rcu: Add synchronous grace-period waiting for RCU-tasks

It turns out to be easier to add the synchronous grace-period waiting
functions to RCU-tasks than to work around their absense in rcutorture,
so this commit adds them.  The key point is that the existence of
call_rcu_tasks() means that rcutorture needs an rcu_barrier_tasks().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
Paul E. McKenney 2014-07-01 12:22:23 -07:00
parent bde6c3aa99
commit 53c6d4edf8
2 changed files with 57 additions and 0 deletions

View File

@ -216,6 +216,8 @@ void synchronize_sched(void);
* memory ordering guarantees. * memory ordering guarantees.
*/ */
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head)); void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);
#ifdef CONFIG_PREEMPT_RCU #ifdef CONFIG_PREEMPT_RCU

View File

@ -381,6 +381,61 @@ void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
} }
EXPORT_SYMBOL_GPL(call_rcu_tasks); EXPORT_SYMBOL_GPL(call_rcu_tasks);
/**
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_rcu_qs(), idle execution, userspace execution, calls
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function
* preambles and profiling hooks. The synchronize_rcu_tasks() function
* is not (yet) intended for heavy use from multiple CPUs.
*
* Note that this guarantee implies further memory-ordering guarantees.
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
* each CPU is guaranteed to have executed a full memory barrier since the
* end of its last RCU-tasks read-side critical section whose beginning
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
* having an RCU-tasks read-side critical section that extends beyond
* the return from synchronize_rcu_tasks() is guaranteed to have executed
* a full memory barrier after the beginning of synchronize_rcu_tasks()
* and before the beginning of that RCU-tasks read-side critical section.
* Note that these guarantees include CPUs that are offline, idle, or
* executing in user mode, as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
* (but again only if the system has more than one CPU).
*/
void synchronize_rcu_tasks(void)
{
/* Complain if the scheduler has not started. */
rcu_lockdep_assert(!rcu_scheduler_active,
"synchronize_rcu_tasks called too soon");
/* Wait for the grace period. */
wait_rcu_gp(call_rcu_tasks);
}
/**
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks();
}
/* See if the current task has stopped holding out, remove from list if so. */ /* See if the current task has stopped holding out, remove from list if so. */
static void check_holdout_task(struct task_struct *t) static void check_holdout_task(struct task_struct *t)
{ {