tile: support LSI MEGARAID SAS HBA hybrid dma_ops

The LSI MEGARAID SAS HBA suffers from the problem where it can do
64-bit DMA to streaming buffers but not to consistent buffers.
In other words, 64-bit DMA is used for disk data transfers and 32-bit
DMA must be used for control message transfers. According to LSI,
the firmware is not fully functional yet. This change implements a
kind of hybrid dma_ops to support this.

Note that on most other platforms, the 64-bit DMA addressing space is the
same as the 32-bit DMA space and they overlap the physical memory space.
No special arrangement is needed to support this kind of mixed DMA
capability.  On TILE-Gx, the 64-bit DMA space is completely separate
from the 32-bit DMA space.  Due to the use of the IOMMU, the 64-bit DMA
space doesn't overlap the physical memory space.  On the other hand,
the 32-bit DMA space overlaps the physical memory space under 4GB.
The separate address spaces make it necessary to have separate dma_ops.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This commit is contained in:
Chris Metcalf 2013-08-02 12:24:42 -04:00
parent 26cde05a2c
commit 803c874abe
2 changed files with 38 additions and 12 deletions

View File

@ -23,6 +23,7 @@
extern struct dma_map_ops *tile_dma_map_ops; extern struct dma_map_ops *tile_dma_map_ops;
extern struct dma_map_ops *gx_pci_dma_map_ops; extern struct dma_map_ops *gx_pci_dma_map_ops;
extern struct dma_map_ops *gx_legacy_pci_dma_map_ops; extern struct dma_map_ops *gx_legacy_pci_dma_map_ops;
extern struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
static inline struct dma_map_ops *get_dma_ops(struct device *dev) static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{ {
@ -44,12 +45,12 @@ static inline void set_dma_offset(struct device *dev, dma_addr_t off)
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{ {
return paddr + get_dma_offset(dev); return paddr;
} }
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr) static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{ {
return daddr - get_dma_offset(dev); return daddr;
} }
static inline void dma_mark_clean(void *addr, size_t size) {} static inline void dma_mark_clean(void *addr, size_t size) {}
@ -88,7 +89,10 @@ dma_set_mask(struct device *dev, u64 mask)
struct dma_map_ops *dma_ops = get_dma_ops(dev); struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */ /* Handle legacy PCI devices with limited memory addressability. */
if ((dma_ops == gx_pci_dma_map_ops) && (mask <= DMA_BIT_MASK(32))) { if ((dma_ops == gx_pci_dma_map_ops ||
dma_ops == gx_hybrid_pci_dma_map_ops ||
dma_ops == gx_legacy_pci_dma_map_ops) &&
(mask <= DMA_BIT_MASK(32))) {
set_dma_ops(dev, gx_legacy_pci_dma_map_ops); set_dma_ops(dev, gx_legacy_pci_dma_map_ops);
set_dma_offset(dev, 0); set_dma_offset(dev, 0);
if (mask > dev->archdata.max_direct_dma_addr) if (mask > dev->archdata.max_direct_dma_addr)

View File

@ -357,7 +357,7 @@ static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
addr = page_to_phys(pg); addr = page_to_phys(pg);
*dma_handle = phys_to_dma(dev, addr); *dma_handle = addr + get_dma_offset(dev);
return page_address(pg); return page_address(pg);
} }
@ -387,7 +387,7 @@ static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
sg->dma_address = sg_phys(sg); sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction); __dma_prep_pa_range(sg->dma_address, sg->length, direction);
sg->dma_address = phys_to_dma(dev, sg->dma_address); sg->dma_address = sg->dma_address + get_dma_offset(dev);
#ifdef CONFIG_NEED_SG_DMA_LENGTH #ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length; sg->dma_length = sg->length;
#endif #endif
@ -422,7 +422,7 @@ static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
BUG_ON(offset + size > PAGE_SIZE); BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction); __dma_prep_page(page, offset, size, direction);
return phys_to_dma(dev, page_to_pa(page) + offset); return page_to_pa(page) + offset + get_dma_offset(dev);
} }
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address, static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
@ -432,7 +432,7 @@ static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
{ {
BUG_ON(!valid_dma_direction(direction)); BUG_ON(!valid_dma_direction(direction));
dma_address = dma_to_phys(dev, dma_address); dma_address -= get_dma_offset(dev);
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)), __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction); dma_address & PAGE_OFFSET, size, direction);
@ -445,7 +445,7 @@ static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
{ {
BUG_ON(!valid_dma_direction(direction)); BUG_ON(!valid_dma_direction(direction));
dma_handle = dma_to_phys(dev, dma_handle); dma_handle -= get_dma_offset(dev);
__dma_complete_pa_range(dma_handle, size, direction); __dma_complete_pa_range(dma_handle, size, direction);
} }
@ -456,7 +456,7 @@ static void tile_pci_dma_sync_single_for_device(struct device *dev,
enum dma_data_direction enum dma_data_direction
direction) direction)
{ {
dma_handle = dma_to_phys(dev, dma_handle); dma_handle -= get_dma_offset(dev);
__dma_prep_pa_range(dma_handle, size, direction); __dma_prep_pa_range(dma_handle, size, direction);
} }
@ -558,21 +558,43 @@ static struct dma_map_ops pci_swiotlb_dma_ops = {
.mapping_error = swiotlb_dma_mapping_error, .mapping_error = swiotlb_dma_mapping_error,
}; };
static struct dma_map_ops pci_hybrid_dma_ops = {
.alloc = tile_swiotlb_alloc_coherent,
.free = tile_swiotlb_free_coherent,
.map_page = tile_pci_dma_map_page,
.unmap_page = tile_pci_dma_unmap_page,
.map_sg = tile_pci_dma_map_sg,
.unmap_sg = tile_pci_dma_unmap_sg,
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
.mapping_error = tile_pci_dma_mapping_error,
.dma_supported = tile_pci_dma_supported
};
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops; struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
#else #else
struct dma_map_ops *gx_legacy_pci_dma_map_ops; struct dma_map_ops *gx_legacy_pci_dma_map_ops;
struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
#endif #endif
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops); EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask) int dma_set_coherent_mask(struct device *dev, u64 mask)
{ {
struct dma_map_ops *dma_ops = get_dma_ops(dev); struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */ /* Handle hybrid PCI devices with limited memory addressability. */
if (((dma_ops == gx_pci_dma_map_ops) || if ((dma_ops == gx_pci_dma_map_ops ||
(dma_ops == gx_legacy_pci_dma_map_ops)) && dma_ops == gx_hybrid_pci_dma_map_ops ||
dma_ops == gx_legacy_pci_dma_map_ops) &&
(mask <= DMA_BIT_MASK(32))) { (mask <= DMA_BIT_MASK(32))) {
if (dma_ops == gx_pci_dma_map_ops)
set_dma_ops(dev, gx_hybrid_pci_dma_map_ops);
if (mask > dev->archdata.max_direct_dma_addr) if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr; mask = dev->archdata.max_direct_dma_addr;
} }