2005-04-17 06:20:36 +08:00
|
|
|
#ifndef _ASM_IO_H
|
|
|
|
#define _ASM_IO_H
|
|
|
|
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file contains the definitions for the x86 IO instructions
|
|
|
|
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
|
|
|
|
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
|
|
|
|
* versions of the single-IO instructions (inb_p/inw_p/..).
|
|
|
|
*
|
|
|
|
* This file is not meant to be obfuscating: it's just complicated
|
|
|
|
* to (a) handle it all in a way that makes gcc able to optimize it
|
|
|
|
* as well as possible and (b) trying to avoid writing the same thing
|
|
|
|
* over and over again with slight variations and possibly making a
|
|
|
|
* mistake somewhere.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Thanks to James van Artsdalen for a better timing-fix than
|
|
|
|
* the two short jumps: using outb's to a nonexistent port seems
|
|
|
|
* to guarantee better timings even on fast machines.
|
|
|
|
*
|
|
|
|
* On the other hand, I'd like to be sure of a non-existent port:
|
|
|
|
* I feel a bit unsafe about using 0x80 (should be safe, though)
|
|
|
|
*
|
|
|
|
* Linus
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bit simplified and optimized by Jan Hubicka
|
|
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
|
|
|
|
*
|
|
|
|
* isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
|
|
|
|
* isa_read[wl] and isa_write[wl] fixed
|
|
|
|
* - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define IO_SPACE_LIMIT 0xffff
|
|
|
|
|
|
|
|
#define XQUAD_PORTIO_BASE 0xfe400000
|
|
|
|
#define XQUAD_PORTIO_QUAD 0x40000 /* 256k per quad. */
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
#include <asm-generic/iomap.h>
|
|
|
|
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
|
|
* access
|
|
|
|
*/
|
|
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
|
|
*/
|
|
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
|
|
|
|
/**
|
|
|
|
* virt_to_phys - map virtual addresses to physical
|
|
|
|
* @address: address to remap
|
|
|
|
*
|
|
|
|
* The returned physical address is the physical (CPU) mapping for
|
|
|
|
* the memory address given. It is only valid to use this function on
|
|
|
|
* addresses directly mapped or allocated via kmalloc.
|
|
|
|
*
|
|
|
|
* This function does not give bus mappings for DMA transfers. In
|
|
|
|
* almost all conceivable cases a device driver should not be using
|
|
|
|
* this function
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline unsigned long virt_to_phys(volatile void * address)
|
|
|
|
{
|
|
|
|
return __pa(address);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* phys_to_virt - map physical address to virtual
|
|
|
|
* @address: address to remap
|
|
|
|
*
|
|
|
|
* The returned virtual address is a current CPU mapping for
|
|
|
|
* the memory address given. It is only valid to use this function on
|
|
|
|
* addresses that have a kernel mapping
|
|
|
|
*
|
|
|
|
* This function does not handle bus mappings for DMA transfers. In
|
|
|
|
* almost all conceivable cases a device driver should not be using
|
|
|
|
* this function
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline void * phys_to_virt(unsigned long address)
|
|
|
|
{
|
|
|
|
return __va(address);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change "struct page" to physical address.
|
|
|
|
*/
|
|
|
|
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ioremap - map bus memory into CPU space
|
|
|
|
* @offset: bus address of the memory
|
|
|
|
* @size: size of the resource to map
|
|
|
|
*
|
|
|
|
* ioremap performs a platform specific sequence of operations to
|
|
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
|
|
* address is not guaranteed to be usable directly as a virtual
|
2008-01-30 20:33:40 +08:00
|
|
|
* address.
|
2007-07-20 08:48:44 +08:00
|
|
|
*
|
|
|
|
* If the area you are trying to map is a PCI BAR you should have a
|
|
|
|
* look at pci_iomap().
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2008-01-30 20:34:06 +08:00
|
|
|
extern void __iomem *ioremap_nocache(unsigned long offset, unsigned long size);
|
|
|
|
extern void __iomem *ioremap_cache(unsigned long offset, unsigned long size);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-01-30 20:33:40 +08:00
|
|
|
/*
|
|
|
|
* The default ioremap() behavior is non-cached:
|
|
|
|
*/
|
2008-01-30 20:34:06 +08:00
|
|
|
static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
|
2008-01-30 20:33:40 +08:00
|
|
|
{
|
|
|
|
return ioremap_nocache(offset, size);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
extern void iounmap(volatile void __iomem *addr);
|
|
|
|
|
|
|
|
/*
|
2008-01-30 20:33:44 +08:00
|
|
|
* early_ioremap() and early_iounmap() are for temporary early boot-time
|
2005-04-17 06:20:36 +08:00
|
|
|
* mappings, before the real ioremap() is functional.
|
|
|
|
* A boot-time mapping is currently limited to at most 16 pages.
|
|
|
|
*/
|
2008-01-30 20:33:44 +08:00
|
|
|
extern void early_ioremap_init(void);
|
|
|
|
extern void early_ioremap_clear(void);
|
|
|
|
extern void early_ioremap_reset(void);
|
|
|
|
extern void *early_ioremap(unsigned long offset, unsigned long size);
|
|
|
|
extern void early_iounmap(void *addr, unsigned long size);
|
serial: convert early_uart to earlycon for 8250
Beacuse SERIAL_PORT_DFNS is removed from include/asm-i386/serial.h and
include/asm-x86_64/serial.h. the serial8250_ports need to be probed late in
serial initializing stage. the console_init=>serial8250_console_init=>
register_console=>serial8250_console_setup will return -ENDEV, and console
ttyS0 can not be enabled at that time. need to wait till uart_add_one_port in
drivers/serial/serial_core.c to call register_console to get console ttyS0.
that is too late.
Make early_uart to use early_param, so uart console can be used earlier. Make
it to be bootconsole with CON_BOOT flag, so can use console handover feature.
and it will switch to corresponding normal serial console automatically.
new command line will be:
console=uart8250,io,0x3f8,9600n8
console=uart8250,mmio,0xff5e0000,115200n8
or
earlycon=uart8250,io,0x3f8,9600n8
earlycon=uart8250,mmio,0xff5e0000,115200n8
it will print in very early stage:
Early serial console at I/O port 0x3f8 (options '9600n8')
console [uart0] enabled
later for console it will print:
console handover: boot [uart0] -> real [ttyS0]
Signed-off-by: <yinghai.lu@sun.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Gerd Hoffmann <kraxel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-16 14:37:59 +08:00
|
|
|
extern void __iomem *fix_ioremap(unsigned idx, unsigned long phys);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2006-01-12 05:43:33 +08:00
|
|
|
/* Use early IO mappings for DMI because it's initialized early */
|
2008-01-30 20:33:44 +08:00
|
|
|
#define dmi_ioremap early_ioremap
|
|
|
|
#define dmi_iounmap early_iounmap
|
2006-01-12 05:43:33 +08:00
|
|
|
#define dmi_alloc alloc_bootmem
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* ISA I/O bus memory addresses are 1:1 with the physical address.
|
|
|
|
*/
|
|
|
|
#define isa_virt_to_bus virt_to_phys
|
|
|
|
#define isa_page_to_bus page_to_phys
|
|
|
|
#define isa_bus_to_virt phys_to_virt
|
|
|
|
|
|
|
|
/*
|
|
|
|
* However PCI ones are not necessarily 1:1 and therefore these interfaces
|
|
|
|
* are forbidden in portable PCI drivers.
|
|
|
|
*
|
|
|
|
* Allow them on x86 for legacy drivers, though.
|
|
|
|
*/
|
|
|
|
#define virt_to_bus virt_to_phys
|
|
|
|
#define bus_to_virt phys_to_virt
|
|
|
|
|
|
|
|
/*
|
|
|
|
* readX/writeX() are used to access memory mapped devices. On some
|
|
|
|
* architectures the memory mapped IO stuff needs to be accessed
|
|
|
|
* differently. On the x86 architecture, we just read/write the
|
|
|
|
* memory location directly.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static inline unsigned char readb(const volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
return *(volatile unsigned char __force *) addr;
|
|
|
|
}
|
|
|
|
static inline unsigned short readw(const volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
return *(volatile unsigned short __force *) addr;
|
|
|
|
}
|
|
|
|
static inline unsigned int readl(const volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
return *(volatile unsigned int __force *) addr;
|
|
|
|
}
|
|
|
|
#define readb_relaxed(addr) readb(addr)
|
|
|
|
#define readw_relaxed(addr) readw(addr)
|
|
|
|
#define readl_relaxed(addr) readl(addr)
|
|
|
|
#define __raw_readb readb
|
|
|
|
#define __raw_readw readw
|
|
|
|
#define __raw_readl readl
|
|
|
|
|
|
|
|
static inline void writeb(unsigned char b, volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
*(volatile unsigned char __force *) addr = b;
|
|
|
|
}
|
|
|
|
static inline void writew(unsigned short b, volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
*(volatile unsigned short __force *) addr = b;
|
|
|
|
}
|
|
|
|
static inline void writel(unsigned int b, volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
*(volatile unsigned int __force *) addr = b;
|
|
|
|
}
|
|
|
|
#define __raw_writeb writeb
|
|
|
|
#define __raw_writew writew
|
|
|
|
#define __raw_writel writel
|
|
|
|
|
|
|
|
#define mmiowb()
|
|
|
|
|
2007-10-18 00:04:39 +08:00
|
|
|
static inline void
|
|
|
|
memset_io(volatile void __iomem *addr, unsigned char val, int count)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-10-18 00:04:39 +08:00
|
|
|
memset((void __force *)addr, val, count);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-10-18 00:04:39 +08:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-10-18 00:04:39 +08:00
|
|
|
__memcpy(dst, (const void __force *)src, count);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-10-18 00:04:39 +08:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
memcpy_toio(volatile void __iomem *dst, const void *src, int count)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-10-18 00:04:39 +08:00
|
|
|
__memcpy((void __force *)dst, src, count);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ISA space is 'always mapped' on a typical x86 system, no need to
|
|
|
|
* explicitly ioremap() it. The fact that the ISA IO space is mapped
|
|
|
|
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
|
|
|
|
* are physical addresses. The following constant pointer can be
|
|
|
|
* used as the IO-area pointer (it can be iounmapped as well, so the
|
|
|
|
* analogy with PCI is quite large):
|
|
|
|
*/
|
|
|
|
#define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Cache management
|
|
|
|
*
|
|
|
|
* This needed for two cases
|
|
|
|
* 1. Out of order aware processors
|
|
|
|
* 2. Accidentally out of order processors (PPro errata #51)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)
|
|
|
|
|
|
|
|
static inline void flush_write_buffers(void)
|
|
|
|
{
|
|
|
|
__asm__ __volatile__ ("lock; addl $0,0(%%esp)": : :"memory");
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2007-10-17 14:29:42 +08:00
|
|
|
#define flush_write_buffers() do { } while (0)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
2008-01-30 20:30:05 +08:00
|
|
|
extern void native_io_delay(void);
|
2007-05-03 01:27:10 +08:00
|
|
|
|
2008-01-30 20:30:05 +08:00
|
|
|
extern int io_delay_type;
|
|
|
|
extern void io_delay_init(void);
|
|
|
|
|
2006-12-07 09:14:07 +08:00
|
|
|
#if defined(CONFIG_PARAVIRT)
|
|
|
|
#include <asm/paravirt.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#else
|
2006-12-07 09:14:07 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
static inline void slow_down_io(void) {
|
2007-05-03 01:27:10 +08:00
|
|
|
native_io_delay();
|
2005-04-17 06:20:36 +08:00
|
|
|
#ifdef REALLY_SLOW_IO
|
2007-05-03 01:27:10 +08:00
|
|
|
native_io_delay();
|
|
|
|
native_io_delay();
|
|
|
|
native_io_delay();
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-12-07 09:14:07 +08:00
|
|
|
#endif
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#define __BUILDIO(bwl,bw,type) \
|
|
|
|
static inline void out##bwl(unsigned type value, int port) { \
|
|
|
|
out##bwl##_local(value, port); \
|
|
|
|
} \
|
|
|
|
static inline unsigned type in##bwl(int port) { \
|
|
|
|
return in##bwl##_local(port); \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define BUILDIO(bwl,bw,type) \
|
|
|
|
static inline void out##bwl##_local(unsigned type value, int port) { \
|
|
|
|
__asm__ __volatile__("out" #bwl " %" #bw "0, %w1" : : "a"(value), "Nd"(port)); \
|
|
|
|
} \
|
|
|
|
static inline unsigned type in##bwl##_local(int port) { \
|
|
|
|
unsigned type value; \
|
|
|
|
__asm__ __volatile__("in" #bwl " %w1, %" #bw "0" : "=a"(value) : "Nd"(port)); \
|
|
|
|
return value; \
|
|
|
|
} \
|
|
|
|
static inline void out##bwl##_local_p(unsigned type value, int port) { \
|
|
|
|
out##bwl##_local(value, port); \
|
|
|
|
slow_down_io(); \
|
|
|
|
} \
|
|
|
|
static inline unsigned type in##bwl##_local_p(int port) { \
|
|
|
|
unsigned type value = in##bwl##_local(port); \
|
|
|
|
slow_down_io(); \
|
|
|
|
return value; \
|
|
|
|
} \
|
|
|
|
__BUILDIO(bwl,bw,type) \
|
|
|
|
static inline void out##bwl##_p(unsigned type value, int port) { \
|
|
|
|
out##bwl(value, port); \
|
|
|
|
slow_down_io(); \
|
|
|
|
} \
|
|
|
|
static inline unsigned type in##bwl##_p(int port) { \
|
|
|
|
unsigned type value = in##bwl(port); \
|
|
|
|
slow_down_io(); \
|
|
|
|
return value; \
|
|
|
|
} \
|
|
|
|
static inline void outs##bwl(int port, const void *addr, unsigned long count) { \
|
|
|
|
__asm__ __volatile__("rep; outs" #bwl : "+S"(addr), "+c"(count) : "d"(port)); \
|
|
|
|
} \
|
|
|
|
static inline void ins##bwl(int port, void *addr, unsigned long count) { \
|
|
|
|
__asm__ __volatile__("rep; ins" #bwl : "+D"(addr), "+c"(count) : "d"(port)); \
|
|
|
|
}
|
|
|
|
|
|
|
|
BUILDIO(b,b,char)
|
|
|
|
BUILDIO(w,w,short)
|
|
|
|
BUILDIO(l,,int)
|
|
|
|
|
|
|
|
#endif
|