forked from luck/tmp_suning_uos_patched
sched: move code into kernel/sched_stats.h
create sched_stats.h and move sched.c schedstats code into it. This cleans up sched.c a bit. no code changes are caused by this patch. Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
1df21055e3
commit
425e0968a2
234
kernel/sched.c
234
kernel/sched.c
|
@ -460,134 +460,6 @@ static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
|
|||
spin_unlock_irqrestore(&rq->lock, *flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
/*
|
||||
* bump this up when changing the output format or the meaning of an existing
|
||||
* format, so that tools can adapt (or abort)
|
||||
*/
|
||||
#define SCHEDSTAT_VERSION 14
|
||||
|
||||
static int show_schedstat(struct seq_file *seq, void *v)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
||||
seq_printf(seq, "timestamp %lu\n", jiffies);
|
||||
for_each_online_cpu(cpu) {
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
#ifdef CONFIG_SMP
|
||||
struct sched_domain *sd;
|
||||
int dcnt = 0;
|
||||
#endif
|
||||
|
||||
/* runqueue-specific stats */
|
||||
seq_printf(seq,
|
||||
"cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
|
||||
cpu, rq->yld_both_empty,
|
||||
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
|
||||
rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
|
||||
rq->ttwu_cnt, rq->ttwu_local,
|
||||
rq->rq_sched_info.cpu_time,
|
||||
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
|
||||
|
||||
seq_printf(seq, "\n");
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/* domain-specific stats */
|
||||
preempt_disable();
|
||||
for_each_domain(cpu, sd) {
|
||||
enum cpu_idle_type itype;
|
||||
char mask_str[NR_CPUS];
|
||||
|
||||
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
|
||||
seq_printf(seq, "domain%d %s", dcnt++, mask_str);
|
||||
for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
|
||||
itype++) {
|
||||
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
|
||||
"%lu",
|
||||
sd->lb_cnt[itype],
|
||||
sd->lb_balanced[itype],
|
||||
sd->lb_failed[itype],
|
||||
sd->lb_imbalance[itype],
|
||||
sd->lb_gained[itype],
|
||||
sd->lb_hot_gained[itype],
|
||||
sd->lb_nobusyq[itype],
|
||||
sd->lb_nobusyg[itype]);
|
||||
}
|
||||
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
|
||||
" %lu %lu %lu\n",
|
||||
sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
|
||||
sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
|
||||
sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
|
||||
sd->ttwu_wake_remote, sd->ttwu_move_affine,
|
||||
sd->ttwu_move_balance);
|
||||
}
|
||||
preempt_enable();
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int schedstat_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
||||
char *buf = kmalloc(size, GFP_KERNEL);
|
||||
struct seq_file *m;
|
||||
int res;
|
||||
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
res = single_open(file, show_schedstat, NULL);
|
||||
if (!res) {
|
||||
m = file->private_data;
|
||||
m->buf = buf;
|
||||
m->size = size;
|
||||
} else
|
||||
kfree(buf);
|
||||
return res;
|
||||
}
|
||||
|
||||
const struct file_operations proc_schedstat_operations = {
|
||||
.open = schedstat_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
/*
|
||||
* Expects runqueue lock to be held for atomicity of update
|
||||
*/
|
||||
static inline void
|
||||
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
|
||||
{
|
||||
if (rq) {
|
||||
rq->rq_sched_info.run_delay += delta_jiffies;
|
||||
rq->rq_sched_info.pcnt++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Expects runqueue lock to be held for atomicity of update
|
||||
*/
|
||||
static inline void
|
||||
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
|
||||
{
|
||||
if (rq)
|
||||
rq->rq_sched_info.cpu_time += delta_jiffies;
|
||||
}
|
||||
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
||||
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
||||
#else /* !CONFIG_SCHEDSTATS */
|
||||
static inline void
|
||||
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
|
||||
{}
|
||||
static inline void
|
||||
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
|
||||
{}
|
||||
# define schedstat_inc(rq, field) do { } while (0)
|
||||
# define schedstat_add(rq, field, amt) do { } while (0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* this_rq_lock - lock this runqueue and disable interrupts.
|
||||
*/
|
||||
|
@ -603,111 +475,7 @@ static inline struct rq *this_rq_lock(void)
|
|||
return rq;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
||||
/*
|
||||
* Called when a process is dequeued from the active array and given
|
||||
* the cpu. We should note that with the exception of interactive
|
||||
* tasks, the expired queue will become the active queue after the active
|
||||
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
||||
* expired queue. (Interactive tasks may be requeued directly to the
|
||||
* active queue, thus delaying tasks in the expired queue from running;
|
||||
* see scheduler_tick()).
|
||||
*
|
||||
* This function is only called from sched_info_arrive(), rather than
|
||||
* dequeue_task(). Even though a task may be queued and dequeued multiple
|
||||
* times as it is shuffled about, we're really interested in knowing how
|
||||
* long it was from the *first* time it was queued to the time that it
|
||||
* finally hit a cpu.
|
||||
*/
|
||||
static inline void sched_info_dequeued(struct task_struct *t)
|
||||
{
|
||||
t->sched_info.last_queued = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a task finally hits the cpu. We can now calculate how
|
||||
* long it was waiting to run. We also note when it began so that we
|
||||
* can keep stats on how long its timeslice is.
|
||||
*/
|
||||
static void sched_info_arrive(struct task_struct *t)
|
||||
{
|
||||
unsigned long now = jiffies, delta_jiffies = 0;
|
||||
|
||||
if (t->sched_info.last_queued)
|
||||
delta_jiffies = now - t->sched_info.last_queued;
|
||||
sched_info_dequeued(t);
|
||||
t->sched_info.run_delay += delta_jiffies;
|
||||
t->sched_info.last_arrival = now;
|
||||
t->sched_info.pcnt++;
|
||||
|
||||
rq_sched_info_arrive(task_rq(t), delta_jiffies);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a process is queued into either the active or expired
|
||||
* array. The time is noted and later used to determine how long we
|
||||
* had to wait for us to reach the cpu. Since the expired queue will
|
||||
* become the active queue after active queue is empty, without dequeuing
|
||||
* and requeuing any tasks, we are interested in queuing to either. It
|
||||
* is unusual but not impossible for tasks to be dequeued and immediately
|
||||
* requeued in the same or another array: this can happen in sched_yield(),
|
||||
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
||||
* to runqueue.
|
||||
*
|
||||
* This function is only called from enqueue_task(), but also only updates
|
||||
* the timestamp if it is already not set. It's assumed that
|
||||
* sched_info_dequeued() will clear that stamp when appropriate.
|
||||
*/
|
||||
static inline void sched_info_queued(struct task_struct *t)
|
||||
{
|
||||
if (unlikely(sched_info_on()))
|
||||
if (!t->sched_info.last_queued)
|
||||
t->sched_info.last_queued = jiffies;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a process ceases being the active-running process, either
|
||||
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
||||
*/
|
||||
static inline void sched_info_depart(struct task_struct *t)
|
||||
{
|
||||
unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
|
||||
|
||||
t->sched_info.cpu_time += delta_jiffies;
|
||||
rq_sched_info_depart(task_rq(t), delta_jiffies);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when tasks are switched involuntarily due, typically, to expiring
|
||||
* their time slice. (This may also be called when switching to or from
|
||||
* the idle task.) We are only called when prev != next.
|
||||
*/
|
||||
static inline void
|
||||
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||||
{
|
||||
struct rq *rq = task_rq(prev);
|
||||
|
||||
/*
|
||||
* prev now departs the cpu. It's not interesting to record
|
||||
* stats about how efficient we were at scheduling the idle
|
||||
* process, however.
|
||||
*/
|
||||
if (prev != rq->idle)
|
||||
sched_info_depart(prev);
|
||||
|
||||
if (next != rq->idle)
|
||||
sched_info_arrive(next);
|
||||
}
|
||||
static inline void
|
||||
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||||
{
|
||||
if (unlikely(sched_info_on()))
|
||||
__sched_info_switch(prev, next);
|
||||
}
|
||||
#else
|
||||
#define sched_info_queued(t) do { } while (0)
|
||||
#define sched_info_switch(t, next) do { } while (0)
|
||||
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
||||
#include "sched_stats.h"
|
||||
|
||||
/*
|
||||
* Adding/removing a task to/from a priority array:
|
||||
|
|
235
kernel/sched_stats.h
Normal file
235
kernel/sched_stats.h
Normal file
|
@ -0,0 +1,235 @@
|
|||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
/*
|
||||
* bump this up when changing the output format or the meaning of an existing
|
||||
* format, so that tools can adapt (or abort)
|
||||
*/
|
||||
#define SCHEDSTAT_VERSION 14
|
||||
|
||||
static int show_schedstat(struct seq_file *seq, void *v)
|
||||
{
|
||||
int cpu;
|
||||
|
||||
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
||||
seq_printf(seq, "timestamp %lu\n", jiffies);
|
||||
for_each_online_cpu(cpu) {
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
#ifdef CONFIG_SMP
|
||||
struct sched_domain *sd;
|
||||
int dcnt = 0;
|
||||
#endif
|
||||
|
||||
/* runqueue-specific stats */
|
||||
seq_printf(seq,
|
||||
"cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
|
||||
cpu, rq->yld_both_empty,
|
||||
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
|
||||
rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
|
||||
rq->ttwu_cnt, rq->ttwu_local,
|
||||
rq->rq_sched_info.cpu_time,
|
||||
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
|
||||
|
||||
seq_printf(seq, "\n");
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/* domain-specific stats */
|
||||
preempt_disable();
|
||||
for_each_domain(cpu, sd) {
|
||||
enum cpu_idle_type itype;
|
||||
char mask_str[NR_CPUS];
|
||||
|
||||
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
|
||||
seq_printf(seq, "domain%d %s", dcnt++, mask_str);
|
||||
for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
|
||||
itype++) {
|
||||
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
|
||||
"%lu",
|
||||
sd->lb_cnt[itype],
|
||||
sd->lb_balanced[itype],
|
||||
sd->lb_failed[itype],
|
||||
sd->lb_imbalance[itype],
|
||||
sd->lb_gained[itype],
|
||||
sd->lb_hot_gained[itype],
|
||||
sd->lb_nobusyq[itype],
|
||||
sd->lb_nobusyg[itype]);
|
||||
}
|
||||
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
|
||||
" %lu %lu %lu\n",
|
||||
sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
|
||||
sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
|
||||
sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
|
||||
sd->ttwu_wake_remote, sd->ttwu_move_affine,
|
||||
sd->ttwu_move_balance);
|
||||
}
|
||||
preempt_enable();
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int schedstat_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
||||
char *buf = kmalloc(size, GFP_KERNEL);
|
||||
struct seq_file *m;
|
||||
int res;
|
||||
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
res = single_open(file, show_schedstat, NULL);
|
||||
if (!res) {
|
||||
m = file->private_data;
|
||||
m->buf = buf;
|
||||
m->size = size;
|
||||
} else
|
||||
kfree(buf);
|
||||
return res;
|
||||
}
|
||||
|
||||
const struct file_operations proc_schedstat_operations = {
|
||||
.open = schedstat_open,
|
||||
.read = seq_read,
|
||||
.llseek = seq_lseek,
|
||||
.release = single_release,
|
||||
};
|
||||
|
||||
/*
|
||||
* Expects runqueue lock to be held for atomicity of update
|
||||
*/
|
||||
static inline void
|
||||
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
||||
{
|
||||
if (rq) {
|
||||
rq->rq_sched_info.run_delay += delta;
|
||||
rq->rq_sched_info.pcnt++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Expects runqueue lock to be held for atomicity of update
|
||||
*/
|
||||
static inline void
|
||||
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
||||
{
|
||||
if (rq)
|
||||
rq->rq_sched_info.cpu_time += delta;
|
||||
}
|
||||
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
||||
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
||||
#else /* !CONFIG_SCHEDSTATS */
|
||||
static inline void
|
||||
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
||||
{}
|
||||
static inline void
|
||||
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
||||
{}
|
||||
# define schedstat_inc(rq, field) do { } while (0)
|
||||
# define schedstat_add(rq, field, amt) do { } while (0)
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
||||
/*
|
||||
* Called when a process is dequeued from the active array and given
|
||||
* the cpu. We should note that with the exception of interactive
|
||||
* tasks, the expired queue will become the active queue after the active
|
||||
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
||||
* expired queue. (Interactive tasks may be requeued directly to the
|
||||
* active queue, thus delaying tasks in the expired queue from running;
|
||||
* see scheduler_tick()).
|
||||
*
|
||||
* This function is only called from sched_info_arrive(), rather than
|
||||
* dequeue_task(). Even though a task may be queued and dequeued multiple
|
||||
* times as it is shuffled about, we're really interested in knowing how
|
||||
* long it was from the *first* time it was queued to the time that it
|
||||
* finally hit a cpu.
|
||||
*/
|
||||
static inline void sched_info_dequeued(struct task_struct *t)
|
||||
{
|
||||
t->sched_info.last_queued = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a task finally hits the cpu. We can now calculate how
|
||||
* long it was waiting to run. We also note when it began so that we
|
||||
* can keep stats on how long its timeslice is.
|
||||
*/
|
||||
static void sched_info_arrive(struct task_struct *t)
|
||||
{
|
||||
unsigned long long now = sched_clock(), delta = 0;
|
||||
|
||||
if (t->sched_info.last_queued)
|
||||
delta = now - t->sched_info.last_queued;
|
||||
sched_info_dequeued(t);
|
||||
t->sched_info.run_delay += delta;
|
||||
t->sched_info.last_arrival = now;
|
||||
t->sched_info.pcnt++;
|
||||
|
||||
rq_sched_info_arrive(task_rq(t), delta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a process is queued into either the active or expired
|
||||
* array. The time is noted and later used to determine how long we
|
||||
* had to wait for us to reach the cpu. Since the expired queue will
|
||||
* become the active queue after active queue is empty, without dequeuing
|
||||
* and requeuing any tasks, we are interested in queuing to either. It
|
||||
* is unusual but not impossible for tasks to be dequeued and immediately
|
||||
* requeued in the same or another array: this can happen in sched_yield(),
|
||||
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
||||
* to runqueue.
|
||||
*
|
||||
* This function is only called from enqueue_task(), but also only updates
|
||||
* the timestamp if it is already not set. It's assumed that
|
||||
* sched_info_dequeued() will clear that stamp when appropriate.
|
||||
*/
|
||||
static inline void sched_info_queued(struct task_struct *t)
|
||||
{
|
||||
if (unlikely(sched_info_on()))
|
||||
if (!t->sched_info.last_queued)
|
||||
t->sched_info.last_queued = sched_clock();
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when a process ceases being the active-running process, either
|
||||
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
||||
*/
|
||||
static inline void sched_info_depart(struct task_struct *t)
|
||||
{
|
||||
unsigned long long delta = sched_clock() - t->sched_info.last_arrival;
|
||||
|
||||
t->sched_info.cpu_time += delta;
|
||||
rq_sched_info_depart(task_rq(t), delta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called when tasks are switched involuntarily due, typically, to expiring
|
||||
* their time slice. (This may also be called when switching to or from
|
||||
* the idle task.) We are only called when prev != next.
|
||||
*/
|
||||
static inline void
|
||||
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||||
{
|
||||
struct rq *rq = task_rq(prev);
|
||||
|
||||
/*
|
||||
* prev now departs the cpu. It's not interesting to record
|
||||
* stats about how efficient we were at scheduling the idle
|
||||
* process, however.
|
||||
*/
|
||||
if (prev != rq->idle)
|
||||
sched_info_depart(prev);
|
||||
|
||||
if (next != rq->idle)
|
||||
sched_info_arrive(next);
|
||||
}
|
||||
static inline void
|
||||
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||||
{
|
||||
if (unlikely(sched_info_on()))
|
||||
__sched_info_switch(prev, next);
|
||||
}
|
||||
#else
|
||||
#define sched_info_queued(t) do { } while (0)
|
||||
#define sched_info_switch(t, next) do { } while (0)
|
||||
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
||||
|
Loading…
Reference in New Issue
Block a user