kernel_optimize_test/security/selinux/ss/policydb.c

3523 lines
71 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Implementation of the policy database.
*
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
*/
/*
* Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
*
* Support for enhanced MLS infrastructure.
*
* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Updated: Hewlett-Packard <paul@paul-moore.com>
*
* Added support for the policy capability bitmap
*
* Update: Mellanox Techonologies
*
* Added Infiniband support
*
* Copyright (C) 2016 Mellanox Techonologies
* Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
#include <linux/audit.h>
#include "security.h"
#include "policydb.h"
#include "conditional.h"
#include "mls.h"
#include "services.h"
#define _DEBUG_HASHES
#ifdef DEBUG_HASHES
static const char *symtab_name[SYM_NUM] = {
"common prefixes",
"classes",
"roles",
"types",
"users",
"bools",
"levels",
"categories",
};
#endif
struct policydb_compat_info {
int version;
int sym_num;
int ocon_num;
};
/* These need to be updated if SYM_NUM or OCON_NUM changes */
static struct policydb_compat_info policydb_compat[] = {
{
.version = POLICYDB_VERSION_BASE,
.sym_num = SYM_NUM - 3,
.ocon_num = OCON_NUM - 3,
},
{
.version = POLICYDB_VERSION_BOOL,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 3,
},
{
.version = POLICYDB_VERSION_IPV6,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_NLCLASS,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_MLS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_AVTAB,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_RANGETRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_POLCAP,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_PERMISSIVE,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
},
{
.version = POLICYDB_VERSION_BOUNDARY,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
},
{
.version = POLICYDB_VERSION_FILENAME_TRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_ROLETRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
SELinux: allow default source/target selectors for user/role/range When new objects are created we have great and flexible rules to determine the type of the new object. We aren't quite as flexible or mature when it comes to determining the user, role, and range. This patch adds a new ability to specify the place a new objects user, role, and range should come from. For users and roles it can come from either the source or the target of the operation. aka for files the user can either come from the source (the running process and todays default) or it can come from the target (aka the parent directory of the new file) examples always are done with directory context: system_u:object_r:mnt_t:s0-s0:c0.c512 process context: unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 [no rule] unconfined_u:object_r:mnt_t:s0 test_none [default user source] unconfined_u:object_r:mnt_t:s0 test_user_source [default user target] system_u:object_r:mnt_t:s0 test_user_target [default role source] unconfined_u:unconfined_r:mnt_t:s0 test_role_source [default role target] unconfined_u:object_r:mnt_t:s0 test_role_target [default range source low] unconfined_u:object_r:mnt_t:s0 test_range_source_low [default range source high] unconfined_u:object_r:mnt_t:s0:c0.c1023 test_range_source_high [default range source low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c1023 test_range_source_low-high [default range target low] unconfined_u:object_r:mnt_t:s0 test_range_target_low [default range target high] unconfined_u:object_r:mnt_t:s0:c0.c512 test_range_target_high [default range target low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c512 test_range_target_low-high Signed-off-by: Eric Paris <eparis@redhat.com>
2012-03-21 02:35:12 +08:00
{
.version = POLICYDB_VERSION_NEW_OBJECT_DEFAULTS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
SELinux: allow default source/target selectors for user/role/range When new objects are created we have great and flexible rules to determine the type of the new object. We aren't quite as flexible or mature when it comes to determining the user, role, and range. This patch adds a new ability to specify the place a new objects user, role, and range should come from. For users and roles it can come from either the source or the target of the operation. aka for files the user can either come from the source (the running process and todays default) or it can come from the target (aka the parent directory of the new file) examples always are done with directory context: system_u:object_r:mnt_t:s0-s0:c0.c512 process context: unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 [no rule] unconfined_u:object_r:mnt_t:s0 test_none [default user source] unconfined_u:object_r:mnt_t:s0 test_user_source [default user target] system_u:object_r:mnt_t:s0 test_user_target [default role source] unconfined_u:unconfined_r:mnt_t:s0 test_role_source [default role target] unconfined_u:object_r:mnt_t:s0 test_role_target [default range source low] unconfined_u:object_r:mnt_t:s0 test_range_source_low [default range source high] unconfined_u:object_r:mnt_t:s0:c0.c1023 test_range_source_high [default range source low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c1023 test_range_source_low-high [default range target low] unconfined_u:object_r:mnt_t:s0 test_range_target_low [default range target high] unconfined_u:object_r:mnt_t:s0:c0.c512 test_range_target_high [default range target low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c512 test_range_target_low-high Signed-off-by: Eric Paris <eparis@redhat.com>
2012-03-21 02:35:12 +08:00
},
{
.version = POLICYDB_VERSION_DEFAULT_TYPE,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_CONSTRAINT_NAMES,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
selinux: extended permissions for ioctls Add extended permissions logic to selinux. Extended permissions provides additional permissions in 256 bit increments. Extend the generic ioctl permission check to use the extended permissions for per-command filtering. Source/target/class sets including the ioctl permission may additionally include a set of commands. Example: allowxperm <source> <target>:<class> ioctl unpriv_app_socket_cmds auditallowxperm <source> <target>:<class> ioctl priv_gpu_cmds Where unpriv_app_socket_cmds and priv_gpu_cmds are macros representing commonly granted sets of ioctl commands. When ioctl commands are omitted only the permissions are checked. This feature is intended to provide finer granularity for the ioctl permission that may be too imprecise. For example, the same driver may use ioctls to provide important and benign functionality such as driver version or socket type as well as dangerous capabilities such as debugging features, read/write/execute to physical memory or access to sensitive data. Per-command filtering provides a mechanism to reduce the attack surface of the kernel, and limit applications to the subset of commands required. The format of the policy binary has been modified to include ioctl commands, and the policy version number has been incremented to POLICYDB_VERSION_XPERMS_IOCTL=30 to account for the format change. The extended permissions logic is deliberately generic to allow components to be reused e.g. netlink filters Signed-off-by: Jeff Vander Stoep <jeffv@google.com> Acked-by: Nick Kralevich <nnk@google.com> Signed-off-by: Paul Moore <pmoore@redhat.com>
2015-07-11 05:19:56 +08:00
{
.version = POLICYDB_VERSION_XPERMS_IOCTL,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_INFINIBAND,
.sym_num = SYM_NUM,
selinux: extended permissions for ioctls Add extended permissions logic to selinux. Extended permissions provides additional permissions in 256 bit increments. Extend the generic ioctl permission check to use the extended permissions for per-command filtering. Source/target/class sets including the ioctl permission may additionally include a set of commands. Example: allowxperm <source> <target>:<class> ioctl unpriv_app_socket_cmds auditallowxperm <source> <target>:<class> ioctl priv_gpu_cmds Where unpriv_app_socket_cmds and priv_gpu_cmds are macros representing commonly granted sets of ioctl commands. When ioctl commands are omitted only the permissions are checked. This feature is intended to provide finer granularity for the ioctl permission that may be too imprecise. For example, the same driver may use ioctls to provide important and benign functionality such as driver version or socket type as well as dangerous capabilities such as debugging features, read/write/execute to physical memory or access to sensitive data. Per-command filtering provides a mechanism to reduce the attack surface of the kernel, and limit applications to the subset of commands required. The format of the policy binary has been modified to include ioctl commands, and the policy version number has been incremented to POLICYDB_VERSION_XPERMS_IOCTL=30 to account for the format change. The extended permissions logic is deliberately generic to allow components to be reused e.g. netlink filters Signed-off-by: Jeff Vander Stoep <jeffv@google.com> Acked-by: Nick Kralevich <nnk@google.com> Signed-off-by: Paul Moore <pmoore@redhat.com>
2015-07-11 05:19:56 +08:00
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_GLBLUB,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
};
static struct policydb_compat_info *policydb_lookup_compat(int version)
{
int i;
struct policydb_compat_info *info = NULL;
for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
if (policydb_compat[i].version == version) {
info = &policydb_compat[i];
break;
}
}
return info;
}
/*
* The following *_destroy functions are used to
* free any memory allocated for each kind of
* symbol data in the policy database.
*/
static int perm_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int common_destroy(void *key, void *datum, void *p)
{
struct common_datum *comdatum;
kfree(key);
if (datum) {
comdatum = datum;
hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(comdatum->permissions.table);
}
kfree(datum);
return 0;
}
static void constraint_expr_destroy(struct constraint_expr *expr)
{
if (expr) {
ebitmap_destroy(&expr->names);
if (expr->type_names) {
ebitmap_destroy(&expr->type_names->types);
ebitmap_destroy(&expr->type_names->negset);
kfree(expr->type_names);
}
kfree(expr);
}
}
static int cls_destroy(void *key, void *datum, void *p)
{
struct class_datum *cladatum;
struct constraint_node *constraint, *ctemp;
struct constraint_expr *e, *etmp;
kfree(key);
if (datum) {
cladatum = datum;
hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(cladatum->permissions.table);
constraint = cladatum->constraints;
while (constraint) {
e = constraint->expr;
while (e) {
etmp = e;
e = e->next;
constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
constraint = cladatum->validatetrans;
while (constraint) {
e = constraint->expr;
while (e) {
etmp = e;
e = e->next;
constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
kfree(cladatum->comkey);
}
kfree(datum);
return 0;
}
static int role_destroy(void *key, void *datum, void *p)
{
struct role_datum *role;
kfree(key);
if (datum) {
role = datum;
ebitmap_destroy(&role->dominates);
ebitmap_destroy(&role->types);
}
kfree(datum);
return 0;
}
static int type_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int user_destroy(void *key, void *datum, void *p)
{
struct user_datum *usrdatum;
kfree(key);
if (datum) {
usrdatum = datum;
ebitmap_destroy(&usrdatum->roles);
ebitmap_destroy(&usrdatum->range.level[0].cat);
ebitmap_destroy(&usrdatum->range.level[1].cat);
ebitmap_destroy(&usrdatum->dfltlevel.cat);
}
kfree(datum);
return 0;
}
static int sens_destroy(void *key, void *datum, void *p)
{
struct level_datum *levdatum;
kfree(key);
if (datum) {
levdatum = datum;
if (levdatum->level)
ebitmap_destroy(&levdatum->level->cat);
kfree(levdatum->level);
}
kfree(datum);
return 0;
}
static int cat_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_destroy,
cls_destroy,
role_destroy,
type_destroy,
user_destroy,
cond_destroy_bool,
sens_destroy,
cat_destroy,
};
static int filenametr_destroy(void *key, void *datum, void *p)
{
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
struct filename_trans_key *ft = key;
struct filename_trans_datum *next, *d = datum;
kfree(ft->name);
kfree(key);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
do {
ebitmap_destroy(&d->stypes);
next = d->next;
kfree(d);
d = next;
} while (unlikely(d));
cond_resched();
return 0;
}
static int range_tr_destroy(void *key, void *datum, void *p)
{
struct mls_range *rt = datum;
kfree(key);
ebitmap_destroy(&rt->level[0].cat);
ebitmap_destroy(&rt->level[1].cat);
kfree(datum);
cond_resched();
return 0;
}
static void ocontext_destroy(struct ocontext *c, int i)
{
if (!c)
return;
context_destroy(&c->context[0]);
context_destroy(&c->context[1]);
if (i == OCON_ISID || i == OCON_FS ||
i == OCON_NETIF || i == OCON_FSUSE)
kfree(c->u.name);
kfree(c);
}
/*
* Initialize the role table.
*/
static int roles_init(struct policydb *p)
{
char *key = NULL;
int rc;
struct role_datum *role;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role)
return -ENOMEM;
rc = -EINVAL;
role->value = ++p->p_roles.nprim;
if (role->value != OBJECT_R_VAL)
goto out;
rc = -ENOMEM;
key = kstrdup(OBJECT_R, GFP_KERNEL);
if (!key)
goto out;
rc = hashtab_insert(p->p_roles.table, key, role);
if (rc)
goto out;
return 0;
out:
kfree(key);
kfree(role);
return rc;
}
static u32 filenametr_hash(struct hashtab *h, const void *k)
{
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
const struct filename_trans_key *ft = k;
unsigned long hash;
unsigned int byte_num;
unsigned char focus;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
hash = ft->ttype ^ ft->tclass;
byte_num = 0;
while ((focus = ft->name[byte_num++]))
hash = partial_name_hash(focus, hash);
return hash & (h->size - 1);
}
static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2)
{
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
const struct filename_trans_key *ft1 = k1;
const struct filename_trans_key *ft2 = k2;
int v;
v = ft1->ttype - ft2->ttype;
if (v)
return v;
v = ft1->tclass - ft2->tclass;
if (v)
return v;
return strcmp(ft1->name, ft2->name);
}
static u32 rangetr_hash(struct hashtab *h, const void *k)
{
const struct range_trans *key = k;
return (key->source_type + (key->target_type << 3) +
(key->target_class << 5)) & (h->size - 1);
}
static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
{
const struct range_trans *key1 = k1, *key2 = k2;
int v;
v = key1->source_type - key2->source_type;
if (v)
return v;
v = key1->target_type - key2->target_type;
if (v)
return v;
v = key1->target_class - key2->target_class;
return v;
}
/*
* Initialize a policy database structure.
*/
static int policydb_init(struct policydb *p)
{
memset(p, 0, sizeof(*p));
avtab_init(&p->te_avtab);
cond_policydb_init(p);
p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp,
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
(1 << 11));
if (!p->filename_trans)
return -ENOMEM;
ebitmap_init(&p->filename_trans_ttypes);
ebitmap_init(&p->policycaps);
ebitmap_init(&p->permissive_map);
return 0;
}
/*
* The following *_index functions are used to
* define the val_to_name and val_to_struct arrays
* in a policy database structure. The val_to_name
* arrays are used when converting security context
* structures into string representations. The
* val_to_struct arrays are used when the attributes
* of a class, role, or user are needed.
*/
static int common_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct common_datum *comdatum;
comdatum = datum;
p = datap;
if (!comdatum->value || comdatum->value > p->p_commons.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_COMMONS][comdatum->value - 1] = key;
return 0;
}
static int class_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct class_datum *cladatum;
cladatum = datum;
p = datap;
if (!cladatum->value || cladatum->value > p->p_classes.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_CLASSES][cladatum->value - 1] = key;
p->class_val_to_struct[cladatum->value - 1] = cladatum;
return 0;
}
static int role_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct role_datum *role;
role = datum;
p = datap;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (!role->value
|| role->value > p->p_roles.nprim
|| role->bounds > p->p_roles.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_ROLES][role->value - 1] = key;
p->role_val_to_struct[role->value - 1] = role;
return 0;
}
static int type_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct type_datum *typdatum;
typdatum = datum;
p = datap;
if (typdatum->primary) {
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (!typdatum->value
|| typdatum->value > p->p_types.nprim
|| typdatum->bounds > p->p_types.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_TYPES][typdatum->value - 1] = key;
p->type_val_to_struct[typdatum->value - 1] = typdatum;
}
return 0;
}
static int user_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct user_datum *usrdatum;
usrdatum = datum;
p = datap;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (!usrdatum->value
|| usrdatum->value > p->p_users.nprim
|| usrdatum->bounds > p->p_users.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_USERS][usrdatum->value - 1] = key;
p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
return 0;
}
static int sens_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct level_datum *levdatum;
levdatum = datum;
p = datap;
if (!levdatum->isalias) {
if (!levdatum->level->sens ||
levdatum->level->sens > p->p_levels.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_LEVELS][levdatum->level->sens - 1] = key;
}
return 0;
}
static int cat_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct cat_datum *catdatum;
catdatum = datum;
p = datap;
if (!catdatum->isalias) {
if (!catdatum->value || catdatum->value > p->p_cats.nprim)
return -EINVAL;
p->sym_val_to_name[SYM_CATS][catdatum->value - 1] = key;
}
return 0;
}
static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_index,
class_index,
role_index,
type_index,
user_index,
cond_index_bool,
sens_index,
cat_index,
};
#ifdef DEBUG_HASHES
static void hash_eval(struct hashtab *h, const char *hash_name)
{
struct hashtab_info info;
hashtab_stat(h, &info);
pr_debug("SELinux: %s: %d entries and %d/%d buckets used, longest chain length %d\n",
hash_name, h->nel, info.slots_used, h->size,
info.max_chain_len);
}
static void symtab_hash_eval(struct symtab *s)
{
int i;
for (i = 0; i < SYM_NUM; i++)
hash_eval(s[i].table, symtab_name[i]);
}
#else
static inline void hash_eval(struct hashtab *h, char *hash_name)
{
}
#endif
/*
* Define the other val_to_name and val_to_struct arrays
* in a policy database structure.
*
* Caller must clean up on failure.
*/
static int policydb_index(struct policydb *p)
{
int i, rc;
if (p->mls_enabled)
pr_debug("SELinux: %d users, %d roles, %d types, %d bools, %d sens, %d cats\n",
p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim,
p->p_bools.nprim, p->p_levels.nprim, p->p_cats.nprim);
else
pr_debug("SELinux: %d users, %d roles, %d types, %d bools\n",
p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim,
p->p_bools.nprim);
pr_debug("SELinux: %d classes, %d rules\n",
p->p_classes.nprim, p->te_avtab.nel);
#ifdef DEBUG_HASHES
avtab_hash_eval(&p->te_avtab, "rules");
symtab_hash_eval(p->symtab);
#endif
p->class_val_to_struct = kcalloc(p->p_classes.nprim,
sizeof(*p->class_val_to_struct),
GFP_KERNEL);
if (!p->class_val_to_struct)
return -ENOMEM;
p->role_val_to_struct = kcalloc(p->p_roles.nprim,
sizeof(*p->role_val_to_struct),
GFP_KERNEL);
if (!p->role_val_to_struct)
return -ENOMEM;
p->user_val_to_struct = kcalloc(p->p_users.nprim,
sizeof(*p->user_val_to_struct),
GFP_KERNEL);
if (!p->user_val_to_struct)
return -ENOMEM;
p->type_val_to_struct = kvcalloc(p->p_types.nprim,
sizeof(*p->type_val_to_struct),
GFP_KERNEL);
if (!p->type_val_to_struct)
return -ENOMEM;
rc = cond_init_bool_indexes(p);
if (rc)
goto out;
for (i = 0; i < SYM_NUM; i++) {
p->sym_val_to_name[i] = kvcalloc(p->symtab[i].nprim,
sizeof(char *),
GFP_KERNEL);
if (!p->sym_val_to_name[i])
return -ENOMEM;
rc = hashtab_map(p->symtab[i].table, index_f[i], p);
if (rc)
goto out;
}
rc = 0;
out:
return rc;
}
/*
* Free any memory allocated by a policy database structure.
*/
void policydb_destroy(struct policydb *p)
{
struct ocontext *c, *ctmp;
struct genfs *g, *gtmp;
int i;
struct role_allow *ra, *lra = NULL;
struct role_trans *tr, *ltr = NULL;
for (i = 0; i < SYM_NUM; i++) {
cond_resched();
hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
hashtab_destroy(p->symtab[i].table);
}
for (i = 0; i < SYM_NUM; i++)
kvfree(p->sym_val_to_name[i]);
kfree(p->class_val_to_struct);
kfree(p->role_val_to_struct);
kfree(p->user_val_to_struct);
kvfree(p->type_val_to_struct);
avtab_destroy(&p->te_avtab);
for (i = 0; i < OCON_NUM; i++) {
cond_resched();
c = p->ocontexts[i];
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, i);
}
p->ocontexts[i] = NULL;
}
g = p->genfs;
while (g) {
cond_resched();
kfree(g->fstype);
c = g->head;
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, OCON_FSUSE);
}
gtmp = g;
g = g->next;
kfree(gtmp);
}
p->genfs = NULL;
cond_policydb_destroy(p);
for (tr = p->role_tr; tr; tr = tr->next) {
cond_resched();
kfree(ltr);
ltr = tr;
}
kfree(ltr);
for (ra = p->role_allow; ra; ra = ra->next) {
cond_resched();
kfree(lra);
lra = ra;
}
kfree(lra);
hashtab_map(p->filename_trans, filenametr_destroy, NULL);
hashtab_destroy(p->filename_trans);
hashtab_map(p->range_tr, range_tr_destroy, NULL);
hashtab_destroy(p->range_tr);
if (p->type_attr_map_array) {
for (i = 0; i < p->p_types.nprim; i++)
ebitmap_destroy(&p->type_attr_map_array[i]);
kvfree(p->type_attr_map_array);
}
ebitmap_destroy(&p->filename_trans_ttypes);
ebitmap_destroy(&p->policycaps);
ebitmap_destroy(&p->permissive_map);
}
/*
* Load the initial SIDs specified in a policy database
* structure into a SID table.
*/
int policydb_load_isids(struct policydb *p, struct sidtab *s)
{
struct ocontext *head, *c;
int rc;
rc = sidtab_init(s);
if (rc) {
pr_err("SELinux: out of memory on SID table init\n");
goto out;
}
head = p->ocontexts[OCON_ISID];
for (c = head; c; c = c->next) {
selinux: remove unused initial SIDs and improve handling Remove initial SIDs that have never been used or are no longer used by the kernel from its string table, which is also used to generate the SECINITSID_* symbols referenced in code. Update the code to gracefully handle the fact that these can now be NULL. Stop treating it as an error if a policy defines additional initial SIDs unknown to the kernel. Do not load unused initial SID contexts into the sidtab. Fix the incorrect usage of the name from the ocontext in error messages when loading initial SIDs since these are not presently written to the kernel policy and are therefore always NULL. After this change, it is possible to safely reclaim and reuse some of the unused initial SIDs without compatibility issues. Specifically, unused initial SIDs that were being assigned the same context as the unlabeled initial SID in policies can be reclaimed and reused for another purpose, with existing policies still treating them as having the unlabeled context and future policies having the option of mapping them to a more specific context. For example, this could have been used when the infiniband labeling support was introduced to define initial SIDs for the default pkey and endport SIDs similar to the handling of port/netif/node SIDs rather than always using SECINITSID_UNLABELED as the default. The set of safely reclaimable unused initial SIDs across all known policies is igmp_packet (13), icmp_socket (14), tcp_socket (15), kmod (24), policy (25), and scmp_packet (26); these initial SIDs were assigned the same context as unlabeled in all known policies including mls. If only considering non-mls policies (i.e. assuming that mls users always upgrade policy with their kernels), the set of safely reclaimable unused initial SIDs further includes file_labels (6), init (7), sysctl_modprobe (16), and sysctl_fs (18) through sysctl_dev (23). Adding new initial SIDs beyond SECINITSID_NUM to policy unfortunately became a fatal error in commit 24ed7fdae669 ("selinux: use separate table for initial SID lookup") and even before that it could cause problems on a policy reload (collision between the new initial SID and one allocated at runtime) ever since commit 42596eafdd75 ("selinux: load the initial SIDs upon every policy load") so we cannot safely start adding new initial SIDs to policies beyond SECINITSID_NUM (27) until such a time as all such kernels do not need to be supported and only those that include this commit are relevant. That is not a big deal since we haven't added a new initial SID since 2004 (v2.6.7) and we have plenty of unused ones we can reclaim if we truly need one. If we want to avoid the wasted storage in initial_sid_to_string[] and/or sidtab->isids[] for the unused initial SIDs, we could introduce an indirection between the kernel initial SID values and the policy initial SID values and just map the policy SID values in the ocontexts to the kernel values during policy_load_isids(). Originally I thought we'd do this by preserving the initial SID names in the kernel policy and creating a mapping at load time like we do for the security classes and permissions but that would require a new kernel policy format version and associated changes to libsepol/checkpolicy and I'm not sure it is justified. Simpler approach is just to create a fixed mapping table in the kernel from the existing fixed policy values to the kernel values. Less flexible but probably sufficient. A separate selinux userspace change was applied in https://github.com/SELinuxProject/selinux/commit/8677ce5e8f592950ae6f14cea1b68a20ddc1ac25 to enable removal of most of the unused initial SID contexts from policies, but there is no dependency between that change and this one. That change permits removing all of the unused initial SID contexts from policy except for the fs and sysctl SID contexts. The initial SID declarations themselves would remain in policy to preserve the values of subsequent ones but the contexts can be dropped. If/when the kernel decides to reuse one of them, future policies can change the name and start assigning a context again without breaking compatibility. Here is how I would envision staging changes to the initial SIDs in a compatible manner after this commit is applied: 1. At any time after this commit is applied, the kernel could choose to reclaim one of the safely reclaimable unused initial SIDs listed above for a new purpose (i.e. replace its NULL entry in the initial_sid_to_string[] table with a new name and start using the newly generated SECINITSID_name symbol in code), and refpolicy could at that time rename its declaration of that initial SID to reflect its new purpose and start assigning it a context going forward. Existing/old policies would map the reclaimed initial SID to the unlabeled context, so that would be the initial default behavior until policies are updated. This doesn't depend on the selinux userspace change; it will work with existing policies and userspace. 2. In 6 months or so we'll have another SELinux userspace release that will include the libsepol/checkpolicy support for omitting unused initial SID contexts. 3. At any time after that release, refpolicy can make that release its minimum build requirement and drop the sid context statements (but not the sid declarations) for all of the unused initial SIDs except for fs and sysctl, which must remain for compatibility on policy reload with old kernels and for compatibility with kernels that were still using SECINITSID_SYSCTL (< 2.6.39). This doesn't depend on this kernel commit; it will work with previous kernels as well. 4. After N years for some value of N, refpolicy decides that it no longer cares about policy reload compatibility for kernels that predate this kernel commit, and refpolicy drops the fs and sysctl SID contexts from policy too (but retains the declarations). 5. After M years for some value of M, the kernel decides that it no longer cares about compatibility with refpolicies that predate step 4 (dropping the fs and sysctl SIDs), and those two SIDs also become safely reclaimable. This step is optional and need not ever occur unless we decide that the need to reclaim those two SIDs outweighs the compatibility cost. 6. After O years for some value of O, refpolicy decides that it no longer cares about policy load (not just reload) compatibility for kernels that predate this kernel commit, and both kernel and refpolicy can then start adding and using new initial SIDs beyond 27. This does not depend on the previous change (step 5) and can occur independent of it. Fixes: https://github.com/SELinuxProject/selinux-kernel/issues/12 Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-25 00:10:23 +08:00
u32 sid = c->sid[0];
const char *name = security_get_initial_sid_context(sid);
if (sid == SECSID_NULL) {
pr_err("SELinux: SID 0 was assigned a context.\n");
sidtab_destroy(s);
goto out;
}
selinux: remove unused initial SIDs and improve handling Remove initial SIDs that have never been used or are no longer used by the kernel from its string table, which is also used to generate the SECINITSID_* symbols referenced in code. Update the code to gracefully handle the fact that these can now be NULL. Stop treating it as an error if a policy defines additional initial SIDs unknown to the kernel. Do not load unused initial SID contexts into the sidtab. Fix the incorrect usage of the name from the ocontext in error messages when loading initial SIDs since these are not presently written to the kernel policy and are therefore always NULL. After this change, it is possible to safely reclaim and reuse some of the unused initial SIDs without compatibility issues. Specifically, unused initial SIDs that were being assigned the same context as the unlabeled initial SID in policies can be reclaimed and reused for another purpose, with existing policies still treating them as having the unlabeled context and future policies having the option of mapping them to a more specific context. For example, this could have been used when the infiniband labeling support was introduced to define initial SIDs for the default pkey and endport SIDs similar to the handling of port/netif/node SIDs rather than always using SECINITSID_UNLABELED as the default. The set of safely reclaimable unused initial SIDs across all known policies is igmp_packet (13), icmp_socket (14), tcp_socket (15), kmod (24), policy (25), and scmp_packet (26); these initial SIDs were assigned the same context as unlabeled in all known policies including mls. If only considering non-mls policies (i.e. assuming that mls users always upgrade policy with their kernels), the set of safely reclaimable unused initial SIDs further includes file_labels (6), init (7), sysctl_modprobe (16), and sysctl_fs (18) through sysctl_dev (23). Adding new initial SIDs beyond SECINITSID_NUM to policy unfortunately became a fatal error in commit 24ed7fdae669 ("selinux: use separate table for initial SID lookup") and even before that it could cause problems on a policy reload (collision between the new initial SID and one allocated at runtime) ever since commit 42596eafdd75 ("selinux: load the initial SIDs upon every policy load") so we cannot safely start adding new initial SIDs to policies beyond SECINITSID_NUM (27) until such a time as all such kernels do not need to be supported and only those that include this commit are relevant. That is not a big deal since we haven't added a new initial SID since 2004 (v2.6.7) and we have plenty of unused ones we can reclaim if we truly need one. If we want to avoid the wasted storage in initial_sid_to_string[] and/or sidtab->isids[] for the unused initial SIDs, we could introduce an indirection between the kernel initial SID values and the policy initial SID values and just map the policy SID values in the ocontexts to the kernel values during policy_load_isids(). Originally I thought we'd do this by preserving the initial SID names in the kernel policy and creating a mapping at load time like we do for the security classes and permissions but that would require a new kernel policy format version and associated changes to libsepol/checkpolicy and I'm not sure it is justified. Simpler approach is just to create a fixed mapping table in the kernel from the existing fixed policy values to the kernel values. Less flexible but probably sufficient. A separate selinux userspace change was applied in https://github.com/SELinuxProject/selinux/commit/8677ce5e8f592950ae6f14cea1b68a20ddc1ac25 to enable removal of most of the unused initial SID contexts from policies, but there is no dependency between that change and this one. That change permits removing all of the unused initial SID contexts from policy except for the fs and sysctl SID contexts. The initial SID declarations themselves would remain in policy to preserve the values of subsequent ones but the contexts can be dropped. If/when the kernel decides to reuse one of them, future policies can change the name and start assigning a context again without breaking compatibility. Here is how I would envision staging changes to the initial SIDs in a compatible manner after this commit is applied: 1. At any time after this commit is applied, the kernel could choose to reclaim one of the safely reclaimable unused initial SIDs listed above for a new purpose (i.e. replace its NULL entry in the initial_sid_to_string[] table with a new name and start using the newly generated SECINITSID_name symbol in code), and refpolicy could at that time rename its declaration of that initial SID to reflect its new purpose and start assigning it a context going forward. Existing/old policies would map the reclaimed initial SID to the unlabeled context, so that would be the initial default behavior until policies are updated. This doesn't depend on the selinux userspace change; it will work with existing policies and userspace. 2. In 6 months or so we'll have another SELinux userspace release that will include the libsepol/checkpolicy support for omitting unused initial SID contexts. 3. At any time after that release, refpolicy can make that release its minimum build requirement and drop the sid context statements (but not the sid declarations) for all of the unused initial SIDs except for fs and sysctl, which must remain for compatibility on policy reload with old kernels and for compatibility with kernels that were still using SECINITSID_SYSCTL (< 2.6.39). This doesn't depend on this kernel commit; it will work with previous kernels as well. 4. After N years for some value of N, refpolicy decides that it no longer cares about policy reload compatibility for kernels that predate this kernel commit, and refpolicy drops the fs and sysctl SID contexts from policy too (but retains the declarations). 5. After M years for some value of M, the kernel decides that it no longer cares about compatibility with refpolicies that predate step 4 (dropping the fs and sysctl SIDs), and those two SIDs also become safely reclaimable. This step is optional and need not ever occur unless we decide that the need to reclaim those two SIDs outweighs the compatibility cost. 6. After O years for some value of O, refpolicy decides that it no longer cares about policy load (not just reload) compatibility for kernels that predate this kernel commit, and both kernel and refpolicy can then start adding and using new initial SIDs beyond 27. This does not depend on the previous change (step 5) and can occur independent of it. Fixes: https://github.com/SELinuxProject/selinux-kernel/issues/12 Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-25 00:10:23 +08:00
/* Ignore initial SIDs unused by this kernel. */
if (!name)
continue;
selinux: sidtab reverse lookup hash table This replaces the reverse table lookup and reverse cache with a hashtable which improves cache-miss reverse-lookup times from O(n) to O(1)* and maintains the same performance as a reverse cache hit. This reduces the time needed to add a new sidtab entry from ~500us to 5us on a Pixel 3 when there are ~10,000 sidtab entries. The implementation uses the kernel's generic hashtable API, It uses the context's string represtation as the hash source, and the kernels generic string hashing algorithm full_name_hash() to reduce the string to a 32 bit value. This change also maintains the improvement introduced in commit ee1a84fdfeed ("selinux: overhaul sidtab to fix bug and improve performance") which removed the need to keep the current sidtab locked during policy reload. It does however introduce periodic locking of the target sidtab while converting the hashtable. Sidtab entries are never modified or removed, so the context struct stored in the sid_to_context tree can also be used for the context_to_sid hashtable to reduce memory usage. This bug was reported by: - On the selinux bug tracker. BUG: kernel softlockup due to too many SIDs/contexts #37 https://github.com/SELinuxProject/selinux-kernel/issues/37 - Jovana Knezevic on Android's bugtracker. Bug: 140252993 "During multi-user performance testing, we create and remove users many times. selinux_android_restorecon_pkgdir goes from 1ms to over 20ms after about 200 user creations and removals. Accumulated over ~280 packages, that adds a significant time to user creation, making perf benchmarks unreliable." * Hashtable lookup is only O(1) when n < the number of buckets. Signed-off-by: Jeff Vander Stoep <jeffv@google.com> Reported-by: Stephen Smalley <sds@tycho.nsa.gov> Reported-by: Jovana Knezevic <jovanak@google.com> Reviewed-by: Stephen Smalley <sds@tycho.nsa.gov> Tested-by: Stephen Smalley <sds@tycho.nsa.gov> [PM: subj tweak, removed changelog from patch description] Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-11-22 17:33:06 +08:00
rc = context_add_hash(p, &c->context[0]);
if (rc) {
sidtab_destroy(s);
goto out;
}
selinux: remove unused initial SIDs and improve handling Remove initial SIDs that have never been used or are no longer used by the kernel from its string table, which is also used to generate the SECINITSID_* symbols referenced in code. Update the code to gracefully handle the fact that these can now be NULL. Stop treating it as an error if a policy defines additional initial SIDs unknown to the kernel. Do not load unused initial SID contexts into the sidtab. Fix the incorrect usage of the name from the ocontext in error messages when loading initial SIDs since these are not presently written to the kernel policy and are therefore always NULL. After this change, it is possible to safely reclaim and reuse some of the unused initial SIDs without compatibility issues. Specifically, unused initial SIDs that were being assigned the same context as the unlabeled initial SID in policies can be reclaimed and reused for another purpose, with existing policies still treating them as having the unlabeled context and future policies having the option of mapping them to a more specific context. For example, this could have been used when the infiniband labeling support was introduced to define initial SIDs for the default pkey and endport SIDs similar to the handling of port/netif/node SIDs rather than always using SECINITSID_UNLABELED as the default. The set of safely reclaimable unused initial SIDs across all known policies is igmp_packet (13), icmp_socket (14), tcp_socket (15), kmod (24), policy (25), and scmp_packet (26); these initial SIDs were assigned the same context as unlabeled in all known policies including mls. If only considering non-mls policies (i.e. assuming that mls users always upgrade policy with their kernels), the set of safely reclaimable unused initial SIDs further includes file_labels (6), init (7), sysctl_modprobe (16), and sysctl_fs (18) through sysctl_dev (23). Adding new initial SIDs beyond SECINITSID_NUM to policy unfortunately became a fatal error in commit 24ed7fdae669 ("selinux: use separate table for initial SID lookup") and even before that it could cause problems on a policy reload (collision between the new initial SID and one allocated at runtime) ever since commit 42596eafdd75 ("selinux: load the initial SIDs upon every policy load") so we cannot safely start adding new initial SIDs to policies beyond SECINITSID_NUM (27) until such a time as all such kernels do not need to be supported and only those that include this commit are relevant. That is not a big deal since we haven't added a new initial SID since 2004 (v2.6.7) and we have plenty of unused ones we can reclaim if we truly need one. If we want to avoid the wasted storage in initial_sid_to_string[] and/or sidtab->isids[] for the unused initial SIDs, we could introduce an indirection between the kernel initial SID values and the policy initial SID values and just map the policy SID values in the ocontexts to the kernel values during policy_load_isids(). Originally I thought we'd do this by preserving the initial SID names in the kernel policy and creating a mapping at load time like we do for the security classes and permissions but that would require a new kernel policy format version and associated changes to libsepol/checkpolicy and I'm not sure it is justified. Simpler approach is just to create a fixed mapping table in the kernel from the existing fixed policy values to the kernel values. Less flexible but probably sufficient. A separate selinux userspace change was applied in https://github.com/SELinuxProject/selinux/commit/8677ce5e8f592950ae6f14cea1b68a20ddc1ac25 to enable removal of most of the unused initial SID contexts from policies, but there is no dependency between that change and this one. That change permits removing all of the unused initial SID contexts from policy except for the fs and sysctl SID contexts. The initial SID declarations themselves would remain in policy to preserve the values of subsequent ones but the contexts can be dropped. If/when the kernel decides to reuse one of them, future policies can change the name and start assigning a context again without breaking compatibility. Here is how I would envision staging changes to the initial SIDs in a compatible manner after this commit is applied: 1. At any time after this commit is applied, the kernel could choose to reclaim one of the safely reclaimable unused initial SIDs listed above for a new purpose (i.e. replace its NULL entry in the initial_sid_to_string[] table with a new name and start using the newly generated SECINITSID_name symbol in code), and refpolicy could at that time rename its declaration of that initial SID to reflect its new purpose and start assigning it a context going forward. Existing/old policies would map the reclaimed initial SID to the unlabeled context, so that would be the initial default behavior until policies are updated. This doesn't depend on the selinux userspace change; it will work with existing policies and userspace. 2. In 6 months or so we'll have another SELinux userspace release that will include the libsepol/checkpolicy support for omitting unused initial SID contexts. 3. At any time after that release, refpolicy can make that release its minimum build requirement and drop the sid context statements (but not the sid declarations) for all of the unused initial SIDs except for fs and sysctl, which must remain for compatibility on policy reload with old kernels and for compatibility with kernels that were still using SECINITSID_SYSCTL (< 2.6.39). This doesn't depend on this kernel commit; it will work with previous kernels as well. 4. After N years for some value of N, refpolicy decides that it no longer cares about policy reload compatibility for kernels that predate this kernel commit, and refpolicy drops the fs and sysctl SID contexts from policy too (but retains the declarations). 5. After M years for some value of M, the kernel decides that it no longer cares about compatibility with refpolicies that predate step 4 (dropping the fs and sysctl SIDs), and those two SIDs also become safely reclaimable. This step is optional and need not ever occur unless we decide that the need to reclaim those two SIDs outweighs the compatibility cost. 6. After O years for some value of O, refpolicy decides that it no longer cares about policy load (not just reload) compatibility for kernels that predate this kernel commit, and both kernel and refpolicy can then start adding and using new initial SIDs beyond 27. This does not depend on the previous change (step 5) and can occur independent of it. Fixes: https://github.com/SELinuxProject/selinux-kernel/issues/12 Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-25 00:10:23 +08:00
rc = sidtab_set_initial(s, sid, &c->context[0]);
if (rc) {
pr_err("SELinux: unable to load initial SID %s.\n",
selinux: remove unused initial SIDs and improve handling Remove initial SIDs that have never been used or are no longer used by the kernel from its string table, which is also used to generate the SECINITSID_* symbols referenced in code. Update the code to gracefully handle the fact that these can now be NULL. Stop treating it as an error if a policy defines additional initial SIDs unknown to the kernel. Do not load unused initial SID contexts into the sidtab. Fix the incorrect usage of the name from the ocontext in error messages when loading initial SIDs since these are not presently written to the kernel policy and are therefore always NULL. After this change, it is possible to safely reclaim and reuse some of the unused initial SIDs without compatibility issues. Specifically, unused initial SIDs that were being assigned the same context as the unlabeled initial SID in policies can be reclaimed and reused for another purpose, with existing policies still treating them as having the unlabeled context and future policies having the option of mapping them to a more specific context. For example, this could have been used when the infiniband labeling support was introduced to define initial SIDs for the default pkey and endport SIDs similar to the handling of port/netif/node SIDs rather than always using SECINITSID_UNLABELED as the default. The set of safely reclaimable unused initial SIDs across all known policies is igmp_packet (13), icmp_socket (14), tcp_socket (15), kmod (24), policy (25), and scmp_packet (26); these initial SIDs were assigned the same context as unlabeled in all known policies including mls. If only considering non-mls policies (i.e. assuming that mls users always upgrade policy with their kernels), the set of safely reclaimable unused initial SIDs further includes file_labels (6), init (7), sysctl_modprobe (16), and sysctl_fs (18) through sysctl_dev (23). Adding new initial SIDs beyond SECINITSID_NUM to policy unfortunately became a fatal error in commit 24ed7fdae669 ("selinux: use separate table for initial SID lookup") and even before that it could cause problems on a policy reload (collision between the new initial SID and one allocated at runtime) ever since commit 42596eafdd75 ("selinux: load the initial SIDs upon every policy load") so we cannot safely start adding new initial SIDs to policies beyond SECINITSID_NUM (27) until such a time as all such kernels do not need to be supported and only those that include this commit are relevant. That is not a big deal since we haven't added a new initial SID since 2004 (v2.6.7) and we have plenty of unused ones we can reclaim if we truly need one. If we want to avoid the wasted storage in initial_sid_to_string[] and/or sidtab->isids[] for the unused initial SIDs, we could introduce an indirection between the kernel initial SID values and the policy initial SID values and just map the policy SID values in the ocontexts to the kernel values during policy_load_isids(). Originally I thought we'd do this by preserving the initial SID names in the kernel policy and creating a mapping at load time like we do for the security classes and permissions but that would require a new kernel policy format version and associated changes to libsepol/checkpolicy and I'm not sure it is justified. Simpler approach is just to create a fixed mapping table in the kernel from the existing fixed policy values to the kernel values. Less flexible but probably sufficient. A separate selinux userspace change was applied in https://github.com/SELinuxProject/selinux/commit/8677ce5e8f592950ae6f14cea1b68a20ddc1ac25 to enable removal of most of the unused initial SID contexts from policies, but there is no dependency between that change and this one. That change permits removing all of the unused initial SID contexts from policy except for the fs and sysctl SID contexts. The initial SID declarations themselves would remain in policy to preserve the values of subsequent ones but the contexts can be dropped. If/when the kernel decides to reuse one of them, future policies can change the name and start assigning a context again without breaking compatibility. Here is how I would envision staging changes to the initial SIDs in a compatible manner after this commit is applied: 1. At any time after this commit is applied, the kernel could choose to reclaim one of the safely reclaimable unused initial SIDs listed above for a new purpose (i.e. replace its NULL entry in the initial_sid_to_string[] table with a new name and start using the newly generated SECINITSID_name symbol in code), and refpolicy could at that time rename its declaration of that initial SID to reflect its new purpose and start assigning it a context going forward. Existing/old policies would map the reclaimed initial SID to the unlabeled context, so that would be the initial default behavior until policies are updated. This doesn't depend on the selinux userspace change; it will work with existing policies and userspace. 2. In 6 months or so we'll have another SELinux userspace release that will include the libsepol/checkpolicy support for omitting unused initial SID contexts. 3. At any time after that release, refpolicy can make that release its minimum build requirement and drop the sid context statements (but not the sid declarations) for all of the unused initial SIDs except for fs and sysctl, which must remain for compatibility on policy reload with old kernels and for compatibility with kernels that were still using SECINITSID_SYSCTL (< 2.6.39). This doesn't depend on this kernel commit; it will work with previous kernels as well. 4. After N years for some value of N, refpolicy decides that it no longer cares about policy reload compatibility for kernels that predate this kernel commit, and refpolicy drops the fs and sysctl SID contexts from policy too (but retains the declarations). 5. After M years for some value of M, the kernel decides that it no longer cares about compatibility with refpolicies that predate step 4 (dropping the fs and sysctl SIDs), and those two SIDs also become safely reclaimable. This step is optional and need not ever occur unless we decide that the need to reclaim those two SIDs outweighs the compatibility cost. 6. After O years for some value of O, refpolicy decides that it no longer cares about policy load (not just reload) compatibility for kernels that predate this kernel commit, and both kernel and refpolicy can then start adding and using new initial SIDs beyond 27. This does not depend on the previous change (step 5) and can occur independent of it. Fixes: https://github.com/SELinuxProject/selinux-kernel/issues/12 Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-25 00:10:23 +08:00
name);
sidtab_destroy(s);
goto out;
}
}
rc = 0;
out:
return rc;
}
int policydb_class_isvalid(struct policydb *p, unsigned int class)
{
if (!class || class > p->p_classes.nprim)
return 0;
return 1;
}
int policydb_role_isvalid(struct policydb *p, unsigned int role)
{
if (!role || role > p->p_roles.nprim)
return 0;
return 1;
}
int policydb_type_isvalid(struct policydb *p, unsigned int type)
{
if (!type || type > p->p_types.nprim)
return 0;
return 1;
}
/*
* Return 1 if the fields in the security context
* structure `c' are valid. Return 0 otherwise.
*/
int policydb_context_isvalid(struct policydb *p, struct context *c)
{
struct role_datum *role;
struct user_datum *usrdatum;
if (!c->role || c->role > p->p_roles.nprim)
return 0;
if (!c->user || c->user > p->p_users.nprim)
return 0;
if (!c->type || c->type > p->p_types.nprim)
return 0;
if (c->role != OBJECT_R_VAL) {
/*
* Role must be authorized for the type.
*/
role = p->role_val_to_struct[c->role - 1];
if (!role || !ebitmap_get_bit(&role->types, c->type - 1))
/* role may not be associated with type */
return 0;
/*
* User must be authorized for the role.
*/
usrdatum = p->user_val_to_struct[c->user - 1];
if (!usrdatum)
return 0;
if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
/* user may not be associated with role */
return 0;
}
if (!mls_context_isvalid(p, c))
return 0;
return 1;
}
/*
* Read a MLS range structure from a policydb binary
* representation file.
*/
static int mls_read_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[2];
u32 items;
int rc;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
rc = -EINVAL;
items = le32_to_cpu(buf[0]);
if (items > ARRAY_SIZE(buf)) {
pr_err("SELinux: mls: range overflow\n");
goto out;
}
rc = next_entry(buf, fp, sizeof(u32) * items);
if (rc) {
pr_err("SELinux: mls: truncated range\n");
goto out;
}
r->level[0].sens = le32_to_cpu(buf[0]);
if (items > 1)
r->level[1].sens = le32_to_cpu(buf[1]);
else
r->level[1].sens = r->level[0].sens;
rc = ebitmap_read(&r->level[0].cat, fp);
if (rc) {
pr_err("SELinux: mls: error reading low categories\n");
goto out;
}
if (items > 1) {
rc = ebitmap_read(&r->level[1].cat, fp);
if (rc) {
pr_err("SELinux: mls: error reading high categories\n");
goto bad_high;
}
} else {
rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
if (rc) {
pr_err("SELinux: mls: out of memory\n");
goto bad_high;
}
}
return 0;
bad_high:
ebitmap_destroy(&r->level[0].cat);
out:
return rc;
}
/*
* Read and validate a security context structure
* from a policydb binary representation file.
*/
static int context_read_and_validate(struct context *c,
struct policydb *p,
void *fp)
{
__le32 buf[3];
int rc;
rc = next_entry(buf, fp, sizeof buf);
if (rc) {
pr_err("SELinux: context truncated\n");
goto out;
}
c->user = le32_to_cpu(buf[0]);
c->role = le32_to_cpu(buf[1]);
c->type = le32_to_cpu(buf[2]);
if (p->policyvers >= POLICYDB_VERSION_MLS) {
rc = mls_read_range_helper(&c->range, fp);
if (rc) {
pr_err("SELinux: error reading MLS range of context\n");
goto out;
}
}
rc = -EINVAL;
if (!policydb_context_isvalid(p, c)) {
pr_err("SELinux: invalid security context\n");
context_destroy(c);
goto out;
}
rc = 0;
out:
return rc;
}
/*
* The following *_read functions are used to
* read the symbol data from a policy database
* binary representation file.
*/
static int str_read(char **strp, gfp_t flags, void *fp, u32 len)
{
int rc;
char *str;
if ((len == 0) || (len == (u32)-1))
return -EINVAL;
str = kmalloc(len + 1, flags | __GFP_NOWARN);
if (!str)
return -ENOMEM;
/* it's expected the caller should free the str */
*strp = str;
rc = next_entry(str, fp, len);
if (rc)
return rc;
str[len] = '\0';
return 0;
}
static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct perm_datum *perdatum;
int rc;
__le32 buf[2];
u32 len;
perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
if (!perdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
perdatum->value = le32_to_cpu(buf[1]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, perdatum);
if (rc)
goto bad;
return 0;
bad:
perm_destroy(key, perdatum, NULL);
return rc;
}
static int common_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct common_datum *comdatum;
__le32 buf[4];
u32 len, nel;
int i, rc;
comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
if (!comdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
comdatum->value = le32_to_cpu(buf[1]);
nel = le32_to_cpu(buf[3]);
rc = symtab_init(&comdatum->permissions, nel);
if (rc)
goto bad;
comdatum->permissions.nprim = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
for (i = 0; i < nel; i++) {
rc = perm_read(p, comdatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, comdatum);
if (rc)
goto bad;
return 0;
bad:
common_destroy(key, comdatum, NULL);
return rc;
}
static void type_set_init(struct type_set *t)
{
ebitmap_init(&t->types);
ebitmap_init(&t->negset);
}
static int type_set_read(struct type_set *t, void *fp)
{
__le32 buf[1];
int rc;
if (ebitmap_read(&t->types, fp))
return -EINVAL;
if (ebitmap_read(&t->negset, fp))
return -EINVAL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
return -EINVAL;
t->flags = le32_to_cpu(buf[0]);
return 0;
}
static int read_cons_helper(struct policydb *p,
struct constraint_node **nodep,
int ncons, int allowxtarget, void *fp)
{
struct constraint_node *c, *lc;
struct constraint_expr *e, *le;
__le32 buf[3];
u32 nexpr;
int rc, i, j, depth;
lc = NULL;
for (i = 0; i < ncons; i++) {
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
if (lc)
lc->next = c;
else
*nodep = c;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc)
return rc;
c->permissions = le32_to_cpu(buf[0]);
nexpr = le32_to_cpu(buf[1]);
le = NULL;
depth = -1;
for (j = 0; j < nexpr; j++) {
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (!e)
return -ENOMEM;
if (le)
le->next = e;
else
c->expr = e;
rc = next_entry(buf, fp, (sizeof(u32) * 3));
if (rc)
return rc;
e->expr_type = le32_to_cpu(buf[0]);
e->attr = le32_to_cpu(buf[1]);
e->op = le32_to_cpu(buf[2]);
switch (e->expr_type) {
case CEXPR_NOT:
if (depth < 0)
return -EINVAL;
break;
case CEXPR_AND:
case CEXPR_OR:
if (depth < 1)
return -EINVAL;
depth--;
break;
case CEXPR_ATTR:
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
break;
case CEXPR_NAMES:
if (!allowxtarget && (e->attr & CEXPR_XTARGET))
return -EINVAL;
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
rc = ebitmap_read(&e->names, fp);
if (rc)
return rc;
if (p->policyvers >=
POLICYDB_VERSION_CONSTRAINT_NAMES) {
e->type_names = kzalloc(sizeof
(*e->type_names),
GFP_KERNEL);
if (!e->type_names)
return -ENOMEM;
type_set_init(e->type_names);
rc = type_set_read(e->type_names, fp);
if (rc)
return rc;
}
break;
default:
return -EINVAL;
}
le = e;
}
if (depth != 0)
return -EINVAL;
lc = c;
}
return 0;
}
static int class_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct class_datum *cladatum;
__le32 buf[6];
u32 len, len2, ncons, nel;
int i, rc;
cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
if (!cladatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof(u32)*6);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
len2 = le32_to_cpu(buf[1]);
cladatum->value = le32_to_cpu(buf[2]);
nel = le32_to_cpu(buf[4]);
rc = symtab_init(&cladatum->permissions, nel);
if (rc)
goto bad;
cladatum->permissions.nprim = le32_to_cpu(buf[3]);
ncons = le32_to_cpu(buf[5]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
if (len2) {
rc = str_read(&cladatum->comkey, GFP_KERNEL, fp, len2);
if (rc)
goto bad;
rc = -EINVAL;
cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
if (!cladatum->comdatum) {
pr_err("SELinux: unknown common %s\n",
cladatum->comkey);
goto bad;
}
}
for (i = 0; i < nel; i++) {
rc = perm_read(p, cladatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
/* grab the validatetrans rules */
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
ncons = le32_to_cpu(buf[0]);
rc = read_cons_helper(p, &cladatum->validatetrans,
ncons, 1, fp);
if (rc)
goto bad;
}
SELinux: allow default source/target selectors for user/role/range When new objects are created we have great and flexible rules to determine the type of the new object. We aren't quite as flexible or mature when it comes to determining the user, role, and range. This patch adds a new ability to specify the place a new objects user, role, and range should come from. For users and roles it can come from either the source or the target of the operation. aka for files the user can either come from the source (the running process and todays default) or it can come from the target (aka the parent directory of the new file) examples always are done with directory context: system_u:object_r:mnt_t:s0-s0:c0.c512 process context: unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 [no rule] unconfined_u:object_r:mnt_t:s0 test_none [default user source] unconfined_u:object_r:mnt_t:s0 test_user_source [default user target] system_u:object_r:mnt_t:s0 test_user_target [default role source] unconfined_u:unconfined_r:mnt_t:s0 test_role_source [default role target] unconfined_u:object_r:mnt_t:s0 test_role_target [default range source low] unconfined_u:object_r:mnt_t:s0 test_range_source_low [default range source high] unconfined_u:object_r:mnt_t:s0:c0.c1023 test_range_source_high [default range source low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c1023 test_range_source_low-high [default range target low] unconfined_u:object_r:mnt_t:s0 test_range_target_low [default range target high] unconfined_u:object_r:mnt_t:s0:c0.c512 test_range_target_high [default range target low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c512 test_range_target_low-high Signed-off-by: Eric Paris <eparis@redhat.com>
2012-03-21 02:35:12 +08:00
if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
rc = next_entry(buf, fp, sizeof(u32) * 3);
if (rc)
goto bad;
cladatum->default_user = le32_to_cpu(buf[0]);
cladatum->default_role = le32_to_cpu(buf[1]);
cladatum->default_range = le32_to_cpu(buf[2]);
}
if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
rc = next_entry(buf, fp, sizeof(u32) * 1);
if (rc)
goto bad;
cladatum->default_type = le32_to_cpu(buf[0]);
}
rc = hashtab_insert(h, key, cladatum);
if (rc)
goto bad;
return 0;
bad:
cls_destroy(key, cladatum, NULL);
return rc;
}
static int role_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct role_datum *role;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
int rc, to_read = 2;
__le32 buf[3];
u32 len;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role)
return -ENOMEM;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
role->value = le32_to_cpu(buf[1]);
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
role->bounds = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = ebitmap_read(&role->dominates, fp);
if (rc)
goto bad;
rc = ebitmap_read(&role->types, fp);
if (rc)
goto bad;
if (strcmp(key, OBJECT_R) == 0) {
rc = -EINVAL;
if (role->value != OBJECT_R_VAL) {
pr_err("SELinux: Role %s has wrong value %d\n",
OBJECT_R, role->value);
goto bad;
}
rc = 0;
goto bad;
}
rc = hashtab_insert(h, key, role);
if (rc)
goto bad;
return 0;
bad:
role_destroy(key, role, NULL);
return rc;
}
static int type_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct type_datum *typdatum;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
int rc, to_read = 3;
__le32 buf[4];
u32 len;
typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
if (!typdatum)
return -ENOMEM;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 4;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
typdatum->value = le32_to_cpu(buf[1]);
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 prop = le32_to_cpu(buf[2]);
if (prop & TYPEDATUM_PROPERTY_PRIMARY)
typdatum->primary = 1;
if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
typdatum->attribute = 1;
typdatum->bounds = le32_to_cpu(buf[3]);
} else {
typdatum->primary = le32_to_cpu(buf[2]);
}
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, typdatum);
if (rc)
goto bad;
return 0;
bad:
type_destroy(key, typdatum, NULL);
return rc;
}
/*
* Read a MLS level structure from a policydb binary
* representation file.
*/
static int mls_read_level(struct mls_level *lp, void *fp)
{
__le32 buf[1];
int rc;
memset(lp, 0, sizeof(*lp));
rc = next_entry(buf, fp, sizeof buf);
if (rc) {
pr_err("SELinux: mls: truncated level\n");
return rc;
}
lp->sens = le32_to_cpu(buf[0]);
rc = ebitmap_read(&lp->cat, fp);
if (rc) {
pr_err("SELinux: mls: error reading level categories\n");
return rc;
}
return 0;
}
static int user_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct user_datum *usrdatum;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
int rc, to_read = 2;
__le32 buf[3];
u32 len;
usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
if (!usrdatum)
return -ENOMEM;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
usrdatum->value = le32_to_cpu(buf[1]);
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
usrdatum->bounds = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = ebitmap_read(&usrdatum->roles, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_MLS) {
rc = mls_read_range_helper(&usrdatum->range, fp);
if (rc)
goto bad;
rc = mls_read_level(&usrdatum->dfltlevel, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, usrdatum);
if (rc)
goto bad;
return 0;
bad:
user_destroy(key, usrdatum, NULL);
return rc;
}
static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct level_datum *levdatum;
int rc;
__le32 buf[2];
u32 len;
levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
if (!levdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
levdatum->isalias = le32_to_cpu(buf[1]);
rc = str_read(&key, GFP_ATOMIC, fp, len);
if (rc)
goto bad;
rc = -ENOMEM;
levdatum->level = kmalloc(sizeof(*levdatum->level), GFP_ATOMIC);
if (!levdatum->level)
goto bad;
rc = mls_read_level(levdatum->level, fp);
if (rc)
goto bad;
rc = hashtab_insert(h, key, levdatum);
if (rc)
goto bad;
return 0;
bad:
sens_destroy(key, levdatum, NULL);
return rc;
}
static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct cat_datum *catdatum;
int rc;
__le32 buf[3];
u32 len;
catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
if (!catdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
catdatum->value = le32_to_cpu(buf[1]);
catdatum->isalias = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_ATOMIC, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, catdatum);
if (rc)
goto bad;
return 0;
bad:
cat_destroy(key, catdatum, NULL);
return rc;
}
static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
{
common_read,
class_read,
role_read,
type_read,
user_read,
cond_read_bool,
sens_read,
cat_read,
};
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
static int user_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct user_datum *upper, *user;
struct policydb *p = datap;
int depth = 0;
upper = user = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
pr_err("SELinux: user %s: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"too deep or looped boundary",
(char *) key);
return -EINVAL;
}
upper = p->user_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&user->roles, node, bit) {
if (ebitmap_get_bit(&upper->roles, bit))
continue;
pr_err("SELinux: boundary violated policy: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"user=%s role=%s bounds=%s\n",
sym_name(p, SYM_USERS, user->value - 1),
sym_name(p, SYM_ROLES, bit),
sym_name(p, SYM_USERS, upper->value - 1));
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
return -EINVAL;
}
}
return 0;
}
static int role_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct role_datum *upper, *role;
struct policydb *p = datap;
int depth = 0;
upper = role = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
pr_err("SELinux: role %s: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"too deep or looped bounds\n",
(char *) key);
return -EINVAL;
}
upper = p->role_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&role->types, node, bit) {
if (ebitmap_get_bit(&upper->types, bit))
continue;
pr_err("SELinux: boundary violated policy: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"role=%s type=%s bounds=%s\n",
sym_name(p, SYM_ROLES, role->value - 1),
sym_name(p, SYM_TYPES, bit),
sym_name(p, SYM_ROLES, upper->value - 1));
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
return -EINVAL;
}
}
return 0;
}
static int type_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct type_datum *upper;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
struct policydb *p = datap;
int depth = 0;
upper = datum;
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
while (upper->bounds) {
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
pr_err("SELinux: type %s: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"too deep or looped boundary\n",
(char *) key);
return -EINVAL;
}
upper = p->type_val_to_struct[upper->bounds - 1];
BUG_ON(!upper);
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
if (upper->attribute) {
pr_err("SELinux: type %s: "
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
"bounded by attribute %s",
(char *) key,
sym_name(p, SYM_TYPES, upper->value - 1));
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
return -EINVAL;
}
}
return 0;
}
static int policydb_bounds_sanity_check(struct policydb *p)
{
int rc;
if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
return 0;
rc = hashtab_map(p->p_users.table,
user_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_roles.table,
role_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_types.table,
type_bounds_sanity_check, p);
if (rc)
return rc;
return 0;
}
selinux: dynamic class/perm discovery Modify SELinux to dynamically discover class and permission values upon policy load, based on the dynamic object class/perm discovery logic from libselinux. A mapping is created between kernel-private class and permission indices used outside the security server and the policy values used within the security server. The mappings are only applied upon kernel-internal computations; similar mappings for the private indices of userspace object managers is handled on a per-object manager basis by the userspace AVC. The interfaces for compute_av and transition_sid are split for kernel vs. userspace; the userspace functions are distinguished by a _user suffix. The kernel-private class indices are no longer tied to the policy values and thus do not need to skip indices for userspace classes; thus the kernel class index values are compressed. The flask.h definitions were regenerated by deleting the userspace classes from refpolicy's definitions and then regenerating the headers. Going forward, we can just maintain the flask.h, av_permissions.h, and classmap.h definitions separately from policy as they are no longer tied to the policy values. The next patch introduces a utility to automate generation of flask.h and av_permissions.h from the classmap.h definitions. The older kernel class and permission string tables are removed and replaced by a single security class mapping table that is walked at policy load to generate the mapping. The old kernel class validation logic is completely replaced by the mapping logic. The handle unknown logic is reworked. reject_unknown=1 is handled when the mappings are computed at policy load time, similar to the old handling by the class validation logic. allow_unknown=1 is handled when computing and mapping decisions - if the permission was not able to be mapped (i.e. undefined, mapped to zero), then it is automatically added to the allowed vector. If the class was not able to be mapped (i.e. undefined, mapped to zero), then all permissions are allowed for it if allow_unknown=1. avc_audit leverages the new security class mapping table to lookup the class and permission names from the kernel-private indices. The mdp program is updated to use the new table when generating the class definitions and allow rules for a minimal boot policy for the kernel. It should be noted that this policy will not include any userspace classes, nor will its policy index values for the kernel classes correspond with the ones in refpolicy (they will instead match the kernel-private indices). Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2009-10-01 01:37:50 +08:00
u16 string_to_security_class(struct policydb *p, const char *name)
{
struct class_datum *cladatum;
cladatum = hashtab_search(p->p_classes.table, name);
if (!cladatum)
return 0;
return cladatum->value;
}
u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
{
struct class_datum *cladatum;
struct perm_datum *perdatum = NULL;
struct common_datum *comdatum;
if (!tclass || tclass > p->p_classes.nprim)
return 0;
cladatum = p->class_val_to_struct[tclass-1];
comdatum = cladatum->comdatum;
if (comdatum)
perdatum = hashtab_search(comdatum->permissions.table,
name);
if (!perdatum)
perdatum = hashtab_search(cladatum->permissions.table,
name);
if (!perdatum)
return 0;
return 1U << (perdatum->value-1);
}
static int range_read(struct policydb *p, void *fp)
{
struct range_trans *rt = NULL;
struct mls_range *r = NULL;
int i, rc;
__le32 buf[2];
u32 nel;
if (p->policyvers < POLICYDB_VERSION_MLS)
return 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, nel);
if (!p->range_tr)
return -ENOMEM;
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
if (!rt)
goto out;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc)
goto out;
rt->source_type = le32_to_cpu(buf[0]);
rt->target_type = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
rt->target_class = le32_to_cpu(buf[0]);
} else
rt->target_class = p->process_class;
rc = -EINVAL;
if (!policydb_type_isvalid(p, rt->source_type) ||
!policydb_type_isvalid(p, rt->target_type) ||
!policydb_class_isvalid(p, rt->target_class))
goto out;
rc = -ENOMEM;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
goto out;
rc = mls_read_range_helper(r, fp);
if (rc)
goto out;
rc = -EINVAL;
if (!mls_range_isvalid(p, r)) {
pr_warn("SELinux: rangetrans: invalid range\n");
goto out;
}
rc = hashtab_insert(p->range_tr, rt, r);
if (rc)
goto out;
rt = NULL;
r = NULL;
}
hash_eval(p->range_tr, "rangetr");
rc = 0;
out:
kfree(rt);
kfree(r);
return rc;
}
static int filename_trans_read_one(struct policydb *p, void *fp)
{
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
struct filename_trans_key key, *ft = NULL;
struct filename_trans_datum *last, *datum = NULL;
char *name = NULL;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
u32 len, stype, otype;
__le32 buf[4];
int rc;
/* length of the path component string */
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
return rc;
len = le32_to_cpu(buf[0]);
/* path component string */
rc = str_read(&name, GFP_KERNEL, fp, len);
if (rc)
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
return rc;
rc = next_entry(buf, fp, sizeof(u32) * 4);
if (rc)
goto out;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
stype = le32_to_cpu(buf[0]);
key.ttype = le32_to_cpu(buf[1]);
key.tclass = le32_to_cpu(buf[2]);
key.name = name;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
otype = le32_to_cpu(buf[3]);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
last = NULL;
datum = hashtab_search(p->filename_trans, &key);
while (datum) {
if (unlikely(ebitmap_get_bit(&datum->stypes, stype - 1))) {
/* conflicting/duplicate rules are ignored */
datum = NULL;
goto out;
}
if (likely(datum->otype == otype))
break;
last = datum;
datum = datum->next;
}
if (!datum) {
rc = -ENOMEM;
datum = kmalloc(sizeof(*datum), GFP_KERNEL);
if (!datum)
goto out;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
ebitmap_init(&datum->stypes);
datum->otype = otype;
datum->next = NULL;
if (unlikely(last)) {
last->next = datum;
} else {
rc = -ENOMEM;
ft = kmemdup(&key, sizeof(key), GFP_KERNEL);
if (!ft)
goto out;
rc = hashtab_insert(p->filename_trans, ft, datum);
if (rc)
goto out;
name = NULL;
rc = ebitmap_set_bit(&p->filename_trans_ttypes,
key.ttype, 1);
if (rc)
return rc;
}
}
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
kfree(name);
return ebitmap_set_bit(&datum->stypes, stype - 1, 1);
out:
kfree(ft);
kfree(name);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
kfree(datum);
return rc;
}
static int filename_trans_read(struct policydb *p, void *fp)
{
u32 nel;
__le32 buf[1];
int rc, i;
if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
return 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
p->filename_trans_count = nel;
for (i = 0; i < nel; i++) {
rc = filename_trans_read_one(p, fp);
if (rc)
return rc;
}
hash_eval(p->filename_trans, "filenametr");
return 0;
}
static int genfs_read(struct policydb *p, void *fp)
{
int i, j, rc;
u32 nel, nel2, len, len2;
__le32 buf[1];
struct ocontext *l, *c;
struct ocontext *newc = NULL;
struct genfs *genfs_p, *genfs;
struct genfs *newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
if (!newgenfs)
goto out;
rc = str_read(&newgenfs->fstype, GFP_KERNEL, fp, len);
if (rc)
goto out;
for (genfs_p = NULL, genfs = p->genfs; genfs;
genfs_p = genfs, genfs = genfs->next) {
rc = -EINVAL;
if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
pr_err("SELinux: dup genfs fstype %s\n",
newgenfs->fstype);
goto out;
}
if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
break;
}
newgenfs->next = genfs;
if (genfs_p)
genfs_p->next = newgenfs;
else
p->genfs = newgenfs;
genfs = newgenfs;
newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel2 = le32_to_cpu(buf[0]);
for (j = 0; j < nel2; j++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newc = kzalloc(sizeof(*newc), GFP_KERNEL);
if (!newc)
goto out;
rc = str_read(&newc->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
newc->v.sclass = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&newc->context[0], p, fp);
if (rc)
goto out;
for (l = NULL, c = genfs->head; c;
l = c, c = c->next) {
rc = -EINVAL;
if (!strcmp(newc->u.name, c->u.name) &&
(!c->v.sclass || !newc->v.sclass ||
newc->v.sclass == c->v.sclass)) {
pr_err("SELinux: dup genfs entry (%s,%s)\n",
genfs->fstype, c->u.name);
goto out;
}
len = strlen(newc->u.name);
len2 = strlen(c->u.name);
if (len > len2)
break;
}
newc->next = c;
if (l)
l->next = newc;
else
genfs->head = newc;
newc = NULL;
}
}
rc = 0;
out:
if (newgenfs) {
kfree(newgenfs->fstype);
kfree(newgenfs);
}
ocontext_destroy(newc, OCON_FSUSE);
return rc;
}
static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
int i, j, rc;
u32 nel, len;
__be64 prefixbuf[1];
__le32 buf[3];
struct ocontext *l, *c;
u32 nodebuf[8];
for (i = 0; i < info->ocon_num; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel = le32_to_cpu(buf[0]);
l = NULL;
for (j = 0; j < nel; j++) {
rc = -ENOMEM;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
goto out;
if (l)
l->next = c;
else
p->ocontexts[i] = c;
l = c;
switch (i) {
case OCON_ISID:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
c->sid[0] = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FS:
case OCON_NETIF:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = str_read(&c->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[1], p, fp);
if (rc)
goto out;
break;
case OCON_PORT:
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc)
goto out;
c->u.port.protocol = le32_to_cpu(buf[0]);
c->u.port.low_port = le32_to_cpu(buf[1]);
c->u.port.high_port = le32_to_cpu(buf[2]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE:
rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
if (rc)
goto out;
c->u.node.addr = nodebuf[0]; /* network order */
c->u.node.mask = nodebuf[1]; /* network order */
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FSUSE:
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto out;
rc = -EINVAL;
c->v.behavior = le32_to_cpu(buf[0]);
/* Determined at runtime, not in policy DB. */
if (c->v.behavior == SECURITY_FS_USE_MNTPOINT)
goto out;
if (c->v.behavior > SECURITY_FS_USE_MAX)
goto out;
len = le32_to_cpu(buf[1]);
rc = str_read(&c->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE6: {
int k;
rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
if (rc)
goto out;
for (k = 0; k < 4; k++)
c->u.node6.addr[k] = nodebuf[k];
for (k = 0; k < 4; k++)
c->u.node6.mask[k] = nodebuf[k+4];
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
}
case OCON_IBPKEY: {
u32 pkey_lo, pkey_hi;
rc = next_entry(prefixbuf, fp, sizeof(u64));
if (rc)
goto out;
/* we need to have subnet_prefix in CPU order */
c->u.ibpkey.subnet_prefix = be64_to_cpu(prefixbuf[0]);
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto out;
pkey_lo = le32_to_cpu(buf[0]);
pkey_hi = le32_to_cpu(buf[1]);
if (pkey_lo > U16_MAX || pkey_hi > U16_MAX) {
rc = -EINVAL;
goto out;
}
c->u.ibpkey.low_pkey = pkey_lo;
c->u.ibpkey.high_pkey = pkey_hi;
rc = context_read_and_validate(&c->context[0],
p,
fp);
if (rc)
goto out;
break;
}
case OCON_IBENDPORT: {
u32 port;
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = str_read(&c->u.ibendport.dev_name, GFP_KERNEL, fp, len);
if (rc)
goto out;
port = le32_to_cpu(buf[1]);
if (port > U8_MAX || port == 0) {
rc = -EINVAL;
goto out;
}
c->u.ibendport.port = port;
rc = context_read_and_validate(&c->context[0],
p,
fp);
if (rc)
goto out;
break;
} /* end case */
} /* end switch */
}
}
rc = 0;
out:
return rc;
}
/*
* Read the configuration data from a policy database binary
* representation file into a policy database structure.
*/
int policydb_read(struct policydb *p, void *fp)
{
struct role_allow *ra, *lra;
struct role_trans *tr, *ltr;
int i, j, rc;
__le32 buf[4];
u32 len, nprim, nel;
char *policydb_str;
struct policydb_compat_info *info;
rc = policydb_init(p);
if (rc)
return rc;
/* Read the magic number and string length. */
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto bad;
rc = -EINVAL;
if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
pr_err("SELinux: policydb magic number 0x%x does "
"not match expected magic number 0x%x\n",
le32_to_cpu(buf[0]), POLICYDB_MAGIC);
goto bad;
}
rc = -EINVAL;
len = le32_to_cpu(buf[1]);
if (len != strlen(POLICYDB_STRING)) {
pr_err("SELinux: policydb string length %d does not "
"match expected length %zu\n",
len, strlen(POLICYDB_STRING));
goto bad;
}
rc = -ENOMEM;
policydb_str = kmalloc(len + 1, GFP_KERNEL);
if (!policydb_str) {
pr_err("SELinux: unable to allocate memory for policydb "
"string of length %d\n", len);
goto bad;
}
rc = next_entry(policydb_str, fp, len);
if (rc) {
pr_err("SELinux: truncated policydb string identifier\n");
kfree(policydb_str);
goto bad;
}
rc = -EINVAL;
policydb_str[len] = '\0';
if (strcmp(policydb_str, POLICYDB_STRING)) {
pr_err("SELinux: policydb string %s does not match "
"my string %s\n", policydb_str, POLICYDB_STRING);
kfree(policydb_str);
goto bad;
}
/* Done with policydb_str. */
kfree(policydb_str);
policydb_str = NULL;
/* Read the version and table sizes. */
rc = next_entry(buf, fp, sizeof(u32)*4);
if (rc)
goto bad;
rc = -EINVAL;
p->policyvers = le32_to_cpu(buf[0]);
if (p->policyvers < POLICYDB_VERSION_MIN ||
p->policyvers > POLICYDB_VERSION_MAX) {
pr_err("SELinux: policydb version %d does not match "
"my version range %d-%d\n",
le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
goto bad;
}
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
p->mls_enabled = 1;
rc = -EINVAL;
if (p->policyvers < POLICYDB_VERSION_MLS) {
pr_err("SELinux: security policydb version %d "
"(MLS) not backwards compatible\n",
p->policyvers);
goto bad;
}
}
p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
rc = ebitmap_read(&p->policycaps, fp);
if (rc)
goto bad;
}
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
rc = ebitmap_read(&p->permissive_map, fp);
if (rc)
goto bad;
}
rc = -EINVAL;
info = policydb_lookup_compat(p->policyvers);
if (!info) {
pr_err("SELinux: unable to find policy compat info "
"for version %d\n", p->policyvers);
goto bad;
}
rc = -EINVAL;
if (le32_to_cpu(buf[2]) != info->sym_num ||
le32_to_cpu(buf[3]) != info->ocon_num) {
pr_err("SELinux: policydb table sizes (%d,%d) do "
"not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
le32_to_cpu(buf[3]),
info->sym_num, info->ocon_num);
goto bad;
}
for (i = 0; i < info->sym_num; i++) {
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto bad;
nprim = le32_to_cpu(buf[0]);
nel = le32_to_cpu(buf[1]);
rc = symtab_init(&p->symtab[i], nel);
if (rc)
goto out;
if (i == SYM_ROLES) {
rc = roles_init(p);
if (rc)
goto out;
}
for (j = 0; j < nel; j++) {
rc = read_f[i](p, p->symtab[i].table, fp);
if (rc)
goto bad;
}
p->symtab[i].nprim = nprim;
}
rc = -EINVAL;
p->process_class = string_to_security_class(p, "process");
if (!p->process_class)
goto bad;
rc = avtab_read(&p->te_avtab, fp, p);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_BOOL) {
rc = cond_read_list(p, fp);
if (rc)
goto bad;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
nel = le32_to_cpu(buf[0]);
ltr = NULL;
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
tr = kzalloc(sizeof(*tr), GFP_KERNEL);
if (!tr)
goto bad;
if (ltr)
ltr->next = tr;
else
p->role_tr = tr;
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc)
goto bad;
rc = -EINVAL;
tr->role = le32_to_cpu(buf[0]);
tr->type = le32_to_cpu(buf[1]);
tr->new_role = le32_to_cpu(buf[2]);
if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
tr->tclass = le32_to_cpu(buf[0]);
} else
tr->tclass = p->process_class;
rc = -EINVAL;
if (!policydb_role_isvalid(p, tr->role) ||
!policydb_type_isvalid(p, tr->type) ||
!policydb_class_isvalid(p, tr->tclass) ||
!policydb_role_isvalid(p, tr->new_role))
goto bad;
ltr = tr;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
nel = le32_to_cpu(buf[0]);
lra = NULL;
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
if (!ra)
goto bad;
if (lra)
lra->next = ra;
else
p->role_allow = ra;
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto bad;
rc = -EINVAL;
ra->role = le32_to_cpu(buf[0]);
ra->new_role = le32_to_cpu(buf[1]);
if (!policydb_role_isvalid(p, ra->role) ||
!policydb_role_isvalid(p, ra->new_role))
goto bad;
lra = ra;
}
rc = filename_trans_read(p, fp);
if (rc)
goto bad;
rc = policydb_index(p);
if (rc)
goto bad;
rc = -EINVAL;
p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
selinux: dynamic class/perm discovery Modify SELinux to dynamically discover class and permission values upon policy load, based on the dynamic object class/perm discovery logic from libselinux. A mapping is created between kernel-private class and permission indices used outside the security server and the policy values used within the security server. The mappings are only applied upon kernel-internal computations; similar mappings for the private indices of userspace object managers is handled on a per-object manager basis by the userspace AVC. The interfaces for compute_av and transition_sid are split for kernel vs. userspace; the userspace functions are distinguished by a _user suffix. The kernel-private class indices are no longer tied to the policy values and thus do not need to skip indices for userspace classes; thus the kernel class index values are compressed. The flask.h definitions were regenerated by deleting the userspace classes from refpolicy's definitions and then regenerating the headers. Going forward, we can just maintain the flask.h, av_permissions.h, and classmap.h definitions separately from policy as they are no longer tied to the policy values. The next patch introduces a utility to automate generation of flask.h and av_permissions.h from the classmap.h definitions. The older kernel class and permission string tables are removed and replaced by a single security class mapping table that is walked at policy load to generate the mapping. The old kernel class validation logic is completely replaced by the mapping logic. The handle unknown logic is reworked. reject_unknown=1 is handled when the mappings are computed at policy load time, similar to the old handling by the class validation logic. allow_unknown=1 is handled when computing and mapping decisions - if the permission was not able to be mapped (i.e. undefined, mapped to zero), then it is automatically added to the allowed vector. If the class was not able to be mapped (i.e. undefined, mapped to zero), then all permissions are allowed for it if allow_unknown=1. avc_audit leverages the new security class mapping table to lookup the class and permission names from the kernel-private indices. The mdp program is updated to use the new table when generating the class definitions and allow rules for a minimal boot policy for the kernel. It should be noted that this policy will not include any userspace classes, nor will its policy index values for the kernel classes correspond with the ones in refpolicy (they will instead match the kernel-private indices). Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2009-10-01 01:37:50 +08:00
if (!p->process_trans_perms)
goto bad;
rc = ocontext_read(p, info, fp);
if (rc)
goto bad;
rc = genfs_read(p, fp);
if (rc)
goto bad;
rc = range_read(p, fp);
if (rc)
goto bad;
p->type_attr_map_array = kvcalloc(p->p_types.nprim,
sizeof(*p->type_attr_map_array),
GFP_KERNEL);
if (!p->type_attr_map_array)
goto bad;
/* just in case ebitmap_init() becomes more than just a memset(0): */
for (i = 0; i < p->p_types.nprim; i++)
ebitmap_init(&p->type_attr_map_array[i]);
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = &p->type_attr_map_array[i];
if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
rc = ebitmap_read(e, fp);
if (rc)
goto bad;
}
/* add the type itself as the degenerate case */
rc = ebitmap_set_bit(e, i, 1);
if (rc)
goto bad;
}
SELinux: add boundary support and thread context assignment The purpose of this patch is to assign per-thread security context under a constraint. It enables multi-threaded server application to kick a request handler with its fair security context, and helps some of userspace object managers to handle user's request. When we assign a per-thread security context, it must not have wider permissions than the original one. Because a multi-threaded process shares a single local memory, an arbitary per-thread security context also means another thread can easily refer violated information. The constraint on a per-thread security context requires a new domain has to be equal or weaker than its original one, when it tries to assign a per-thread security context. Bounds relationship between two types is a way to ensure a domain can never have wider permission than its bounds. We can define it in two explicit or implicit ways. The first way is using new TYPEBOUNDS statement. It enables to define a boundary of types explicitly. The other one expand the concept of existing named based hierarchy. If we defines a type with "." separated name like "httpd_t.php", toolchain implicitly set its bounds on "httpd_t". This feature requires a new policy version. The 24th version (POLICYDB_VERSION_BOUNDARY) enables to ship them into kernel space, and the following patch enables to handle it. Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-28 15:35:57 +08:00
rc = policydb_bounds_sanity_check(p);
if (rc)
goto bad;
rc = 0;
out:
return rc;
bad:
policydb_destroy(p);
goto out;
}
/*
* Write a MLS level structure to a policydb binary
* representation file.
*/
static int mls_write_level(struct mls_level *l, void *fp)
{
__le32 buf[1];
int rc;
buf[0] = cpu_to_le32(l->sens);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = ebitmap_write(&l->cat, fp);
if (rc)
return rc;
return 0;
}
/*
* Write a MLS range structure to a policydb binary
* representation file.
*/
static int mls_write_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[3];
size_t items;
int rc, eq;
eq = mls_level_eq(&r->level[1], &r->level[0]);
if (eq)
items = 2;
else
items = 3;
buf[0] = cpu_to_le32(items-1);
buf[1] = cpu_to_le32(r->level[0].sens);
if (!eq)
buf[2] = cpu_to_le32(r->level[1].sens);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = ebitmap_write(&r->level[0].cat, fp);
if (rc)
return rc;
if (!eq) {
rc = ebitmap_write(&r->level[1].cat, fp);
if (rc)
return rc;
}
return 0;
}
static int sens_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct level_datum *levdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(levdatum->isalias);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = mls_write_level(levdatum->level, fp);
if (rc)
return rc;
return 0;
}
static int cat_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct cat_datum *catdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[3];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(catdatum->value);
buf[2] = cpu_to_le32(catdatum->isalias);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int role_trans_write(struct policydb *p, void *fp)
{
struct role_trans *r = p->role_tr;
struct role_trans *tr;
selinux: fix wrong buffer types in policydb.c Two places used u32 where there should have been __le32. Fixes sparse warnings: CHECK [...]/security/selinux/ss/services.c [...]/security/selinux/ss/policydb.c:2669:16: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2669:16: expected unsigned int [...]/security/selinux/ss/policydb.c:2669:16: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2674:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2674:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2674:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2675:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2675:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2675:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2676:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2676:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2676:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2681:32: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2681:32: expected unsigned int [...]/security/selinux/ss/policydb.c:2681:32: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2701:16: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2701:16: expected unsigned int [...]/security/selinux/ss/policydb.c:2701:16: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2706:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2706:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2706:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2707:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2707:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2707:24: got restricted __le32 [usertype] Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Reviewed-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-01-17 02:45:57 +08:00
__le32 buf[3];
size_t nel;
int rc;
nel = 0;
for (tr = r; tr; tr = tr->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (tr = r; tr; tr = tr->next) {
buf[0] = cpu_to_le32(tr->role);
buf[1] = cpu_to_le32(tr->type);
buf[2] = cpu_to_le32(tr->new_role);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
buf[0] = cpu_to_le32(tr->tclass);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
}
}
return 0;
}
static int role_allow_write(struct role_allow *r, void *fp)
{
struct role_allow *ra;
selinux: fix wrong buffer types in policydb.c Two places used u32 where there should have been __le32. Fixes sparse warnings: CHECK [...]/security/selinux/ss/services.c [...]/security/selinux/ss/policydb.c:2669:16: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2669:16: expected unsigned int [...]/security/selinux/ss/policydb.c:2669:16: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2674:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2674:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2674:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2675:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2675:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2675:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2676:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2676:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2676:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2681:32: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2681:32: expected unsigned int [...]/security/selinux/ss/policydb.c:2681:32: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2701:16: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2701:16: expected unsigned int [...]/security/selinux/ss/policydb.c:2701:16: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2706:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2706:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2706:24: got restricted __le32 [usertype] [...]/security/selinux/ss/policydb.c:2707:24: warning: incorrect type in assignment (different base types) [...]/security/selinux/ss/policydb.c:2707:24: expected unsigned int [...]/security/selinux/ss/policydb.c:2707:24: got restricted __le32 [usertype] Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Reviewed-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-01-17 02:45:57 +08:00
__le32 buf[2];
size_t nel;
int rc;
nel = 0;
for (ra = r; ra; ra = ra->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (ra = r; ra; ra = ra->next) {
buf[0] = cpu_to_le32(ra->role);
buf[1] = cpu_to_le32(ra->new_role);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
}
return 0;
}
/*
* Write a security context structure
* to a policydb binary representation file.
*/
static int context_write(struct policydb *p, struct context *c,
void *fp)
{
int rc;
__le32 buf[3];
buf[0] = cpu_to_le32(c->user);
buf[1] = cpu_to_le32(c->role);
buf[2] = cpu_to_le32(c->type);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&c->range, fp);
if (rc)
return rc;
return 0;
}
/*
* The following *_write functions are used to
* write the symbol data to a policy database
* binary representation file.
*/
static int perm_write(void *vkey, void *datum, void *fp)
{
char *key = vkey;
struct perm_datum *perdatum = datum;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(perdatum->value);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int common_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct common_datum *comdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[4];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(comdatum->value);
buf[2] = cpu_to_le32(comdatum->permissions.nprim);
buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
if (rc)
return rc;
return 0;
}
static int type_set_write(struct type_set *t, void *fp)
{
int rc;
__le32 buf[1];
if (ebitmap_write(&t->types, fp))
return -EINVAL;
if (ebitmap_write(&t->negset, fp))
return -EINVAL;
buf[0] = cpu_to_le32(t->flags);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return -EINVAL;
return 0;
}
static int write_cons_helper(struct policydb *p, struct constraint_node *node,
void *fp)
{
struct constraint_node *c;
struct constraint_expr *e;
__le32 buf[3];
u32 nel;
int rc;
for (c = node; c; c = c->next) {
nel = 0;
for (e = c->expr; e; e = e->next)
nel++;
buf[0] = cpu_to_le32(c->permissions);
buf[1] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
for (e = c->expr; e; e = e->next) {
buf[0] = cpu_to_le32(e->expr_type);
buf[1] = cpu_to_le32(e->attr);
buf[2] = cpu_to_le32(e->op);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
switch (e->expr_type) {
case CEXPR_NAMES:
rc = ebitmap_write(&e->names, fp);
if (rc)
return rc;
if (p->policyvers >=
POLICYDB_VERSION_CONSTRAINT_NAMES) {
rc = type_set_write(e->type_names, fp);
if (rc)
return rc;
}
break;
default:
break;
}
}
}
return 0;
}
static int class_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct class_datum *cladatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
struct constraint_node *c;
__le32 buf[6];
u32 ncons;
size_t len, len2;
int rc;
len = strlen(key);
if (cladatum->comkey)
len2 = strlen(cladatum->comkey);
else
len2 = 0;
ncons = 0;
for (c = cladatum->constraints; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(len2);
buf[2] = cpu_to_le32(cladatum->value);
buf[3] = cpu_to_le32(cladatum->permissions.nprim);
if (cladatum->permissions.table)
buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
else
buf[4] = 0;
buf[5] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 6, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
if (cladatum->comkey) {
rc = put_entry(cladatum->comkey, 1, len2, fp);
if (rc)
return rc;
}
rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->constraints, fp);
if (rc)
return rc;
/* write out the validatetrans rule */
ncons = 0;
for (c = cladatum->validatetrans; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->validatetrans, fp);
if (rc)
return rc;
SELinux: allow default source/target selectors for user/role/range When new objects are created we have great and flexible rules to determine the type of the new object. We aren't quite as flexible or mature when it comes to determining the user, role, and range. This patch adds a new ability to specify the place a new objects user, role, and range should come from. For users and roles it can come from either the source or the target of the operation. aka for files the user can either come from the source (the running process and todays default) or it can come from the target (aka the parent directory of the new file) examples always are done with directory context: system_u:object_r:mnt_t:s0-s0:c0.c512 process context: unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 [no rule] unconfined_u:object_r:mnt_t:s0 test_none [default user source] unconfined_u:object_r:mnt_t:s0 test_user_source [default user target] system_u:object_r:mnt_t:s0 test_user_target [default role source] unconfined_u:unconfined_r:mnt_t:s0 test_role_source [default role target] unconfined_u:object_r:mnt_t:s0 test_role_target [default range source low] unconfined_u:object_r:mnt_t:s0 test_range_source_low [default range source high] unconfined_u:object_r:mnt_t:s0:c0.c1023 test_range_source_high [default range source low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c1023 test_range_source_low-high [default range target low] unconfined_u:object_r:mnt_t:s0 test_range_target_low [default range target high] unconfined_u:object_r:mnt_t:s0:c0.c512 test_range_target_high [default range target low-high] unconfined_u:object_r:mnt_t:s0-s0:c0.c512 test_range_target_low-high Signed-off-by: Eric Paris <eparis@redhat.com>
2012-03-21 02:35:12 +08:00
if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
buf[0] = cpu_to_le32(cladatum->default_user);
buf[1] = cpu_to_le32(cladatum->default_role);
buf[2] = cpu_to_le32(cladatum->default_range);
rc = put_entry(buf, sizeof(uint32_t), 3, fp);
if (rc)
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
buf[0] = cpu_to_le32(cladatum->default_type);
rc = put_entry(buf, sizeof(uint32_t), 1, fp);
if (rc)
return rc;
}
return 0;
}
static int role_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct role_datum *role = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(role->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(role->bounds);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->dominates, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->types, fp);
if (rc)
return rc;
return 0;
}
static int type_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct type_datum *typdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[4];
int rc;
size_t items, len;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(typdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 properties = 0;
if (typdatum->primary)
properties |= TYPEDATUM_PROPERTY_PRIMARY;
if (typdatum->attribute)
properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
buf[items++] = cpu_to_le32(properties);
buf[items++] = cpu_to_le32(typdatum->bounds);
} else {
buf[items++] = cpu_to_le32(typdatum->primary);
}
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int user_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct user_datum *usrdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(usrdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(usrdatum->bounds);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&usrdatum->roles, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&usrdatum->range, fp);
if (rc)
return rc;
rc = mls_write_level(&usrdatum->dfltlevel, fp);
if (rc)
return rc;
return 0;
}
static int (*write_f[SYM_NUM]) (void *key, void *datum,
void *datap) =
{
common_write,
class_write,
role_write,
type_write,
user_write,
cond_write_bool,
sens_write,
cat_write,
};
static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
unsigned int i, j, rc;
size_t nel, len;
__be64 prefixbuf[1];
__le32 buf[3];
u32 nodebuf[8];
struct ocontext *c;
for (i = 0; i < info->ocon_num; i++) {
nel = 0;
for (c = p->ocontexts[i]; c; c = c->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = p->ocontexts[i]; c; c = c->next) {
switch (i) {
case OCON_ISID:
buf[0] = cpu_to_le32(c->sid[0]);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FS:
case OCON_NETIF:
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
rc = context_write(p, &c->context[1], fp);
if (rc)
return rc;
break;
case OCON_PORT:
buf[0] = cpu_to_le32(c->u.port.protocol);
buf[1] = cpu_to_le32(c->u.port.low_port);
buf[2] = cpu_to_le32(c->u.port.high_port);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE:
nodebuf[0] = c->u.node.addr; /* network order */
nodebuf[1] = c->u.node.mask; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FSUSE:
buf[0] = cpu_to_le32(c->v.behavior);
len = strlen(c->u.name);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE6:
for (j = 0; j < 4; j++)
nodebuf[j] = c->u.node6.addr[j]; /* network order */
for (j = 0; j < 4; j++)
nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 8, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_IBPKEY:
/* subnet_prefix is in CPU order */
prefixbuf[0] = cpu_to_be64(c->u.ibpkey.subnet_prefix);
rc = put_entry(prefixbuf, sizeof(u64), 1, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(c->u.ibpkey.low_pkey);
buf[1] = cpu_to_le32(c->u.ibpkey.high_pkey);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_IBENDPORT:
len = strlen(c->u.ibendport.dev_name);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(c->u.ibendport.port);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(c->u.ibendport.dev_name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
}
}
}
return 0;
}
static int genfs_write(struct policydb *p, void *fp)
{
struct genfs *genfs;
struct ocontext *c;
size_t len;
__le32 buf[1];
int rc;
len = 0;
for (genfs = p->genfs; genfs; genfs = genfs->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (genfs = p->genfs; genfs; genfs = genfs->next) {
len = strlen(genfs->fstype);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(genfs->fstype, 1, len, fp);
if (rc)
return rc;
len = 0;
for (c = genfs->head; c; c = c->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = genfs->head; c; c = c->next) {
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(c->v.sclass);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
}
}
return 0;
}
static int hashtab_cnt(void *key, void *data, void *ptr)
{
int *cnt = ptr;
*cnt = *cnt + 1;
return 0;
}
static int range_write_helper(void *key, void *data, void *ptr)
{
__le32 buf[2];
struct range_trans *rt = key;
struct mls_range *r = data;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
int rc;
buf[0] = cpu_to_le32(rt->source_type);
buf[1] = cpu_to_le32(rt->target_type);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
buf[0] = cpu_to_le32(rt->target_class);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
}
rc = mls_write_range_helper(r, fp);
if (rc)
return rc;
return 0;
}
static int range_write(struct policydb *p, void *fp)
{
__le32 buf[1];
int rc, nel;
struct policy_data pd;
pd.p = p;
pd.fp = fp;
/* count the number of entries in the hashtab */
nel = 0;
rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
if (rc)
return rc;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
/* actually write all of the entries */
rc = hashtab_map(p->range_tr, range_write_helper, &pd);
if (rc)
return rc;
return 0;
}
static int filename_write_helper(void *key, void *data, void *ptr)
{
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
struct filename_trans_key *ft = key;
struct filename_trans_datum *datum = data;
struct ebitmap_node *node;
void *fp = ptr;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
__le32 buf[4];
int rc;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
u32 bit, len = strlen(ft->name);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
do {
ebitmap_for_each_positive_bit(&datum->stypes, node, bit) {
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
rc = put_entry(ft->name, sizeof(char), len, fp);
if (rc)
return rc;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
buf[0] = cpu_to_le32(bit + 1);
buf[1] = cpu_to_le32(ft->ttype);
buf[2] = cpu_to_le32(ft->tclass);
buf[3] = cpu_to_le32(datum->otype);
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
}
datum = datum->next;
} while (unlikely(datum));
return 0;
}
static int filename_trans_write(struct policydb *p, void *fp)
{
__le32 buf[1];
int rc;
if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
return 0;
selinux: optimize storage of filename transitions In these rules, each rule with the same (target type, target class, filename) values is (in practice) always mapped to the same result type. Therefore, it is much more efficient to group the rules by (ttype, tclass, filename). Thus, this patch drops the stype field from the key and changes the datum to be a linked list of one or more structures that contain a result type and an ebitmap of source types that map the given target to the given result type under the given filename. The size of the hash table is also incremented to 2048 to be more optimal for Fedora policy (which currently has ~2500 unique (ttype, tclass, filename) tuples, regardless of whether the 'unconfined' module is enabled). Not only does this dramtically reduce memory usage when the policy contains a lot of unconfined domains (ergo a lot of filename based transitions), but it also slightly reduces memory usage of strongly confined policies (modeled on Fedora policy with 'unconfined' module disabled) and significantly reduces lookup times of these rules on Fedora (roughly matches the performance of the rhashtable conversion patch [1] posted recently to selinux@vger.kernel.org). An obvious next step is to change binary policy format to match this layout, so that disk space is also saved. However, since that requires more work (including matching userspace changes) and this patch is already beneficial on its own, I'm posting it separately. Performance/memory usage comparison: Kernel | Policy load | Policy load | Mem usage | Mem usage | openbench | | (-unconfined) | | (-unconfined) | (createfiles) -----------------|-------------|---------------|-----------|---------------|-------------- reference | 1,30s | 0,91s | 90MB | 77MB | 55 us/file rhashtable patch | 0.98s | 0,85s | 85MB | 75MB | 38 us/file this patch | 0,95s | 0,87s | 75MB | 75MB | 40 us/file (Memory usage is measured after boot. With SELinux disabled the memory usage was ~60MB on the same system.) [1] https://lore.kernel.org/selinux/20200116213937.77795-1-dev@lynxeye.de/T/ Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-02-18 19:27:34 +08:00
buf[0] = cpu_to_le32(p->filename_trans_count);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = hashtab_map(p->filename_trans, filename_write_helper, fp);
if (rc)
return rc;
return 0;
}
/*
* Write the configuration data in a policy database
* structure to a policy database binary representation
* file.
*/
int policydb_write(struct policydb *p, void *fp)
{
unsigned int i, num_syms;
int rc;
__le32 buf[4];
u32 config;
size_t len;
struct policydb_compat_info *info;
/*
* refuse to write policy older than compressed avtab
* to simplify the writer. There are other tests dropped
* since we assume this throughout the writer code. Be
* careful if you ever try to remove this restriction
*/
if (p->policyvers < POLICYDB_VERSION_AVTAB) {
pr_err("SELinux: refusing to write policy version %d."
" Because it is less than version %d\n", p->policyvers,
POLICYDB_VERSION_AVTAB);
return -EINVAL;
}
config = 0;
if (p->mls_enabled)
config |= POLICYDB_CONFIG_MLS;
if (p->reject_unknown)
config |= REJECT_UNKNOWN;
if (p->allow_unknown)
config |= ALLOW_UNKNOWN;
/* Write the magic number and string identifiers. */
buf[0] = cpu_to_le32(POLICYDB_MAGIC);
len = strlen(POLICYDB_STRING);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(POLICYDB_STRING, 1, len, fp);
if (rc)
return rc;
/* Write the version, config, and table sizes. */
info = policydb_lookup_compat(p->policyvers);
if (!info) {
pr_err("SELinux: compatibility lookup failed for policy "
"version %d", p->policyvers);
return -EINVAL;
}
buf[0] = cpu_to_le32(p->policyvers);
buf[1] = cpu_to_le32(config);
buf[2] = cpu_to_le32(info->sym_num);
buf[3] = cpu_to_le32(info->ocon_num);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
rc = ebitmap_write(&p->policycaps, fp);
if (rc)
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
rc = ebitmap_write(&p->permissive_map, fp);
if (rc)
return rc;
}
num_syms = info->sym_num;
for (i = 0; i < num_syms; i++) {
struct policy_data pd;
pd.fp = fp;
pd.p = p;
buf[0] = cpu_to_le32(p->symtab[i].nprim);
buf[1] = cpu_to_le32(p->symtab[i].table->nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
if (rc)
return rc;
}
rc = avtab_write(p, &p->te_avtab, fp);
if (rc)
return rc;
rc = cond_write_list(p, fp);
if (rc)
return rc;
rc = role_trans_write(p, fp);
if (rc)
return rc;
rc = role_allow_write(p->role_allow, fp);
if (rc)
return rc;
rc = filename_trans_write(p, fp);
if (rc)
return rc;
rc = ocontext_write(p, info, fp);
if (rc)
return rc;
rc = genfs_write(p, fp);
if (rc)
return rc;
rc = range_write(p, fp);
if (rc)
return rc;
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = &p->type_attr_map_array[i];
rc = ebitmap_write(e, fp);
if (rc)
return rc;
}
return 0;
}