kernel_optimize_test/sound/pci/als4000.c

1038 lines
31 KiB
C
Raw Normal View History

/*
* card-als4000.c - driver for Avance Logic ALS4000 based soundcards.
* Copyright (C) 2000 by Bart Hartgers <bart@etpmod.phys.tue.nl>,
* Jaroslav Kysela <perex@perex.cz>
* Copyright (C) 2002, 2008 by Andreas Mohr <hw7oshyuv3001@sneakemail.com>
*
* Framework borrowed from Massimo Piccioni's card-als100.c.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* NOTES
*
* Since Avance does not provide any meaningful documentation, and I
* bought an ALS4000 based soundcard, I was forced to base this driver
* on reverse engineering.
*
* Note: this is no longer true (thank you!):
* pretty verbose chip docu (ALS4000a.PDF) can be found on the ALSA web site.
* Page numbers stated anywhere below with the "SPECS_PAGE:" tag
* refer to: ALS4000a.PDF specs Ver 1.0, May 28th, 1998.
*
* The ALS4000 seems to be the PCI-cousin of the ALS100. It contains an
* ALS100-like SB DSP/mixer, an OPL3 synth, a MPU401 and a gameport
* interface. These subsystems can be mapped into ISA io-port space,
* using the PCI-interface. In addition, the PCI-bit provides DMA and IRQ
* services to the subsystems.
*
* While ALS4000 is very similar to a SoundBlaster, the differences in
* DMA and capturing require more changes to the SoundBlaster than
* desirable, so I made this separate driver.
*
* The ALS4000 can do real full duplex playback/capture.
*
* FMDAC:
* - 0x4f -> port 0x14
* - port 0x15 |= 1
*
* Enable/disable 3D sound:
* - 0x50 -> port 0x14
* - change bit 6 (0x40) of port 0x15
*
* Set QSound:
* - 0xdb -> port 0x14
* - set port 0x15:
* 0x3e (mode 3), 0x3c (mode 2), 0x3a (mode 1), 0x38 (mode 0)
*
* Set KSound:
* - value -> some port 0x0c0d
*
* ToDo:
* - by default, don't enable legacy game and use PCI game I/O
* - power management? (card can do voice wakeup according to datasheet!!)
*/
#include <linux/io.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/gameport.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/initval.h>
MODULE_AUTHOR("Bart Hartgers <bart@etpmod.phys.tue.nl>, Andreas Mohr");
MODULE_DESCRIPTION("Avance Logic ALS4000");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Avance Logic,ALS4000}}");
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for ALS4000 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for ALS4000 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable ALS4000 soundcard.");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address for ALS4000 soundcard. (0 = disabled)");
#endif
struct snd_card_als4000 {
/* most frequent access first */
unsigned long iobase;
struct pci_dev *pci;
struct snd_sb *chip;
#ifdef SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
};
static const struct pci_device_id snd_als4000_ids[] = {
{ 0x4005, 0x4000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ALS4000 */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_als4000_ids);
enum als4k_iobase_t {
/* IOx: B == Byte, W = Word, D = DWord; SPECS_PAGE: 37 */
ALS4K_IOD_00_AC97_ACCESS = 0x00,
ALS4K_IOW_04_AC97_READ = 0x04,
ALS4K_IOB_06_AC97_STATUS = 0x06,
ALS4K_IOB_07_IRQSTATUS = 0x07,
ALS4K_IOD_08_GCR_DATA = 0x08,
ALS4K_IOB_0C_GCR_INDEX = 0x0c,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU = 0x0e,
ALS4K_IOB_10_ADLIB_ADDR0 = 0x10,
ALS4K_IOB_11_ADLIB_ADDR1 = 0x11,
ALS4K_IOB_12_ADLIB_ADDR2 = 0x12,
ALS4K_IOB_13_ADLIB_ADDR3 = 0x13,
ALS4K_IOB_14_MIXER_INDEX = 0x14,
ALS4K_IOB_15_MIXER_DATA = 0x15,
ALS4K_IOB_16_ESP_RESET = 0x16,
ALS4K_IOB_16_ACK_FOR_CR1E = 0x16, /* 2nd function */
ALS4K_IOB_18_OPL_ADDR0 = 0x18,
ALS4K_IOB_19_OPL_ADDR1 = 0x19,
ALS4K_IOB_1A_ESP_RD_DATA = 0x1a,
ALS4K_IOB_1C_ESP_CMD_DATA = 0x1c,
ALS4K_IOB_1C_ESP_WR_STATUS = 0x1c, /* 2nd function */
ALS4K_IOB_1E_ESP_RD_STATUS8 = 0x1e,
ALS4K_IOB_1F_ESP_RD_STATUS16 = 0x1f,
ALS4K_IOB_20_ESP_GAMEPORT_200 = 0x20,
ALS4K_IOB_21_ESP_GAMEPORT_201 = 0x21,
ALS4K_IOB_30_MIDI_DATA = 0x30,
ALS4K_IOB_31_MIDI_STATUS = 0x31,
ALS4K_IOB_31_MIDI_COMMAND = 0x31, /* 2nd function */
};
enum als4k_iobase_0e_t {
ALS4K_IOB_0E_MPU_IRQ = 0x10,
ALS4K_IOB_0E_CR1E_IRQ = 0x40,
ALS4K_IOB_0E_SB_DMA_IRQ = 0x80,
};
enum als4k_gcr_t { /* all registers 32bit wide; SPECS_PAGE: 38 to 42 */
ALS4K_GCR8C_MISC_CTRL = 0x8c,
ALS4K_GCR90_TEST_MODE_REG = 0x90,
ALS4K_GCR91_DMA0_ADDR = 0x91,
ALS4K_GCR92_DMA0_MODE_COUNT = 0x92,
ALS4K_GCR93_DMA1_ADDR = 0x93,
ALS4K_GCR94_DMA1_MODE_COUNT = 0x94,
ALS4K_GCR95_DMA3_ADDR = 0x95,
ALS4K_GCR96_DMA3_MODE_COUNT = 0x96,
ALS4K_GCR99_DMA_EMULATION_CTRL = 0x99,
ALS4K_GCRA0_FIFO1_CURRENT_ADDR = 0xa0,
ALS4K_GCRA1_FIFO1_STATUS_BYTECOUNT = 0xa1,
ALS4K_GCRA2_FIFO2_PCIADDR = 0xa2,
ALS4K_GCRA3_FIFO2_COUNT = 0xa3,
ALS4K_GCRA4_FIFO2_CURRENT_ADDR = 0xa4,
ALS4K_GCRA5_FIFO1_STATUS_BYTECOUNT = 0xa5,
ALS4K_GCRA6_PM_CTRL = 0xa6,
ALS4K_GCRA7_PCI_ACCESS_STORAGE = 0xa7,
ALS4K_GCRA8_LEGACY_CFG1 = 0xa8,
ALS4K_GCRA9_LEGACY_CFG2 = 0xa9,
ALS4K_GCRFF_DUMMY_SCRATCH = 0xff,
};
enum als4k_gcr8c_t {
ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE = 0x8000,
ALS4K_GCR8C_CHIP_REV_MASK = 0xf0000
};
static inline void snd_als4k_iobase_writeb(unsigned long iobase,
enum als4k_iobase_t reg,
u8 val)
{
outb(val, iobase + reg);
}
static inline void snd_als4k_iobase_writel(unsigned long iobase,
enum als4k_iobase_t reg,
u32 val)
{
outl(val, iobase + reg);
}
static inline u8 snd_als4k_iobase_readb(unsigned long iobase,
enum als4k_iobase_t reg)
{
return inb(iobase + reg);
}
static inline u32 snd_als4k_iobase_readl(unsigned long iobase,
enum als4k_iobase_t reg)
{
return inl(iobase + reg);
}
static inline void snd_als4k_gcr_write_addr(unsigned long iobase,
enum als4k_gcr_t reg,
u32 val)
{
snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
snd_als4k_iobase_writel(iobase, ALS4K_IOD_08_GCR_DATA, val);
}
static inline void snd_als4k_gcr_write(struct snd_sb *sb,
enum als4k_gcr_t reg,
u32 val)
{
snd_als4k_gcr_write_addr(sb->alt_port, reg, val);
}
static inline u32 snd_als4k_gcr_read_addr(unsigned long iobase,
enum als4k_gcr_t reg)
{
/* SPECS_PAGE: 37/38 */
snd_als4k_iobase_writeb(iobase, ALS4K_IOB_0C_GCR_INDEX, reg);
return snd_als4k_iobase_readl(iobase, ALS4K_IOD_08_GCR_DATA);
}
static inline u32 snd_als4k_gcr_read(struct snd_sb *sb, enum als4k_gcr_t reg)
{
return snd_als4k_gcr_read_addr(sb->alt_port, reg);
}
enum als4k_cr_t { /* all registers 8bit wide; SPECS_PAGE: 20 to 23 */
ALS4K_CR0_SB_CONFIG = 0x00,
ALS4K_CR2_MISC_CONTROL = 0x02,
ALS4K_CR3_CONFIGURATION = 0x03,
ALS4K_CR17_FIFO_STATUS = 0x17,
ALS4K_CR18_ESP_MAJOR_VERSION = 0x18,
ALS4K_CR19_ESP_MINOR_VERSION = 0x19,
ALS4K_CR1A_MPU401_UART_MODE_CONTROL = 0x1a,
ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO = 0x1c,
ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI = 0x1d,
ALS4K_CR1E_FIFO2_CONTROL = 0x1e, /* secondary PCM FIFO (recording) */
ALS4K_CR3A_MISC_CONTROL = 0x3a,
ALS4K_CR3B_CRC32_BYTE0 = 0x3b, /* for testing, activate via CR3A */
ALS4K_CR3C_CRC32_BYTE1 = 0x3c,
ALS4K_CR3D_CRC32_BYTE2 = 0x3d,
ALS4K_CR3E_CRC32_BYTE3 = 0x3e,
};
enum als4k_cr0_t {
ALS4K_CR0_DMA_CONTIN_MODE_CTRL = 0x02, /* IRQ/FIFO controlled for 0/1 */
ALS4K_CR0_DMA_90H_MODE_CTRL = 0x04, /* IRQ/FIFO controlled for 0/1 */
ALS4K_CR0_MX80_81_REG_WRITE_ENABLE = 0x80,
};
static inline void snd_als4_cr_write(struct snd_sb *chip,
enum als4k_cr_t reg,
u8 data)
{
/* Control Register is reg | 0xc0 (bit 7, 6 set) on sbmixer_index
* NOTE: assumes chip->mixer_lock to be locked externally already!
* SPECS_PAGE: 6 */
snd_sbmixer_write(chip, reg | 0xc0, data);
}
static inline u8 snd_als4_cr_read(struct snd_sb *chip,
enum als4k_cr_t reg)
{
/* NOTE: assumes chip->mixer_lock to be locked externally already! */
return snd_sbmixer_read(chip, reg | 0xc0);
}
static void snd_als4000_set_rate(struct snd_sb *chip, unsigned int rate)
{
if (!(chip->mode & SB_RATE_LOCK)) {
snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT);
snd_sbdsp_command(chip, rate>>8);
snd_sbdsp_command(chip, rate);
}
}
static inline void snd_als4000_set_capture_dma(struct snd_sb *chip,
dma_addr_t addr, unsigned size)
{
/* SPECS_PAGE: 40 */
snd_als4k_gcr_write(chip, ALS4K_GCRA2_FIFO2_PCIADDR, addr);
snd_als4k_gcr_write(chip, ALS4K_GCRA3_FIFO2_COUNT, (size-1));
}
static inline void snd_als4000_set_playback_dma(struct snd_sb *chip,
dma_addr_t addr,
unsigned size)
{
/* SPECS_PAGE: 38 */
snd_als4k_gcr_write(chip, ALS4K_GCR91_DMA0_ADDR, addr);
snd_als4k_gcr_write(chip, ALS4K_GCR92_DMA0_MODE_COUNT,
(size-1)|0x180000);
}
#define ALS4000_FORMAT_SIGNED (1<<0)
#define ALS4000_FORMAT_16BIT (1<<1)
#define ALS4000_FORMAT_STEREO (1<<2)
static int snd_als4000_get_format(struct snd_pcm_runtime *runtime)
{
int result;
result = 0;
if (snd_pcm_format_signed(runtime->format))
result |= ALS4000_FORMAT_SIGNED;
if (snd_pcm_format_physical_width(runtime->format) == 16)
result |= ALS4000_FORMAT_16BIT;
if (runtime->channels > 1)
result |= ALS4000_FORMAT_STEREO;
return result;
}
/* structure for setting up playback */
static const struct {
unsigned char dsp_cmd, dma_on, dma_off, format;
} playback_cmd_vals[]={
/* ALS4000_FORMAT_U8_MONO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S8_MONO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_MONO },
/* ALS4000_FORMAT_S16L_MONO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_MONO },
/* ALS4000_FORMAT_U8_STEREO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S8_STEREO */
{ SB_DSP4_OUT8_AI, SB_DSP_DMA8_ON, SB_DSP_DMA8_OFF, SB_DSP4_MODE_SIGN_STEREO },
/* ALS4000_FORMAT_U16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_UNS_STEREO },
/* ALS4000_FORMAT_S16L_STEREO */
{ SB_DSP4_OUT16_AI, SB_DSP_DMA16_ON, SB_DSP_DMA16_OFF, SB_DSP4_MODE_SIGN_STEREO },
};
#define playback_cmd(chip) (playback_cmd_vals[(chip)->playback_format])
/* structure for setting up capture */
enum { CMD_WIDTH8=0x04, CMD_SIGNED=0x10, CMD_MONO=0x80, CMD_STEREO=0xA0 };
static const unsigned char capture_cmd_vals[]=
{
CMD_WIDTH8|CMD_MONO, /* ALS4000_FORMAT_U8_MONO */
CMD_WIDTH8|CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S8_MONO */
CMD_MONO, /* ALS4000_FORMAT_U16L_MONO */
CMD_SIGNED|CMD_MONO, /* ALS4000_FORMAT_S16L_MONO */
CMD_WIDTH8|CMD_STEREO, /* ALS4000_FORMAT_U8_STEREO */
CMD_WIDTH8|CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S8_STEREO */
CMD_STEREO, /* ALS4000_FORMAT_U16L_STEREO */
CMD_SIGNED|CMD_STEREO, /* ALS4000_FORMAT_S16L_STEREO */
};
#define capture_cmd(chip) (capture_cmd_vals[(chip)->capture_format])
static int snd_als4000_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_als4000_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_als4000_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long size;
unsigned count;
chip->capture_format = snd_als4000_get_format(runtime);
size = snd_pcm_lib_buffer_bytes(substream);
count = snd_pcm_lib_period_bytes(substream);
if (chip->capture_format & ALS4000_FORMAT_16BIT)
count >>= 1;
count--;
spin_lock_irq(&chip->reg_lock);
snd_als4000_set_rate(chip, runtime->rate);
snd_als4000_set_capture_dma(chip, runtime->dma_addr, size);
spin_unlock_irq(&chip->reg_lock);
spin_lock_irq(&chip->mixer_lock);
snd_als4_cr_write(chip, ALS4K_CR1C_FIFO2_BLOCK_LENGTH_LO, count & 0xff);
snd_als4_cr_write(chip, ALS4K_CR1D_FIFO2_BLOCK_LENGTH_HI, count >> 8);
spin_unlock_irq(&chip->mixer_lock);
return 0;
}
static int snd_als4000_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long size;
unsigned count;
chip->playback_format = snd_als4000_get_format(runtime);
size = snd_pcm_lib_buffer_bytes(substream);
count = snd_pcm_lib_period_bytes(substream);
if (chip->playback_format & ALS4000_FORMAT_16BIT)
count >>= 1;
count--;
/* FIXME: from second playback on, there's a lot more clicks and pops
* involved here than on first playback. Fiddling with
* tons of different settings didn't help (DMA, speaker on/off,
* reordering, ...). Something seems to get enabled on playback
* that I haven't found out how to disable again, which then causes
* the switching pops to reach the speakers the next time here. */
spin_lock_irq(&chip->reg_lock);
snd_als4000_set_rate(chip, runtime->rate);
snd_als4000_set_playback_dma(chip, runtime->dma_addr, size);
/* SPEAKER_ON not needed, since dma_on seems to also enable speaker */
/* snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON); */
snd_sbdsp_command(chip, playback_cmd(chip).dsp_cmd);
snd_sbdsp_command(chip, playback_cmd(chip).format);
snd_sbdsp_command(chip, count & 0xff);
snd_sbdsp_command(chip, count >> 8);
snd_sbdsp_command(chip, playback_cmd(chip).dma_off);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_als4000_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
/* FIXME race condition in here!!!
chip->mode non-atomic update gets consistently protected
by reg_lock always, _except_ for this place!!
Probably need to take reg_lock as outer (or inner??) lock, too.
(or serialize both lock operations? probably not, though... - racy?)
*/
spin_lock(&chip->mixer_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_CAPTURE;
snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
capture_cmd(chip));
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->mode &= ~SB_RATE_LOCK_CAPTURE;
snd_als4_cr_write(chip, ALS4K_CR1E_FIFO2_CONTROL,
capture_cmd(chip));
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&chip->mixer_lock);
return result;
}
static int snd_als4000_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
int result = 0;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
chip->mode |= SB_RATE_LOCK_PLAYBACK;
snd_sbdsp_command(chip, playback_cmd(chip).dma_on);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
snd_sbdsp_command(chip, playback_cmd(chip).dma_off);
chip->mode &= ~SB_RATE_LOCK_PLAYBACK;
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return result;
}
static snd_pcm_uframes_t snd_als4000_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned int result;
spin_lock(&chip->reg_lock);
result = snd_als4k_gcr_read(chip, ALS4K_GCRA4_FIFO2_CURRENT_ADDR);
spin_unlock(&chip->reg_lock);
result &= 0xffff;
return bytes_to_frames( substream->runtime, result );
}
static snd_pcm_uframes_t snd_als4000_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
unsigned result;
spin_lock(&chip->reg_lock);
result = snd_als4k_gcr_read(chip, ALS4K_GCRA0_FIFO1_CURRENT_ADDR);
spin_unlock(&chip->reg_lock);
result &= 0xffff;
return bytes_to_frames( substream->runtime, result );
}
/* FIXME: this IRQ routine doesn't really support IRQ sharing (we always
* return IRQ_HANDLED no matter whether we actually had an IRQ flag or not).
* ALS4000a.PDF writes that while ACKing IRQ in PCI block will *not* ACK
* the IRQ in the SB core, ACKing IRQ in SB block *will* ACK the PCI IRQ
* register (alt_port + ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU). Probably something
* could be optimized here to query/write one register only...
* And even if both registers need to be queried, then there's still the
* question of whether it's actually correct to ACK PCI IRQ before reading
* SB IRQ like we do now, since ALS4000a.PDF mentions that PCI IRQ will *clear*
* SB IRQ status.
* (hmm, SPECS_PAGE: 38 mentions it the other way around!)
* And do we *really* need the lock here for *reading* SB_DSP4_IRQSTATUS??
* */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t snd_als4000_interrupt(int irq, void *dev_id)
{
struct snd_sb *chip = dev_id;
unsigned pci_irqstatus;
unsigned sb_irqstatus;
/* find out which bit of the ALS4000 PCI block produced the interrupt,
SPECS_PAGE: 38, 5 */
pci_irqstatus = snd_als4k_iobase_readb(chip->alt_port,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU);
if ((pci_irqstatus & ALS4K_IOB_0E_SB_DMA_IRQ)
&& (chip->playback_substream)) /* playback */
snd_pcm_period_elapsed(chip->playback_substream);
if ((pci_irqstatus & ALS4K_IOB_0E_CR1E_IRQ)
&& (chip->capture_substream)) /* capturing */
snd_pcm_period_elapsed(chip->capture_substream);
if ((pci_irqstatus & ALS4K_IOB_0E_MPU_IRQ)
&& (chip->rmidi)) /* MPU401 interrupt */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
/* ACK the PCI block IRQ */
snd_als4k_iobase_writeb(chip->alt_port,
ALS4K_IOB_0E_IRQTYPE_SB_CR1E_MPU, pci_irqstatus);
spin_lock(&chip->mixer_lock);
/* SPECS_PAGE: 20 */
sb_irqstatus = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS);
spin_unlock(&chip->mixer_lock);
if (sb_irqstatus & SB_IRQTYPE_8BIT)
snd_sb_ack_8bit(chip);
if (sb_irqstatus & SB_IRQTYPE_16BIT)
snd_sb_ack_16bit(chip);
if (sb_irqstatus & SB_IRQTYPE_MPUIN)
inb(chip->mpu_port);
if (sb_irqstatus & ALS4K_IRQTYPE_CR1E_DMA)
snd_als4k_iobase_readb(chip->alt_port,
ALS4K_IOB_16_ACK_FOR_CR1E);
/* dev_dbg(chip->card->dev, "als4000: irq 0x%04x 0x%04x\n",
pci_irqstatus, sb_irqstatus); */
/* only ack the things we actually handled above */
return IRQ_RETVAL(
(pci_irqstatus & (ALS4K_IOB_0E_SB_DMA_IRQ|ALS4K_IOB_0E_CR1E_IRQ|
ALS4K_IOB_0E_MPU_IRQ))
|| (sb_irqstatus & (SB_IRQTYPE_8BIT|SB_IRQTYPE_16BIT|
SB_IRQTYPE_MPUIN|ALS4K_IRQTYPE_CR1E_DMA))
);
}
/*****************************************************************/
static struct snd_pcm_hardware snd_als4000_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0
};
static struct snd_pcm_hardware snd_als4000_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE, /* formats */
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 64,
.period_bytes_max = 65536,
.periods_min = 1,
.periods_max = 1024,
.fifo_size = 0
};
/*****************************************************************/
static int snd_als4000_playback_open(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->playback_substream = substream;
runtime->hw = snd_als4000_playback;
return 0;
}
static int snd_als4000_playback_close(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
chip->playback_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
static int snd_als4000_capture_open(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
chip->capture_substream = substream;
runtime->hw = snd_als4000_capture;
return 0;
}
static int snd_als4000_capture_close(struct snd_pcm_substream *substream)
{
struct snd_sb *chip = snd_pcm_substream_chip(substream);
chip->capture_substream = NULL;
snd_pcm_lib_free_pages(substream);
return 0;
}
/******************************************************************/
static struct snd_pcm_ops snd_als4000_playback_ops = {
.open = snd_als4000_playback_open,
.close = snd_als4000_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_als4000_hw_params,
.hw_free = snd_als4000_hw_free,
.prepare = snd_als4000_playback_prepare,
.trigger = snd_als4000_playback_trigger,
.pointer = snd_als4000_playback_pointer
};
static struct snd_pcm_ops snd_als4000_capture_ops = {
.open = snd_als4000_capture_open,
.close = snd_als4000_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_als4000_hw_params,
.hw_free = snd_als4000_hw_free,
.prepare = snd_als4000_capture_prepare,
.trigger = snd_als4000_capture_trigger,
.pointer = snd_als4000_capture_pointer
};
static int snd_als4000_pcm(struct snd_sb *chip, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(chip->card, "ALS4000 DSP", device, 1, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = chip;
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_als4000_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_als4000_capture_ops);
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
64*1024, 64*1024);
chip->pcm = pcm;
return 0;
}
/******************************************************************/
static void snd_als4000_set_addr(unsigned long iobase,
unsigned int sb_io,
unsigned int mpu_io,
unsigned int opl_io,
unsigned int game_io)
{
u32 cfg1 = 0;
u32 cfg2 = 0;
if (mpu_io > 0)
cfg2 |= (mpu_io | 1) << 16;
if (sb_io > 0)
cfg2 |= (sb_io | 1);
if (game_io > 0)
cfg1 |= (game_io | 1) << 16;
if (opl_io > 0)
cfg1 |= (opl_io | 1);
snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA8_LEGACY_CFG1, cfg1);
snd_als4k_gcr_write_addr(iobase, ALS4K_GCRA9_LEGACY_CFG2, cfg2);
}
static void snd_als4000_configure(struct snd_sb *chip)
{
u8 tmp;
int i;
/* do some more configuration */
spin_lock_irq(&chip->mixer_lock);
tmp = snd_als4_cr_read(chip, ALS4K_CR0_SB_CONFIG);
snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
tmp|ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
/* always select DMA channel 0, since we do not actually use DMA
* SPECS_PAGE: 19/20 */
snd_sbmixer_write(chip, SB_DSP4_DMASETUP, SB_DMASETUP_DMA0);
snd_als4_cr_write(chip, ALS4K_CR0_SB_CONFIG,
tmp & ~ALS4K_CR0_MX80_81_REG_WRITE_ENABLE);
spin_unlock_irq(&chip->mixer_lock);
spin_lock_irq(&chip->reg_lock);
/* enable interrupts */
snd_als4k_gcr_write(chip, ALS4K_GCR8C_MISC_CTRL,
ALS4K_GCR8C_IRQ_MASK_CTRL_ENABLE);
/* SPECS_PAGE: 39 */
for (i = ALS4K_GCR91_DMA0_ADDR; i <= ALS4K_GCR96_DMA3_MODE_COUNT; ++i)
snd_als4k_gcr_write(chip, i, 0);
/* enable burst mode to prevent dropouts during high PCI bus usage */
snd_als4k_gcr_write(chip, ALS4K_GCR99_DMA_EMULATION_CTRL,
(snd_als4k_gcr_read(chip, ALS4K_GCR99_DMA_EMULATION_CTRL) & ~0x07) | 0x04);
spin_unlock_irq(&chip->reg_lock);
}
#ifdef SUPPORT_JOYSTICK
static int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev)
{
struct gameport *gp;
struct resource *r;
int io_port;
if (joystick_port[dev] == 0)
return -ENODEV;
if (joystick_port[dev] == 1) { /* auto-detect */
for (io_port = 0x200; io_port <= 0x218; io_port += 8) {
r = request_region(io_port, 8, "ALS4000 gameport");
if (r)
break;
}
} else {
io_port = joystick_port[dev];
r = request_region(io_port, 8, "ALS4000 gameport");
}
if (!r) {
dev_warn(&acard->pci->dev, "cannot reserve joystick ports\n");
return -EBUSY;
}
acard->gameport = gp = gameport_allocate_port();
if (!gp) {
dev_err(&acard->pci->dev, "cannot allocate memory for gameport\n");
release_and_free_resource(r);
return -ENOMEM;
}
gameport_set_name(gp, "ALS4000 Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(acard->pci));
gameport_set_dev_parent(gp, &acard->pci->dev);
gp->io = io_port;
gameport_set_port_data(gp, r);
/* Enable legacy joystick port */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);
gameport_register_port(acard->gameport);
return 0;
}
static void snd_als4000_free_gameport(struct snd_card_als4000 *acard)
{
if (acard->gameport) {
struct resource *r = gameport_get_port_data(acard->gameport);
gameport_unregister_port(acard->gameport);
acard->gameport = NULL;
/* disable joystick */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);
release_and_free_resource(r);
}
}
#else
static inline int snd_als4000_create_gameport(struct snd_card_als4000 *acard, int dev) { return -ENOSYS; }
static inline void snd_als4000_free_gameport(struct snd_card_als4000 *acard) { }
#endif
static void snd_card_als4000_free( struct snd_card *card )
{
struct snd_card_als4000 *acard = card->private_data;
/* make sure that interrupts are disabled */
snd_als4k_gcr_write_addr(acard->iobase, ALS4K_GCR8C_MISC_CTRL, 0);
/* free resources */
snd_als4000_free_gameport(acard);
pci_release_regions(acard->pci);
pci_disable_device(acard->pci);
}
static int snd_card_als4000_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct snd_card_als4000 *acard;
unsigned long iobase;
struct snd_sb *chip;
struct snd_opl3 *opl3;
unsigned short word;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
/* enable PCI device */
if ((err = pci_enable_device(pci)) < 0) {
return err;
}
/* check, if we can restrict PCI DMA transfers to 24 bits */
if (dma_set_mask(&pci->dev, DMA_BIT_MASK(24)) < 0 ||
dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(24)) < 0) {
dev_err(&pci->dev, "architecture does not support 24bit PCI busmaster DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
if ((err = pci_request_regions(pci, "ALS4000")) < 0) {
pci_disable_device(pci);
return err;
}
iobase = pci_resource_start(pci, 0);
pci_read_config_word(pci, PCI_COMMAND, &word);
pci_write_config_word(pci, PCI_COMMAND, word | PCI_COMMAND_IO);
pci_set_master(pci);
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
sizeof(*acard) /* private_data: acard */,
&card);
if (err < 0) {
pci_release_regions(pci);
pci_disable_device(pci);
return err;
}
acard = card->private_data;
acard->pci = pci;
acard->iobase = iobase;
card->private_free = snd_card_als4000_free;
/* disable all legacy ISA stuff */
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 0);
if ((err = snd_sbdsp_create(card,
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
pci->irq,
/* internally registered as IRQF_SHARED in case of ALS4000 SB */
snd_als4000_interrupt,
-1,
-1,
SB_HW_ALS4000,
&chip)) < 0) {
goto out_err;
}
acard->chip = chip;
chip->pci = pci;
chip->alt_port = iobase;
snd_als4000_configure(chip);
strcpy(card->driver, "ALS4000");
strcpy(card->shortname, "Avance Logic ALS4000");
sprintf(card->longname, "%s at 0x%lx, irq %i",
card->shortname, chip->alt_port, chip->irq);
if ((err = snd_mpu401_uart_new( card, 0, MPU401_HW_ALS4000,
iobase + ALS4K_IOB_30_MIDI_DATA,
MPU401_INFO_INTEGRATED |
MPU401_INFO_IRQ_HOOK,
-1, &chip->rmidi)) < 0) {
dev_err(&pci->dev, "no MPU-401 device at 0x%lx?\n",
iobase + ALS4K_IOB_30_MIDI_DATA);
goto out_err;
}
/* FIXME: ALS4000 has interesting MPU401 configuration features
* at ALS4K_CR1A_MPU401_UART_MODE_CONTROL
* (pass-thru / UART switching, fast MIDI clock, etc.),
* however there doesn't seem to be an ALSA API for this...
* SPECS_PAGE: 21 */
if ((err = snd_als4000_pcm(chip, 0)) < 0) {
goto out_err;
}
if ((err = snd_sbmixer_new(chip)) < 0) {
goto out_err;
}
if (snd_opl3_create(card,
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
iobase + ALS4K_IOB_12_ADLIB_ADDR2,
OPL3_HW_AUTO, 1, &opl3) < 0) {
dev_err(&pci->dev, "no OPL device at 0x%lx-0x%lx?\n",
iobase + ALS4K_IOB_10_ADLIB_ADDR0,
iobase + ALS4K_IOB_12_ADLIB_ADDR2);
} else {
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
goto out_err;
}
}
snd_als4000_create_gameport(acard, dev);
if ((err = snd_card_register(card)) < 0) {
goto out_err;
}
pci_set_drvdata(pci, card);
dev++;
err = 0;
goto out;
out_err:
snd_card_free(card);
out:
return err;
}
static void snd_card_als4000_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
#ifdef CONFIG_PM_SLEEP
static int snd_als4000_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct snd_card_als4000 *acard = card->private_data;
struct snd_sb *chip = acard->chip;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_sbmixer_suspend(chip);
return 0;
}
static int snd_als4000_resume(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct snd_card_als4000 *acard = card->private_data;
struct snd_sb *chip = acard->chip;
snd_als4000_configure(chip);
snd_sbdsp_reset(chip);
snd_sbmixer_resume(chip);
#ifdef SUPPORT_JOYSTICK
if (acard->gameport)
snd_als4000_set_addr(acard->iobase, 0, 0, 0, 1);
#endif
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(snd_als4000_pm, snd_als4000_suspend, snd_als4000_resume);
#define SND_ALS4000_PM_OPS &snd_als4000_pm
#else
#define SND_ALS4000_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static struct pci_driver als4000_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_als4000_ids,
.probe = snd_card_als4000_probe,
.remove = snd_card_als4000_remove,
.driver = {
.pm = SND_ALS4000_PM_OPS,
},
};
module_pci_driver(als4000_driver);