Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6

* 'linux-next' of git://git.infradead.org/ubifs-2.6:
  UBIFS: fix-up free space earlier
  UBIFS: intialize LPT earlier
  UBIFS: assert no fixup when writing a node
  UBIFS: fix clean znode counter corruption in error cases
  UBIFS: fix memory leak on error path
  UBIFS: fix shrinker object count reports
  UBIFS: fix recovery broken by the previous recovery fix
  UBIFS: amend ubifs_recover_leb interface
  UBIFS: introduce a "grouped" journal head flag
  UBIFS: supress false error messages
This commit is contained in:
Linus Torvalds 2011-06-04 07:59:32 +09:00
commit 3af91a1256
9 changed files with 136 additions and 97 deletions

View File

@ -581,6 +581,7 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
ubifs_assert(wbuf->size % c->min_io_size == 0); ubifs_assert(wbuf->size % c->min_io_size == 0);
ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
ubifs_assert(!c->ro_media && !c->ro_mount); ubifs_assert(!c->ro_media && !c->ro_mount);
ubifs_assert(!c->space_fixup);
if (c->leb_size - wbuf->offs >= c->max_write_size) if (c->leb_size - wbuf->offs >= c->max_write_size)
ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
@ -759,6 +760,7 @@ int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
ubifs_assert(!c->ro_media && !c->ro_mount); ubifs_assert(!c->ro_media && !c->ro_mount);
ubifs_assert(!c->space_fixup);
if (c->ro_error) if (c->ro_error)
return -EROFS; return -EROFS;

View File

@ -669,6 +669,7 @@ int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
out_release: out_release:
release_head(c, BASEHD); release_head(c, BASEHD);
kfree(dent);
out_ro: out_ro:
ubifs_ro_mode(c, err); ubifs_ro_mode(c, err);
if (last_reference) if (last_reference)

View File

@ -674,7 +674,7 @@ static int kill_orphans(struct ubifs_info *c)
if (IS_ERR(sleb)) { if (IS_ERR(sleb)) {
if (PTR_ERR(sleb) == -EUCLEAN) if (PTR_ERR(sleb) == -EUCLEAN)
sleb = ubifs_recover_leb(c, lnum, 0, sleb = ubifs_recover_leb(c, lnum, 0,
c->sbuf, 0); c->sbuf, -1);
if (IS_ERR(sleb)) { if (IS_ERR(sleb)) {
err = PTR_ERR(sleb); err = PTR_ERR(sleb);
break; break;

View File

@ -564,19 +564,15 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
} }
/** /**
* drop_last_node - drop the last node or group of nodes. * drop_last_group - drop the last group of nodes.
* @sleb: scanned LEB information * @sleb: scanned LEB information
* @offs: offset of dropped nodes is returned here * @offs: offset of dropped nodes is returned here
* @grouped: non-zero if whole group of nodes have to be dropped
* *
* This is a helper function for 'ubifs_recover_leb()' which drops the last * This is a helper function for 'ubifs_recover_leb()' which drops the last
* node of the scanned LEB or the last group of nodes if @grouped is not zero. * group of nodes of the scanned LEB.
* This function returns %1 if a node was dropped and %0 otherwise.
*/ */
static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped) static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
{ {
int dropped = 0;
while (!list_empty(&sleb->nodes)) { while (!list_empty(&sleb->nodes)) {
struct ubifs_scan_node *snod; struct ubifs_scan_node *snod;
struct ubifs_ch *ch; struct ubifs_ch *ch;
@ -585,17 +581,40 @@ static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
list); list);
ch = snod->node; ch = snod->node;
if (ch->group_type != UBIFS_IN_NODE_GROUP) if (ch->group_type != UBIFS_IN_NODE_GROUP)
return dropped; break;
dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
dbg_rcvry("dropping grouped node at %d:%d",
sleb->lnum, snod->offs);
*offs = snod->offs;
list_del(&snod->list);
kfree(snod);
sleb->nodes_cnt -= 1;
}
}
/**
* drop_last_node - drop the last node.
* @sleb: scanned LEB information
* @offs: offset of dropped nodes is returned here
* @grouped: non-zero if whole group of nodes have to be dropped
*
* This is a helper function for 'ubifs_recover_leb()' which drops the last
* node of the scanned LEB.
*/
static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
{
struct ubifs_scan_node *snod;
if (!list_empty(&sleb->nodes)) {
snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
list);
dbg_rcvry("dropping last node at %d:%d", sleb->lnum, snod->offs);
*offs = snod->offs; *offs = snod->offs;
list_del(&snod->list); list_del(&snod->list);
kfree(snod); kfree(snod);
sleb->nodes_cnt -= 1; sleb->nodes_cnt -= 1;
dropped = 1;
if (!grouped)
break;
} }
return dropped;
} }
/** /**
@ -604,7 +623,8 @@ static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
* @lnum: LEB number * @lnum: LEB number
* @offs: offset * @offs: offset
* @sbuf: LEB-sized buffer to use * @sbuf: LEB-sized buffer to use
* @grouped: nodes may be grouped for recovery * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
* belong to any journal head)
* *
* This function does a scan of a LEB, but caters for errors that might have * This function does a scan of a LEB, but caters for errors that might have
* been caused by the unclean unmount from which we are attempting to recover. * been caused by the unclean unmount from which we are attempting to recover.
@ -612,13 +632,14 @@ static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
* found, and a negative error code in case of failure. * found, and a negative error code in case of failure.
*/ */
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf, int grouped) int offs, void *sbuf, int jhead)
{ {
int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
struct ubifs_scan_leb *sleb; struct ubifs_scan_leb *sleb;
void *buf = sbuf + offs; void *buf = sbuf + offs;
dbg_rcvry("%d:%d", lnum, offs); dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
sleb = ubifs_start_scan(c, lnum, offs, sbuf); sleb = ubifs_start_scan(c, lnum, offs, sbuf);
if (IS_ERR(sleb)) if (IS_ERR(sleb))
@ -635,7 +656,7 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
* Scan quietly until there is an error from which we cannot * Scan quietly until there is an error from which we cannot
* recover * recover
*/ */
ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 0); ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
if (ret == SCANNED_A_NODE) { if (ret == SCANNED_A_NODE) {
/* A valid node, and not a padding node */ /* A valid node, and not a padding node */
struct ubifs_ch *ch = buf; struct ubifs_ch *ch = buf;
@ -695,59 +716,62 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
* If nodes are grouped, always drop the incomplete group at * If nodes are grouped, always drop the incomplete group at
* the end. * the end.
*/ */
drop_last_node(sleb, &offs, 1); drop_last_group(sleb, &offs);
/* if (jhead == GCHD) {
* While we are in the middle of the same min. I/O unit keep dropping /*
* nodes. So basically, what we want is to make sure that the last min. * If this LEB belongs to the GC head then while we are in the
* I/O unit where we saw the corruption is dropped completely with all * middle of the same min. I/O unit keep dropping nodes. So
* the uncorrupted node which may possibly sit there. * basically, what we want is to make sure that the last min.
* * I/O unit where we saw the corruption is dropped completely
* In other words, let's name the min. I/O unit where the corruption * with all the uncorrupted nodes which may possibly sit there.
* starts B, and the previous min. I/O unit A. The below code tries to *
* deal with a situation when half of B contains valid nodes or the end * In other words, let's name the min. I/O unit where the
* of a valid node, and the second half of B contains corrupted data or * corruption starts B, and the previous min. I/O unit A. The
* garbage. This means that UBIFS had been writing to B just before the * below code tries to deal with a situation when half of B
* power cut happened. I do not know how realistic is this scenario * contains valid nodes or the end of a valid node, and the
* that half of the min. I/O unit had been written successfully and the * second half of B contains corrupted data or garbage. This
* other half not, but this is possible in our 'failure mode emulation' * means that UBIFS had been writing to B just before the power
* infrastructure at least. * cut happened. I do not know how realistic is this scenario
* * that half of the min. I/O unit had been written successfully
* So what is the problem, why we need to drop those nodes? Whey can't * and the other half not, but this is possible in our 'failure
* we just clean-up the second half of B by putting a padding node * mode emulation' infrastructure at least.
* there? We can, and this works fine with one exception which was *
* reproduced with power cut emulation testing and happens extremely * So what is the problem, why we need to drop those nodes? Why
* rarely. The description follows, but it is worth noting that that is * can't we just clean-up the second half of B by putting a
* only about the GC head, so we could do this trick only if the bud * padding node there? We can, and this works fine with one
* belongs to the GC head, but it does not seem to be worth an * exception which was reproduced with power cut emulation
* additional "if" statement. * testing and happens extremely rarely.
* *
* So, imagine the file-system is full, we run GC which is moving valid * Imagine the file-system is full, we run GC which starts
* nodes from LEB X to LEB Y (obviously, LEB Y is the current GC head * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
* LEB). The @c->gc_lnum is -1, which means that GC will retain LEB X * the current GC head LEB). The @c->gc_lnum is -1, which means
* and will try to continue. Imagine that LEB X is currently the * that GC will retain LEB X and will try to continue. Imagine
* dirtiest LEB, and the amount of used space in LEB Y is exactly the * that LEB X is currently the dirtiest LEB, and the amount of
* same as amount of free space in LEB X. * used space in LEB Y is exactly the same as amount of free
* * space in LEB X.
* And a power cut happens when nodes are moved from LEB X to LEB Y. We *
* are here trying to recover LEB Y which is the GC head LEB. We find * And a power cut happens when nodes are moved from LEB X to
* the min. I/O unit B as described above. Then we clean-up LEB Y by * LEB Y. We are here trying to recover LEB Y which is the GC
* padding min. I/O unit. And later 'ubifs_rcvry_gc_commit()' function * head LEB. We find the min. I/O unit B as described above.
* fails, because it cannot find a dirty LEB which could be GC'd into * Then we clean-up LEB Y by padding min. I/O unit. And later
* LEB Y! Even LEB X does not match because the amount of valid nodes * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
* there does not fit the free space in LEB Y any more! And this is * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
* because of the padding node which we added to LEB Y. The * does not match because the amount of valid nodes there does
* user-visible effect of this which I once observed and analysed is * not fit the free space in LEB Y any more! And this is
* that we cannot mount the file-system with -ENOSPC error. * because of the padding node which we added to LEB Y. The
* * user-visible effect of this which I once observed and
* So obviously, to make sure that situation does not happen we should * analysed is that we cannot mount the file-system with
* free min. I/O unit B in LEB Y completely and the last used min. I/O * -ENOSPC error.
* unit in LEB Y should be A. This is basically what the below code *
* tries to do. * So obviously, to make sure that situation does not happen we
*/ * should free min. I/O unit B in LEB Y completely and the last
while (min_io_unit == round_down(offs, c->min_io_size) && * used min. I/O unit in LEB Y should be A. This is basically
min_io_unit != offs && * what the below code tries to do.
drop_last_node(sleb, &offs, grouped)); */
while (offs > min_io_unit)
drop_last_node(sleb, &offs);
}
buf = sbuf + offs; buf = sbuf + offs;
len = c->leb_size - offs; len = c->leb_size - offs;
@ -881,7 +905,7 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
} }
ubifs_scan_destroy(sleb); ubifs_scan_destroy(sleb);
} }
return ubifs_recover_leb(c, lnum, offs, sbuf, 0); return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
} }
/** /**

View File

@ -557,8 +557,7 @@ static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
* these LEBs could possibly be written to at the power cut * these LEBs could possibly be written to at the power cut
* time. * time.
*/ */
sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
b->bud->jhead != GCHD);
else else
sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
if (IS_ERR(sleb)) if (IS_ERR(sleb))

View File

@ -284,7 +284,11 @@ int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc)
long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt); long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
if (nr == 0) if (nr == 0)
return clean_zn_cnt; /*
* Due to the way UBIFS updates the clean znode counter it may
* temporarily be negative.
*/
return clean_zn_cnt >= 0 ? clean_zn_cnt : 1;
if (!clean_zn_cnt) { if (!clean_zn_cnt) {
/* /*

View File

@ -811,15 +811,18 @@ static int alloc_wbufs(struct ubifs_info *c)
c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
c->jheads[i].wbuf.jhead = i; c->jheads[i].wbuf.jhead = i;
c->jheads[i].grouped = 1;
} }
c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
/* /*
* Garbage Collector head likely contains long-term data and * Garbage Collector head likely contains long-term data and
* does not need to be synchronized by timer. * does not need to be synchronized by timer. Also GC head nodes are
* not grouped.
*/ */
c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
c->jheads[GCHD].wbuf.no_timer = 1; c->jheads[GCHD].wbuf.no_timer = 1;
c->jheads[GCHD].grouped = 0;
return 0; return 0;
} }
@ -1284,12 +1287,25 @@ static int mount_ubifs(struct ubifs_info *c)
if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
ubifs_msg("recovery needed"); ubifs_msg("recovery needed");
c->need_recovery = 1; c->need_recovery = 1;
if (!c->ro_mount) { }
err = ubifs_recover_inl_heads(c, c->sbuf);
if (err) if (c->need_recovery && !c->ro_mount) {
goto out_master; err = ubifs_recover_inl_heads(c, c->sbuf);
} if (err)
} else if (!c->ro_mount) { goto out_master;
}
err = ubifs_lpt_init(c, 1, !c->ro_mount);
if (err)
goto out_master;
if (!c->ro_mount && c->space_fixup) {
err = ubifs_fixup_free_space(c);
if (err)
goto out_master;
}
if (!c->ro_mount) {
/* /*
* Set the "dirty" flag so that if we reboot uncleanly we * Set the "dirty" flag so that if we reboot uncleanly we
* will notice this immediately on the next mount. * will notice this immediately on the next mount.
@ -1297,13 +1313,9 @@ static int mount_ubifs(struct ubifs_info *c)
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
err = ubifs_write_master(c); err = ubifs_write_master(c);
if (err) if (err)
goto out_master; goto out_lpt;
} }
err = ubifs_lpt_init(c, 1, !c->ro_mount);
if (err)
goto out_lpt;
err = dbg_check_idx_size(c, c->bi.old_idx_sz); err = dbg_check_idx_size(c, c->bi.old_idx_sz);
if (err) if (err)
goto out_lpt; goto out_lpt;
@ -1396,12 +1408,6 @@ static int mount_ubifs(struct ubifs_info *c)
} else } else
ubifs_assert(c->lst.taken_empty_lebs > 0); ubifs_assert(c->lst.taken_empty_lebs > 0);
if (!c->ro_mount && c->space_fixup) {
err = ubifs_fixup_free_space(c);
if (err)
goto out_infos;
}
err = dbg_check_filesystem(c); err = dbg_check_filesystem(c);
if (err) if (err)
goto out_infos; goto out_infos;

View File

@ -2876,12 +2876,13 @@ static void tnc_destroy_cnext(struct ubifs_info *c)
*/ */
void ubifs_tnc_close(struct ubifs_info *c) void ubifs_tnc_close(struct ubifs_info *c)
{ {
long clean_freed;
tnc_destroy_cnext(c); tnc_destroy_cnext(c);
if (c->zroot.znode) { if (c->zroot.znode) {
clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode); long n;
atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
ubifs_destroy_tnc_subtree(c->zroot.znode);
n = atomic_long_read(&c->clean_zn_cnt);
atomic_long_sub(n, &ubifs_clean_zn_cnt);
} }
kfree(c->gap_lebs); kfree(c->gap_lebs);
kfree(c->ilebs); kfree(c->ilebs);

View File

@ -722,12 +722,14 @@ struct ubifs_bud {
* struct ubifs_jhead - journal head. * struct ubifs_jhead - journal head.
* @wbuf: head's write-buffer * @wbuf: head's write-buffer
* @buds_list: list of bud LEBs belonging to this journal head * @buds_list: list of bud LEBs belonging to this journal head
* @grouped: non-zero if UBIFS groups nodes when writing to this journal head
* *
* Note, the @buds list is protected by the @c->buds_lock. * Note, the @buds list is protected by the @c->buds_lock.
*/ */
struct ubifs_jhead { struct ubifs_jhead {
struct ubifs_wbuf wbuf; struct ubifs_wbuf wbuf;
struct list_head buds_list; struct list_head buds_list;
unsigned int grouped:1;
}; };
/** /**
@ -1742,7 +1744,7 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum);
int ubifs_recover_master_node(struct ubifs_info *c); int ubifs_recover_master_node(struct ubifs_info *c);
int ubifs_write_rcvrd_mst_node(struct ubifs_info *c); int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf, int grouped); int offs, void *sbuf, int jhead);
struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf); int offs, void *sbuf);
int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf); int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf);