kernel_optimize_test/kernel/sched_rt.c

722 lines
17 KiB
C
Raw Normal View History

/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
#ifdef CONFIG_SMP
static cpumask_t rt_overload_mask;
static atomic_t rto_count;
static inline int rt_overloaded(void)
{
return atomic_read(&rto_count);
}
static inline cpumask_t *rt_overload(void)
{
return &rt_overload_mask;
}
static inline void rt_set_overload(struct rq *rq)
{
cpu_set(rq->cpu, rt_overload_mask);
/*
* Make sure the mask is visible before we set
* the overload count. That is checked to determine
* if we should look at the mask. It would be a shame
* if we looked at the mask, but the mask was not
* updated yet.
*/
wmb();
atomic_inc(&rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
/* the order here really doesn't matter */
atomic_dec(&rto_count);
cpu_clear(rq->cpu, rt_overload_mask);
}
#endif /* CONFIG_SMP */
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
if (!task_has_rt_policy(curr))
return;
delta_exec = rq->clock - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec = 0;
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
curr->se.exec_start = rq->clock;
sched: cpu accounting controller (V2) Commit cfb5285660aad4931b2ebbfa902ea48a37dfffa1 removed a useful feature for us, which provided a cpu accounting resource controller. This feature would be useful if someone wants to group tasks only for accounting purpose and doesnt really want to exercise any control over their cpu consumption. The patch below reintroduces the feature. It is based on Paul Menage's original patch (Commit 62d0df64065e7c135d0002f069444fbdfc64768f), with these differences: - Removed load average information. I felt it needs more thought (esp to deal with SMP and virtualized platforms) and can be added for 2.6.25 after more discussions. - Convert group cpu usage to be nanosecond accurate (as rest of the cfs stats are) and invoke cpuacct_charge() from the respective scheduler classes - Make accounting scalable on SMP systems by splitting the usage counter to be per-cpu - Move the code from kernel/cpu_acct.c to kernel/sched.c (since the code is not big enough to warrant a new file and also this rightly needs to live inside the scheduler. Also things like accessing rq->lock while reading cpu usage becomes easier if the code lived in kernel/sched.c) The patch also modifies the cpu controller not to provide the same accounting information. Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com> Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran some simple tests like cpuspin (spin on the cpu), ran several tasks in the same group and timed them. Compared their time stamps with cpuacct.usage. Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-03 03:04:49 +08:00
cpuacct_charge(curr, delta_exec);
}
static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
{
WARN_ON(!rt_task(p));
rq->rt.rt_nr_running++;
#ifdef CONFIG_SMP
if (p->prio < rq->rt.highest_prio)
rq->rt.highest_prio = p->prio;
if (rq->rt.rt_nr_running > 1)
rt_set_overload(rq);
#endif /* CONFIG_SMP */
}
static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
{
WARN_ON(!rt_task(p));
WARN_ON(!rq->rt.rt_nr_running);
rq->rt.rt_nr_running--;
#ifdef CONFIG_SMP
if (rq->rt.rt_nr_running) {
struct rt_prio_array *array;
WARN_ON(p->prio < rq->rt.highest_prio);
if (p->prio == rq->rt.highest_prio) {
/* recalculate */
array = &rq->rt.active;
rq->rt.highest_prio =
sched_find_first_bit(array->bitmap);
} /* otherwise leave rq->highest prio alone */
} else
rq->rt.highest_prio = MAX_RT_PRIO;
if (rq->rt.rt_nr_running < 2)
rt_clear_overload(rq);
#endif /* CONFIG_SMP */
}
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
struct rt_prio_array *array = &rq->rt.active;
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
inc_cpu_load(rq, p->se.load.weight);
inc_rt_tasks(p, rq);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
{
struct rt_prio_array *array = &rq->rt.active;
update_curr_rt(rq);
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
dec_cpu_load(rq, p->se.load.weight);
dec_rt_tasks(p, rq);
}
/*
* Put task to the end of the run list without the overhead of dequeue
* followed by enqueue.
*/
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
struct rt_prio_array *array = &rq->rt.active;
list_move_tail(&p->run_list, array->queue + p->prio);
}
static void
yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);
next->se.exec_start = rq->clock;
return next;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
p->se.exec_start = 0;
}
#ifdef CONFIG_SMP
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
(cpu < 0 || cpu_isset(cpu, p->cpus_allowed)))
return 1;
return 0;
}
/* Return the second highest RT task, NULL otherwise */
static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
int cpu)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
assert_spin_locked(&rq->lock);
if (likely(rq->rt.rt_nr_running < 2))
return NULL;
idx = sched_find_first_bit(array->bitmap);
if (unlikely(idx >= MAX_RT_PRIO)) {
WARN_ON(1); /* rt_nr_running is bad */
return NULL;
}
queue = array->queue + idx;
BUG_ON(list_empty(queue));
next = list_entry(queue->next, struct task_struct, run_list);
if (unlikely(pick_rt_task(rq, next, cpu)))
goto out;
if (queue->next->next != queue) {
/* same prio task */
next = list_entry(queue->next->next, struct task_struct, run_list);
if (pick_rt_task(rq, next, cpu))
goto out;
}
retry:
/* slower, but more flexible */
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
if (unlikely(idx >= MAX_RT_PRIO))
return NULL;
queue = array->queue + idx;
BUG_ON(list_empty(queue));
list_for_each_entry(next, queue, run_list) {
if (pick_rt_task(rq, next, cpu))
goto out;
}
goto retry;
out:
return next;
}
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task,
struct rq *this_rq)
{
struct rq *lowest_rq = NULL;
int cpu;
int tries;
cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
/*
* Scan each rq for the lowest prio.
*/
for_each_cpu_mask(cpu, *cpu_mask) {
struct rq *rq = &per_cpu(runqueues, cpu);
if (cpu == this_rq->cpu)
continue;
/* We look for lowest RT prio or non-rt CPU */
if (rq->rt.highest_prio >= MAX_RT_PRIO) {
lowest_rq = rq;
break;
}
/* no locking for now */
if (rq->rt.highest_prio > task->prio &&
(!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
lowest_rq = rq;
}
}
if (!lowest_rq)
break;
/* if the prio of this runqueue changed, try again */
if (double_lock_balance(this_rq, lowest_rq)) {
/*
* We had to unlock the run queue. In
* the mean time, task could have
* migrated already or had its affinity changed.
* Also make sure that it wasn't scheduled on its rq.
*/
if (unlikely(task_rq(task) != this_rq ||
!cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
task_running(this_rq, task) ||
!task->se.on_rq)) {
spin_unlock(&lowest_rq->lock);
lowest_rq = NULL;
break;
}
}
/* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio > task->prio)
break;
/* try again */
spin_unlock(&lowest_rq->lock);
lowest_rq = NULL;
}
return lowest_rq;
}
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
* of lesser priority.
*/
static int push_rt_task(struct rq *this_rq)
{
struct task_struct *next_task;
struct rq *lowest_rq;
int ret = 0;
int paranoid = RT_MAX_TRIES;
assert_spin_locked(&this_rq->lock);
next_task = pick_next_highest_task_rt(this_rq, -1);
if (!next_task)
return 0;
retry:
if (unlikely(next_task == this_rq->curr)) {
WARN_ON(1);
return 0;
}
/*
* It's possible that the next_task slipped in of
* higher priority than current. If that's the case
* just reschedule current.
*/
if (unlikely(next_task->prio < this_rq->curr->prio)) {
resched_task(this_rq->curr);
return 0;
}
/* We might release this_rq lock */
get_task_struct(next_task);
/* find_lock_lowest_rq locks the rq if found */
lowest_rq = find_lock_lowest_rq(next_task, this_rq);
if (!lowest_rq) {
struct task_struct *task;
/*
* find lock_lowest_rq releases this_rq->lock
* so it is possible that next_task has changed.
* If it has, then try again.
*/
task = pick_next_highest_task_rt(this_rq, -1);
if (unlikely(task != next_task) && task && paranoid--) {
put_task_struct(next_task);
next_task = task;
goto retry;
}
goto out;
}
assert_spin_locked(&lowest_rq->lock);
deactivate_task(this_rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
activate_task(lowest_rq, next_task, 0);
resched_task(lowest_rq->curr);
spin_unlock(&lowest_rq->lock);
ret = 1;
out:
put_task_struct(next_task);
return ret;
}
/*
* TODO: Currently we just use the second highest prio task on
* the queue, and stop when it can't migrate (or there's
* no more RT tasks). There may be a case where a lower
* priority RT task has a different affinity than the
* higher RT task. In this case the lower RT task could
* possibly be able to migrate where as the higher priority
* RT task could not. We currently ignore this issue.
* Enhancements are welcome!
*/
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
while (push_rt_task(rq))
;
}
static int pull_rt_task(struct rq *this_rq)
{
struct task_struct *next;
struct task_struct *p;
struct rq *src_rq;
cpumask_t *rto_cpumask;
int this_cpu = this_rq->cpu;
int cpu;
int ret = 0;
assert_spin_locked(&this_rq->lock);
/*
* If cpusets are used, and we have overlapping
* run queue cpusets, then this algorithm may not catch all.
* This is just the price you pay on trying to keep
* dirtying caches down on large SMP machines.
*/
if (likely(!rt_overloaded()))
return 0;
next = pick_next_task_rt(this_rq);
rto_cpumask = rt_overload();
for_each_cpu_mask(cpu, *rto_cpumask) {
if (this_cpu == cpu)
continue;
src_rq = cpu_rq(cpu);
if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
/*
* It is possible that overlapping cpusets
* will miss clearing a non overloaded runqueue.
* Clear it now.
*/
if (double_lock_balance(this_rq, src_rq)) {
/* unlocked our runqueue lock */
struct task_struct *old_next = next;
next = pick_next_task_rt(this_rq);
if (next != old_next)
ret = 1;
}
if (likely(src_rq->rt.rt_nr_running <= 1))
/*
* Small chance that this_rq->curr changed
* but it's really harmless here.
*/
rt_clear_overload(this_rq);
else
/*
* Heh, the src_rq is now overloaded, since
* we already have the src_rq lock, go straight
* to pulling tasks from it.
*/
goto try_pulling;
spin_unlock(&src_rq->lock);
continue;
}
/*
* We can potentially drop this_rq's lock in
* double_lock_balance, and another CPU could
* steal our next task - hence we must cause
* the caller to recalculate the next task
* in that case:
*/
if (double_lock_balance(this_rq, src_rq)) {
struct task_struct *old_next = next;
next = pick_next_task_rt(this_rq);
if (next != old_next)
ret = 1;
}
/*
* Are there still pullable RT tasks?
*/
if (src_rq->rt.rt_nr_running <= 1) {
spin_unlock(&src_rq->lock);
continue;
}
try_pulling:
p = pick_next_highest_task_rt(src_rq, this_cpu);
/*
* Do we have an RT task that preempts
* the to-be-scheduled task?
*/
if (p && (!next || (p->prio < next->prio))) {
WARN_ON(p == src_rq->curr);
WARN_ON(!p->se.on_rq);
/*
* There's a chance that p is higher in priority
* than what's currently running on its cpu.
* This is just that p is wakeing up and hasn't
* had a chance to schedule. We only pull
* p if it is lower in priority than the
* current task on the run queue or
* this_rq next task is lower in prio than
* the current task on that rq.
*/
if (p->prio < src_rq->curr->prio ||
(next && next->prio < src_rq->curr->prio))
goto bail;
ret = 1;
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
/*
* We continue with the search, just in
* case there's an even higher prio task
* in another runqueue. (low likelyhood
* but possible)
*/
/*
* Update next so that we won't pick a task
* on another cpu with a priority lower (or equal)
* than the one we just picked.
*/
next = p;
}
bail:
spin_unlock(&src_rq->lock);
}
return ret;
}
static void schedule_balance_rt(struct rq *rq,
struct task_struct *prev)
{
/* Try to pull RT tasks here if we lower this rq's prio */
if (unlikely(rt_task(prev)) &&
rq->rt.highest_prio > prev->prio)
pull_rt_task(rq);
}
static void schedule_tail_balance_rt(struct rq *rq)
{
/*
* If we have more than one rt_task queued, then
* see if we can push the other rt_tasks off to other CPUS.
* Note we may release the rq lock, and since
* the lock was owned by prev, we need to release it
* first via finish_lock_switch and then reaquire it here.
*/
if (unlikely(rq->rt.rt_nr_running > 1)) {
spin_lock_irq(&rq->lock);
push_rt_tasks(rq);
spin_unlock_irq(&rq->lock);
}
}
/*
* Load-balancing iterator. Note: while the runqueue stays locked
* during the whole iteration, the current task might be
* dequeued so the iterator has to be dequeue-safe. Here we
* achieve that by always pre-iterating before returning
* the current task:
*/
static struct task_struct *load_balance_start_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
head = array->queue + idx;
curr = head->prev;
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
rq->rt.rt_load_balance_curr = curr;
return p;
}
static struct task_struct *load_balance_next_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = rq->rt.rt_load_balance_idx;
head = rq->rt.rt_load_balance_head;
curr = rq->rt.rt_load_balance_curr;
/*
* If we arrived back to the head again then
* iterate to the next queue (if any):
*/
if (unlikely(head == curr)) {
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
if (next_idx >= MAX_RT_PRIO)
return NULL;
idx = next_idx;
head = array->queue + idx;
curr = head->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
}
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_curr = curr;
return p;
}
sched: simplify move_tasks() The move_tasks() function is currently multiplexed with two distinct capabilities: 1. attempt to move a specified amount of weighted load from one run queue to another; and 2. attempt to move a specified number of tasks from one run queue to another. The first of these capabilities is used in two places, load_balance() and load_balance_idle(), and in both of these cases the return value of move_tasks() is used purely to decide if tasks/load were moved and no notice of the actual number of tasks moved is taken. The second capability is used in exactly one place, active_load_balance(), to attempt to move exactly one task and, as before, the return value is only used as an indicator of success or failure. This multiplexing of sched_task() was introduced, by me, as part of the smpnice patches and was motivated by the fact that the alternative, one function to move specified load and one to move a single task, would have led to two functions of roughly the same complexity as the old move_tasks() (or the new balance_tasks()). However, the new modular design of the new CFS scheduler allows a simpler solution to be adopted and this patch addresses that solution by: 1. adding a new function, move_one_task(), to be used by active_load_balance(); and 2. making move_tasks() a single purpose function that tries to move a specified weighted load and returns 1 for success and 0 for failure. One of the consequences of these changes is that neither move_one_task() or the new move_tasks() care how many tasks sched_class.load_balance() moves and this enables its interface to be simplified by returning the amount of load moved as its result and removing the load_moved pointer from the argument list. This helps simplify the new move_tasks() and slightly reduces the amount of work done in each of sched_class.load_balance()'s implementations. Further simplification, e.g. changes to balance_tasks(), are possible but (slightly) complicated by the special needs of load_balance_fair() so I've left them to a later patch (if this one gets accepted). NB Since move_tasks() gets called with two run queue locks held even small reductions in overhead are worthwhile. [ mingo@elte.hu ] this change also reduces code size nicely: text data bss dec hex filename 39216 3618 24 42858 a76a sched.o.before 39173 3618 24 42815 a73f sched.o.after Signed-off-by: Peter Williams <pwil3058@bigpond.net.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 17:16:46 +08:00
static unsigned long
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
/* pass 'busiest' rq argument into
* load_balance_[start|next]_rt iterators
*/
rt_rq_iterator.arg = busiest;
return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
idle, all_pinned, this_best_prio, &rt_rq_iterator);
}
static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
rt_rq_iterator.arg = busiest;
return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
&rt_rq_iterator);
}
#else /* CONFIG_SMP */
# define schedule_tail_balance_rt(rq) do { } while (0)
# define schedule_balance_rt(rq, prev) do { } while (0)
#endif /* CONFIG_SMP */
static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->time_slice)
return;
p->time_slice = DEF_TIMESLICE;
/*
* Requeue to the end of queue if we are not the only element
* on the queue:
*/
if (p->run_list.prev != p->run_list.next) {
requeue_task_rt(rq, p);
set_tsk_need_resched(p);
}
}
static void set_curr_task_rt(struct rq *rq)
{
struct task_struct *p = rq->curr;
p->se.exec_start = rq->clock;
}
const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
#ifdef CONFIG_SMP
.load_balance = load_balance_rt,
.move_one_task = move_one_task_rt,
#endif
.set_curr_task = set_curr_task_rt,
.task_tick = task_tick_rt,
};