kernel_optimize_test/include/linux/random.h

78 lines
1.9 KiB
C
Raw Normal View History

/*
* include/linux/random.h
*
* Include file for the random number generator.
*/
#ifndef _LINUX_RANDOM_H
#define _LINUX_RANDOM_H
#include <uapi/linux/random.h>
extern void add_device_randomness(const void *, unsigned int);
extern void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value);
extern void add_interrupt_randomness(int irq, int irq_flags);
extern void get_random_bytes(void *buf, int nbytes);
random: add new get_random_bytes_arch() function Create a new function, get_random_bytes_arch() which will use the architecture-specific hardware random number generator if it is present. Change get_random_bytes() to not use the HW RNG, even if it is avaiable. The reason for this is that the hw random number generator is fast (if it is present), but it requires that we trust the hardware manufacturer to have not put in a back door. (For example, an increasing counter encrypted by an AES key known to the NSA.) It's unlikely that Intel (for example) was paid off by the US Government to do this, but it's impossible for them to prove otherwise --- especially since Bull Mountain is documented to use AES as a whitener. Hence, the output of an evil, trojan-horse version of RDRAND is statistically indistinguishable from an RDRAND implemented to the specifications claimed by Intel. Short of using a tunnelling electronic microscope to reverse engineer an Ivy Bridge chip and disassembling and analyzing the CPU microcode, there's no way for us to tell for sure. Since users of get_random_bytes() in the Linux kernel need to be able to support hardware systems where the HW RNG is not present, most time-sensitive users of this interface have already created their own cryptographic RNG interface which uses get_random_bytes() as a seed. So it's much better to use the HW RNG to improve the existing random number generator, by mixing in any entropy returned by the HW RNG into /dev/random's entropy pool, but to always _use_ /dev/random's entropy pool. This way we get almost of the benefits of the HW RNG without any potential liabilities. The only benefits we forgo is the speed/performance enhancements --- and generic kernel code can't depend on depend on get_random_bytes() having the speed of a HW RNG anyway. For those places that really want access to the arch-specific HW RNG, if it is available, we provide get_random_bytes_arch(). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
2012-07-05 22:35:23 +08:00
extern void get_random_bytes_arch(void *buf, int nbytes);
void generate_random_uuid(unsigned char uuid_out[16]);
#ifndef MODULE
extern const struct file_operations random_fops, urandom_fops;
#endif
unsigned int get_random_int(void);
unsigned long randomize_range(unsigned long start, unsigned long end, unsigned long len);
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:04:23 +08:00
u32 prandom_u32(void);
void prandom_bytes(void *buf, int nbytes);
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:04:23 +08:00
void prandom_seed(u32 seed);
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:04:23 +08:00
/*
* These macros are preserved for backward compatibility and should be
* removed as soon as a transition is finished.
*/
#define random32() prandom_u32()
#define srandom32(seed) prandom_seed(seed)
u32 prandom_u32_state(struct rnd_state *);
void prandom_bytes_state(struct rnd_state *state, void *buf, int nbytes);
/*
* Handle minimum values for seeds
*/
static inline u32 __seed(u32 x, u32 m)
{
return (x < m) ? x + m : x;
}
/**
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:04:23 +08:00
* prandom_seed_state - set seed for prandom_u32_state().
* @state: pointer to state structure to receive the seed.
* @seed: arbitrary 64-bit value to use as a seed.
*/
random32: rename random32 to prandom This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:04:23 +08:00
static inline void prandom_seed_state(struct rnd_state *state, u64 seed)
{
u32 i = (seed >> 32) ^ (seed << 10) ^ seed;
state->s1 = __seed(i, 1);
state->s2 = __seed(i, 7);
state->s3 = __seed(i, 15);
}
#ifdef CONFIG_ARCH_RANDOM
# include <asm/archrandom.h>
#else
static inline int arch_get_random_long(unsigned long *v)
{
return 0;
}
static inline int arch_get_random_int(unsigned int *v)
{
return 0;
}
#endif
#endif /* _LINUX_RANDOM_H */