if (p && !thread_group_leader(p))
p = NULL;
}
if (p)
index = 0;
else
p = next_task(&init_task);
for ( ; p != &init_task; p = next_task(p)) {
int tgid = p->pid;
if (!pid_alive(p))
continue;
if (--index >= 0)
continue;
tgids[nr_tgids] = tgid;
nr_tgids++;
if (nr_tgids >= PROC_MAXPIDS)
break;
}
read_unlock(&tasklist_lock);
return nr_tgids;
}
/*
* Get a few tid's to return for filldir - we need to hold the
* tasklist lock while doing this, and we must release it before
* we actually do the filldir itself, so we use a temp buffer..
*/
static int get_tid_list(int index, unsigned int *tids, struct inode *dir)
{
struct task_struct *leader_task = proc_task(dir);
struct task_struct *task = leader_task;
int nr_tids = 0;
index -= 2;
read_lock(&tasklist_lock);
/*
* The starting point task (leader_task) might be an already
* unlinked task, which cannot be used to access the task-list
* via next_thread().
*/
if (pid_alive(task)) do {
int tid = task->pid;
if (--index >= 0)
continue;
if (tids != NULL)
tids[nr_tids] = tid;
nr_tids++;
if (nr_tids >= PROC_MAXPIDS)
break;
} while ((task = next_thread(task)) != leader_task);
read_unlock(&tasklist_lock);
return nr_tids;
}
/* for the /proc/ directory itself, after non-process stuff has been done */
int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
unsigned int tgid_array[PROC_MAXPIDS];
char buf[PROC_NUMBUF];
unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
unsigned int nr_tgids, i;
int next_tgid;
if (!nr) {
ino_t ino = fake_ino(0,PROC_TGID_INO);
if (filldir(dirent, "self", 4, filp->f_pos, ino, DT_LNK) < 0)
return 0;
filp->f_pos++;
nr++;
}
/* f_version caches the tgid value that the last readdir call couldn't
* return. lseek aka telldir automagically resets f_version to 0.
*/
next_tgid = filp->f_version;
filp->f_version = 0;
for (;;) {
nr_tgids = get_tgid_list(nr, next_tgid, tgid_array);
if (!nr_tgids) {
/* no more entries ! */
break;
}
next_tgid = 0;
/* do not use the last found pid, reserve it for next_tgid */
if (nr_tgids == PROC_MAXPIDS) {
nr_tgids--;
next_tgid = tgid_array[nr_tgids];
}
for (i=0;i<nr_tgids;i++) {
int tgid = tgid_array[i];
ino_t ino = fake_ino(tgid,PROC_TGID_INO);
unsigned long j = PROC_NUMBUF;
do
buf[--j] = '0' + (tgid % 10);
while ((tgid /= 10) != 0);
if (filldir(dirent, buf+j, PROC_NUMBUF-j, filp->f_pos, ino, DT_DIR) < 0) {
/* returning this tgid failed, save it as the first
* pid for the next readir call */
filp->f_version = tgid_array[i];
goto out;
}
filp->f_pos++;
nr++;
}
}
out:
return 0;
}
/* for the /proc/TGID/task/ directories */
static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
unsigned int tid_array[PROC_MAXPIDS];
char buf[PROC_NUMBUF];
unsigned int nr_tids, i;
struct dentry *dentry = filp->f_dentry;
struct inode *inode = dentry->d_inode;
int retval = -ENOENT;
ino_t ino;
unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
if (!pid_alive(proc_task(inode)))
goto out;
retval = 0;
switch (pos) {
case 0:
ino = inode->i_ino;
if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
goto out;
pos++;
/* fall through */
case 1:
ino = parent_ino(dentry);
if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
goto out;
pos++;
/* fall through */
}
nr_tids = get_tid_list(pos, tid_array, inode);
inode->i_nlink = pos + nr_tids;
for (i = 0; i < nr_tids; i++) {
unsigned long j = PROC_NUMBUF;
int tid = tid_array[i];
ino = fake_ino(tid,PROC_TID_INO);
do
buf[--j] = '0' + (tid % 10);
while ((tid /= 10) != 0);
if (filldir(dirent, buf+j, PROC_NUMBUF-j, pos, ino, DT_DIR) < 0)
break;
pos++;
}
out:
filp->f_pos = pos;
return retval;
}