forked from luck/tmp_suning_uos_patched
RDS: Documentation
This file documents the specifics of the RDS sockets API, as well as covering some of the details of its internal implementation. Signed-off-by: Andy Grover <andy.grover@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
55b7ed0b58
commit
0c5f9b8830
356
Documentation/networking/rds.txt
Normal file
356
Documentation/networking/rds.txt
Normal file
|
@ -0,0 +1,356 @@
|
|||
|
||||
Overview
|
||||
========
|
||||
|
||||
This readme tries to provide some background on the hows and whys of RDS,
|
||||
and will hopefully help you find your way around the code.
|
||||
|
||||
In addition, please see this email about RDS origins:
|
||||
http://oss.oracle.com/pipermail/rds-devel/2007-November/000228.html
|
||||
|
||||
RDS Architecture
|
||||
================
|
||||
|
||||
RDS provides reliable, ordered datagram delivery by using a single
|
||||
reliable connection between any two nodes in the cluster. This allows
|
||||
applications to use a single socket to talk to any other process in the
|
||||
cluster - so in a cluster with N processes you need N sockets, in contrast
|
||||
to N*N if you use a connection-oriented socket transport like TCP.
|
||||
|
||||
RDS is not Infiniband-specific; it was designed to support different
|
||||
transports. The current implementation used to support RDS over TCP as well
|
||||
as IB. Work is in progress to support RDS over iWARP, and using DCE to
|
||||
guarantee no dropped packets on Ethernet, it may be possible to use RDS over
|
||||
UDP in the future.
|
||||
|
||||
The high-level semantics of RDS from the application's point of view are
|
||||
|
||||
* Addressing
|
||||
RDS uses IPv4 addresses and 16bit port numbers to identify
|
||||
the end point of a connection. All socket operations that involve
|
||||
passing addresses between kernel and user space generally
|
||||
use a struct sockaddr_in.
|
||||
|
||||
The fact that IPv4 addresses are used does not mean the underlying
|
||||
transport has to be IP-based. In fact, RDS over IB uses a
|
||||
reliable IB connection; the IP address is used exclusively to
|
||||
locate the remote node's GID (by ARPing for the given IP).
|
||||
|
||||
The port space is entirely independent of UDP, TCP or any other
|
||||
protocol.
|
||||
|
||||
* Socket interface
|
||||
RDS sockets work *mostly* as you would expect from a BSD
|
||||
socket. The next section will cover the details. At any rate,
|
||||
all I/O is performed through the standard BSD socket API.
|
||||
Some additions like zerocopy support are implemented through
|
||||
control messages, while other extensions use the getsockopt/
|
||||
setsockopt calls.
|
||||
|
||||
Sockets must be bound before you can send or receive data.
|
||||
This is needed because binding also selects a transport and
|
||||
attaches it to the socket. Once bound, the transport assignment
|
||||
does not change. RDS will tolerate IPs moving around (eg in
|
||||
a active-active HA scenario), but only as long as the address
|
||||
doesn't move to a different transport.
|
||||
|
||||
* sysctls
|
||||
RDS supports a number of sysctls in /proc/sys/net/rds
|
||||
|
||||
|
||||
Socket Interface
|
||||
================
|
||||
|
||||
AF_RDS, PF_RDS, SOL_RDS
|
||||
These constants haven't been assigned yet, because RDS isn't in
|
||||
mainline yet. Currently, the kernel module assigns some constant
|
||||
and publishes it to user space through two sysctl files
|
||||
/proc/sys/net/rds/pf_rds
|
||||
/proc/sys/net/rds/sol_rds
|
||||
|
||||
fd = socket(PF_RDS, SOCK_SEQPACKET, 0);
|
||||
This creates a new, unbound RDS socket.
|
||||
|
||||
setsockopt(SOL_SOCKET): send and receive buffer size
|
||||
RDS honors the send and receive buffer size socket options.
|
||||
You are not allowed to queue more than SO_SNDSIZE bytes to
|
||||
a socket. A message is queued when sendmsg is called, and
|
||||
it leaves the queue when the remote system acknowledges
|
||||
its arrival.
|
||||
|
||||
The SO_RCVSIZE option controls the maximum receive queue length.
|
||||
This is a soft limit rather than a hard limit - RDS will
|
||||
continue to accept and queue incoming messages, even if that
|
||||
takes the queue length over the limit. However, it will also
|
||||
mark the port as "congested" and send a congestion update to
|
||||
the source node. The source node is supposed to throttle any
|
||||
processes sending to this congested port.
|
||||
|
||||
bind(fd, &sockaddr_in, ...)
|
||||
This binds the socket to a local IP address and port, and a
|
||||
transport.
|
||||
|
||||
sendmsg(fd, ...)
|
||||
Sends a message to the indicated recipient. The kernel will
|
||||
transparently establish the underlying reliable connection
|
||||
if it isn't up yet.
|
||||
|
||||
An attempt to send a message that exceeds SO_SNDSIZE will
|
||||
return with -EMSGSIZE
|
||||
|
||||
An attempt to send a message that would take the total number
|
||||
of queued bytes over the SO_SNDSIZE threshold will return
|
||||
EAGAIN.
|
||||
|
||||
An attempt to send a message to a destination that is marked
|
||||
as "congested" will return ENOBUFS.
|
||||
|
||||
recvmsg(fd, ...)
|
||||
Receives a message that was queued to this socket. The sockets
|
||||
recv queue accounting is adjusted, and if the queue length
|
||||
drops below SO_SNDSIZE, the port is marked uncongested, and
|
||||
a congestion update is sent to all peers.
|
||||
|
||||
Applications can ask the RDS kernel module to receive
|
||||
notifications via control messages (for instance, there is a
|
||||
notification when a congestion update arrived, or when a RDMA
|
||||
operation completes). These notifications are received through
|
||||
the msg.msg_control buffer of struct msghdr. The format of the
|
||||
messages is described in manpages.
|
||||
|
||||
poll(fd)
|
||||
RDS supports the poll interface to allow the application
|
||||
to implement async I/O.
|
||||
|
||||
POLLIN handling is pretty straightforward. When there's an
|
||||
incoming message queued to the socket, or a pending notification,
|
||||
we signal POLLIN.
|
||||
|
||||
POLLOUT is a little harder. Since you can essentially send
|
||||
to any destination, RDS will always signal POLLOUT as long as
|
||||
there's room on the send queue (ie the number of bytes queued
|
||||
is less than the sendbuf size).
|
||||
|
||||
However, the kernel will refuse to accept messages to
|
||||
a destination marked congested - in this case you will loop
|
||||
forever if you rely on poll to tell you what to do.
|
||||
This isn't a trivial problem, but applications can deal with
|
||||
this - by using congestion notifications, and by checking for
|
||||
ENOBUFS errors returned by sendmsg.
|
||||
|
||||
setsockopt(SOL_RDS, RDS_CANCEL_SENT_TO, &sockaddr_in)
|
||||
This allows the application to discard all messages queued to a
|
||||
specific destination on this particular socket.
|
||||
|
||||
This allows the application to cancel outstanding messages if
|
||||
it detects a timeout. For instance, if it tried to send a message,
|
||||
and the remote host is unreachable, RDS will keep trying forever.
|
||||
The application may decide it's not worth it, and cancel the
|
||||
operation. In this case, it would use RDS_CANCEL_SENT_TO to
|
||||
nuke any pending messages.
|
||||
|
||||
|
||||
RDMA for RDS
|
||||
============
|
||||
|
||||
see rds-rdma(7) manpage (available in rds-tools)
|
||||
|
||||
|
||||
Congestion Notifications
|
||||
========================
|
||||
|
||||
see rds(7) manpage
|
||||
|
||||
|
||||
RDS Protocol
|
||||
============
|
||||
|
||||
Message header
|
||||
|
||||
The message header is a 'struct rds_header' (see rds.h):
|
||||
Fields:
|
||||
h_sequence:
|
||||
per-packet sequence number
|
||||
h_ack:
|
||||
piggybacked acknowledgment of last packet received
|
||||
h_len:
|
||||
length of data, not including header
|
||||
h_sport:
|
||||
source port
|
||||
h_dport:
|
||||
destination port
|
||||
h_flags:
|
||||
CONG_BITMAP - this is a congestion update bitmap
|
||||
ACK_REQUIRED - receiver must ack this packet
|
||||
RETRANSMITTED - packet has previously been sent
|
||||
h_credit:
|
||||
indicate to other end of connection that
|
||||
it has more credits available (i.e. there is
|
||||
more send room)
|
||||
h_padding[4]:
|
||||
unused, for future use
|
||||
h_csum:
|
||||
header checksum
|
||||
h_exthdr:
|
||||
optional data can be passed here. This is currently used for
|
||||
passing RDMA-related information.
|
||||
|
||||
ACK and retransmit handling
|
||||
|
||||
One might think that with reliable IB connections you wouldn't need
|
||||
to ack messages that have been received. The problem is that IB
|
||||
hardware generates an ack message before it has DMAed the message
|
||||
into memory. This creates a potential message loss if the HCA is
|
||||
disabled for any reason between when it sends the ack and before
|
||||
the message is DMAed and processed. This is only a potential issue
|
||||
if another HCA is available for fail-over.
|
||||
|
||||
Sending an ack immediately would allow the sender to free the sent
|
||||
message from their send queue quickly, but could cause excessive
|
||||
traffic to be used for acks. RDS piggybacks acks on sent data
|
||||
packets. Ack-only packets are reduced by only allowing one to be
|
||||
in flight at a time, and by the sender only asking for acks when
|
||||
its send buffers start to fill up. All retransmissions are also
|
||||
acked.
|
||||
|
||||
Flow Control
|
||||
|
||||
RDS's IB transport uses a credit-based mechanism to verify that
|
||||
there is space in the peer's receive buffers for more data. This
|
||||
eliminates the need for hardware retries on the connection.
|
||||
|
||||
Congestion
|
||||
|
||||
Messages waiting in the receive queue on the receiving socket
|
||||
are accounted against the sockets SO_RCVBUF option value. Only
|
||||
the payload bytes in the message are accounted for. If the
|
||||
number of bytes queued equals or exceeds rcvbuf then the socket
|
||||
is congested. All sends attempted to this socket's address
|
||||
should return block or return -EWOULDBLOCK.
|
||||
|
||||
Applications are expected to be reasonably tuned such that this
|
||||
situation very rarely occurs. An application encountering this
|
||||
"back-pressure" is considered a bug.
|
||||
|
||||
This is implemented by having each node maintain bitmaps which
|
||||
indicate which ports on bound addresses are congested. As the
|
||||
bitmap changes it is sent through all the connections which
|
||||
terminate in the local address of the bitmap which changed.
|
||||
|
||||
The bitmaps are allocated as connections are brought up. This
|
||||
avoids allocation in the interrupt handling path which queues
|
||||
sages on sockets. The dense bitmaps let transports send the
|
||||
entire bitmap on any bitmap change reasonably efficiently. This
|
||||
is much easier to implement than some finer-grained
|
||||
communication of per-port congestion. The sender does a very
|
||||
inexpensive bit test to test if the port it's about to send to
|
||||
is congested or not.
|
||||
|
||||
|
||||
RDS Transport Layer
|
||||
==================
|
||||
|
||||
As mentioned above, RDS is not IB-specific. Its code is divided
|
||||
into a general RDS layer and a transport layer.
|
||||
|
||||
The general layer handles the socket API, congestion handling,
|
||||
loopback, stats, usermem pinning, and the connection state machine.
|
||||
|
||||
The transport layer handles the details of the transport. The IB
|
||||
transport, for example, handles all the queue pairs, work requests,
|
||||
CM event handlers, and other Infiniband details.
|
||||
|
||||
|
||||
RDS Kernel Structures
|
||||
=====================
|
||||
|
||||
struct rds_message
|
||||
aka possibly "rds_outgoing", the generic RDS layer copies data to
|
||||
be sent and sets header fields as needed, based on the socket API.
|
||||
This is then queued for the individual connection and sent by the
|
||||
connection's transport.
|
||||
struct rds_incoming
|
||||
a generic struct referring to incoming data that can be handed from
|
||||
the transport to the general code and queued by the general code
|
||||
while the socket is awoken. It is then passed back to the transport
|
||||
code to handle the actual copy-to-user.
|
||||
struct rds_socket
|
||||
per-socket information
|
||||
struct rds_connection
|
||||
per-connection information
|
||||
struct rds_transport
|
||||
pointers to transport-specific functions
|
||||
struct rds_statistics
|
||||
non-transport-specific statistics
|
||||
struct rds_cong_map
|
||||
wraps the raw congestion bitmap, contains rbnode, waitq, etc.
|
||||
|
||||
Connection management
|
||||
=====================
|
||||
|
||||
Connections may be in UP, DOWN, CONNECTING, DISCONNECTING, and
|
||||
ERROR states.
|
||||
|
||||
The first time an attempt is made by an RDS socket to send data to
|
||||
a node, a connection is allocated and connected. That connection is
|
||||
then maintained forever -- if there are transport errors, the
|
||||
connection will be dropped and re-established.
|
||||
|
||||
Dropping a connection while packets are queued will cause queued or
|
||||
partially-sent datagrams to be retransmitted when the connection is
|
||||
re-established.
|
||||
|
||||
|
||||
The send path
|
||||
=============
|
||||
|
||||
rds_sendmsg()
|
||||
struct rds_message built from incoming data
|
||||
CMSGs parsed (e.g. RDMA ops)
|
||||
transport connection alloced and connected if not already
|
||||
rds_message placed on send queue
|
||||
send worker awoken
|
||||
rds_send_worker()
|
||||
calls rds_send_xmit() until queue is empty
|
||||
rds_send_xmit()
|
||||
transmits congestion map if one is pending
|
||||
may set ACK_REQUIRED
|
||||
calls transport to send either non-RDMA or RDMA message
|
||||
(RDMA ops never retransmitted)
|
||||
rds_ib_xmit()
|
||||
allocs work requests from send ring
|
||||
adds any new send credits available to peer (h_credits)
|
||||
maps the rds_message's sg list
|
||||
piggybacks ack
|
||||
populates work requests
|
||||
post send to connection's queue pair
|
||||
|
||||
The recv path
|
||||
=============
|
||||
|
||||
rds_ib_recv_cq_comp_handler()
|
||||
looks at write completions
|
||||
unmaps recv buffer from device
|
||||
no errors, call rds_ib_process_recv()
|
||||
refill recv ring
|
||||
rds_ib_process_recv()
|
||||
validate header checksum
|
||||
copy header to rds_ib_incoming struct if start of a new datagram
|
||||
add to ibinc's fraglist
|
||||
if competed datagram:
|
||||
update cong map if datagram was cong update
|
||||
call rds_recv_incoming() otherwise
|
||||
note if ack is required
|
||||
rds_recv_incoming()
|
||||
drop duplicate packets
|
||||
respond to pings
|
||||
find the sock associated with this datagram
|
||||
add to sock queue
|
||||
wake up sock
|
||||
do some congestion calculations
|
||||
rds_recvmsg
|
||||
copy data into user iovec
|
||||
handle CMSGs
|
||||
return to application
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user