kernel_optimize_test/arch/i386/kernel/vmlinux.lds.S

211 lines
5.1 KiB
ArmAsm
Raw Normal View History

/* ld script to make i386 Linux kernel
* Written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>;
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
*
* Don't define absolute symbols until and unless you know that symbol
* value is should remain constant even if kernel image is relocated
* at run time. Absolute symbols are not relocated. If symbol value should
* change if kernel is relocated, make the symbol section relative and
* put it inside the section definition.
*/
#define LOAD_OFFSET __PAGE_OFFSET
#include <asm-generic/vmlinux.lds.h>
#include <asm/thread_info.h>
#include <asm/page.h>
#include <asm/cache.h>
#include <asm/boot.h>
OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(phys_startup_32)
jiffies = jiffies_64;
PHDRS {
text PT_LOAD FLAGS(5); /* R_E */
data PT_LOAD FLAGS(7); /* RWE */
note PT_NOTE FLAGS(4); /* R__ */
}
SECTIONS
{
. = LOAD_OFFSET + LOAD_PHYSICAL_ADDR;
phys_startup_32 = startup_32 - LOAD_OFFSET;
/* read-only */
.text : AT(ADDR(.text) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
_text = .; /* Text and read-only data */
*(.text)
SCHED_TEXT
LOCK_TEXT
KPROBES_TEXT
*(.fixup)
*(.gnu.warning)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
_etext = .; /* End of text section */
} :text = 0x9090
. = ALIGN(16); /* Exception table */
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__ex_table : AT(ADDR(__ex_table) - LOAD_OFFSET) {
__start___ex_table = .;
*(__ex_table)
__stop___ex_table = .;
}
RODATA
. = ALIGN(4);
.tracedata : AT(ADDR(.tracedata) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__tracedata_start = .;
*(.tracedata)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__tracedata_end = .;
}
/* writeable */
. = ALIGN(4096);
.data : AT(ADDR(.data) - LOAD_OFFSET) { /* Data */
*(.data)
CONSTRUCTORS
} :data
. = ALIGN(4096);
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
.data_nosave : AT(ADDR(.data_nosave) - LOAD_OFFSET) {
__nosave_begin = .;
*(.data.nosave)
. = ALIGN(4096);
__nosave_end = .;
}
. = ALIGN(4096);
.data.page_aligned : AT(ADDR(.data.page_aligned) - LOAD_OFFSET) {
*(.data.idt)
}
. = ALIGN(32);
.data.cacheline_aligned : AT(ADDR(.data.cacheline_aligned) - LOAD_OFFSET) {
*(.data.cacheline_aligned)
}
/* rarely changed data like cpu maps */
. = ALIGN(32);
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
.data.read_mostly : AT(ADDR(.data.read_mostly) - LOAD_OFFSET) {
*(.data.read_mostly)
_edata = .; /* End of data section */
}
#ifdef CONFIG_STACK_UNWIND
. = ALIGN(4);
.eh_frame : AT(ADDR(.eh_frame) - LOAD_OFFSET) {
__start_unwind = .;
*(.eh_frame)
__end_unwind = .;
}
#endif
. = ALIGN(THREAD_SIZE); /* init_task */
.data.init_task : AT(ADDR(.data.init_task) - LOAD_OFFSET) {
*(.data.init_task)
}
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
/* might get freed after init */
. = ALIGN(4096);
.smp_altinstructions : AT(ADDR(.smp_altinstructions) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__smp_alt_begin = .;
__smp_alt_instructions = .;
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
*(.smp_altinstructions)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__smp_alt_instructions_end = .;
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
}
. = ALIGN(4);
.smp_locks : AT(ADDR(.smp_locks) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__smp_locks = .;
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
*(.smp_locks)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__smp_locks_end = .;
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
}
.smp_altinstr_replacement : AT(ADDR(.smp_altinstr_replacement) - LOAD_OFFSET) {
*(.smp_altinstr_replacement)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__smp_alt_end = .;
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
}
/* will be freed after init
* Following ALIGN() is required to make sure no other data falls on the
* same page where __smp_alt_end is pointing as that page might be freed
* after boot. Always make sure that ALIGN() directive is present after
* the section which contains __smp_alt_end.
*/
[PATCH] x86: SMP alternatives Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23 18:59:32 +08:00
. = ALIGN(4096);
/* will be freed after init */
. = ALIGN(4096); /* Init code and data */
.init.text : AT(ADDR(.init.text) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__init_begin = .;
_sinittext = .;
*(.init.text)
_einittext = .;
}
.init.data : AT(ADDR(.init.data) - LOAD_OFFSET) { *(.init.data) }
. = ALIGN(16);
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
.init.setup : AT(ADDR(.init.setup) - LOAD_OFFSET) {
__setup_start = .;
*(.init.setup)
__setup_end = .;
}
.initcall.init : AT(ADDR(.initcall.init) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__initcall_start = .;
INITCALLS
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__initcall_end = .;
}
.con_initcall.init : AT(ADDR(.con_initcall.init) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__con_initcall_start = .;
*(.con_initcall.init)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__con_initcall_end = .;
}
SECURITY_INIT
. = ALIGN(4);
.altinstructions : AT(ADDR(.altinstructions) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__alt_instructions = .;
*(.altinstructions)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__alt_instructions_end = .;
}
.altinstr_replacement : AT(ADDR(.altinstr_replacement) - LOAD_OFFSET) {
*(.altinstr_replacement)
}
/* .exit.text is discard at runtime, not link time, to deal with references
from .altinstructions and .eh_frame */
.exit.text : AT(ADDR(.exit.text) - LOAD_OFFSET) { *(.exit.text) }
.exit.data : AT(ADDR(.exit.data) - LOAD_OFFSET) { *(.exit.data) }
. = ALIGN(4096);
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
.init.ramfs : AT(ADDR(.init.ramfs) - LOAD_OFFSET) {
__initramfs_start = .;
*(.init.ramfs)
__initramfs_end = .;
}
. = ALIGN(L1_CACHE_BYTES);
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
.data.percpu : AT(ADDR(.data.percpu) - LOAD_OFFSET) {
__per_cpu_start = .;
*(.data.percpu)
__per_cpu_end = .;
}
. = ALIGN(4096);
/* freed after init ends here */
.bss : AT(ADDR(.bss) - LOAD_OFFSET) {
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
__init_end = .;
__bss_start = .; /* BSS */
*(.bss.page_aligned)
*(.bss)
[PATCH] i386: Distinguish absolute symbols Ld knows about 2 kinds of symbols, absolute and section relative. Section relative symbols symbols change value when a section is moved and absolute symbols do not. Currently in the linker script we have several labels marking the beginning and ending of sections that are outside of sections, making them absolute symbols. Having a mixture of absolute and section relative symbols refereing to the same data is currently harmless but it is confusing. This must be done carefully as newer revs of ld do not place symbols that appear in sections without data and instead ld makes those symbols global :( My ultimate goal is to build a relocatable kernel. The safest and least intrusive technique is to generate relocation entries so the kernel can be relocated at load time. The only penalty would be an increase in the size of the kernel binary. The problem is that if absolute and relocatable symbols are not properly specified absolute symbols will be relocated or section relative symbols won't be, which is fatal. The practical motivation is that when generating kernels that will run from a reserved area for analyzing what caused a kernel panic, it is simpler if you don't need to hard code the physical memory location they will run at, especially for the distributions. [AK: and merged:] o Also put a message so that in future people can be aware of it and avoid introducing absolute symbols. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de>
2006-12-07 09:14:03 +08:00
. = ALIGN(4);
__bss_stop = .;
_end = . ;
/* This is where the kernel creates the early boot page tables */
. = ALIGN(4096);
pg0 = . ;
}
/* Sections to be discarded */
/DISCARD/ : {
*(.exitcall.exit)
}
STABS_DEBUG
DWARF_DEBUG
NOTES
}