forked from luck/tmp_suning_uos_patched
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (37 commits) sched: Fix SD_POWERSAVING_BALANCE|SD_PREFER_LOCAL vs SD_WAKE_AFFINE sched: Stop buddies from hogging the system sched: Add new wakeup preemption mode: WAKEUP_RUNNING sched: Fix TASK_WAKING & loadaverage breakage sched: Disable wakeup balancing sched: Rename flags to wake_flags sched: Clean up the load_idx selection in select_task_rq_fair sched: Optimize cgroup vs wakeup a bit sched: x86: Name old_perf in a unique way sched: Implement a gentler fair-sleepers feature sched: Add SD_PREFER_LOCAL sched: Add a few SYNC hint knobs to play with sched: Fix sync wakeups again sched: Add WF_FORK sched: Rename sync arguments sched: Rename select_task_rq() argument sched: Feature to disable APERF/MPERF cpu_power x86: sched: Provide arch implementations using aperf/mperf x86: Add generic aperf/mperf code x86: Move APERF/MPERF into a X86_FEATURE ... Fix up trivial conflict in arch/x86/include/asm/processor.h due to nearby addition of amd_get_nb_id() declaration from the EDAC merge.
This commit is contained in:
commit
dcbf77b9e8
|
@ -61,12 +61,13 @@ void build_cpu_to_node_map(void);
|
|||
.cache_nice_tries = 2, \
|
||||
.busy_idx = 2, \
|
||||
.idle_idx = 1, \
|
||||
.newidle_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_NEWIDLE \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_BALANCE_FORK \
|
||||
| SD_WAKE_AFFINE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 1, \
|
||||
|
@ -85,14 +86,14 @@ void build_cpu_to_node_map(void);
|
|||
.cache_nice_tries = 2, \
|
||||
.busy_idx = 3, \
|
||||
.idle_idx = 2, \
|
||||
.newidle_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_NEWIDLE \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_BALANCE_FORK \
|
||||
| SD_SERIALIZE \
|
||||
| SD_WAKE_BALANCE, \
|
||||
| SD_SERIALIZE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 64, \
|
||||
.nr_balance_failed = 0, \
|
||||
|
|
|
@ -48,7 +48,6 @@ extern unsigned char __node_distances[MAX_COMPACT_NODES][MAX_COMPACT_NODES];
|
|||
.cache_nice_tries = 1, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_WAKE_BALANCE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 1, \
|
||||
.nr_balance_failed = 0, \
|
||||
|
|
|
@ -57,14 +57,13 @@ static inline int pcibus_to_node(struct pci_bus *bus)
|
|||
.cache_nice_tries = 1, \
|
||||
.busy_idx = 3, \
|
||||
.idle_idx = 1, \
|
||||
.newidle_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_BALANCE_FORK \
|
||||
| SD_BALANCE_NEWIDLE \
|
||||
| SD_WAKE_IDLE \
|
||||
| SD_SERIALIZE \
|
||||
| SD_WAKE_BALANCE, \
|
||||
| SD_SERIALIZE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 1, \
|
||||
.nr_balance_failed = 0, \
|
||||
|
|
|
@ -15,14 +15,14 @@
|
|||
.cache_nice_tries = 2, \
|
||||
.busy_idx = 3, \
|
||||
.idle_idx = 2, \
|
||||
.newidle_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_FORK \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_SERIALIZE \
|
||||
| SD_WAKE_BALANCE, \
|
||||
| SD_BALANCE_NEWIDLE \
|
||||
| SD_SERIALIZE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 1, \
|
||||
.nr_balance_failed = 0, \
|
||||
|
|
|
@ -52,13 +52,12 @@ static inline int pcibus_to_node(struct pci_bus *pbus)
|
|||
.busy_idx = 3, \
|
||||
.idle_idx = 2, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
.flags = SD_LOAD_BALANCE \
|
||||
| SD_BALANCE_FORK \
|
||||
| SD_BALANCE_EXEC \
|
||||
| SD_SERIALIZE \
|
||||
| SD_WAKE_BALANCE, \
|
||||
| SD_SERIALIZE, \
|
||||
.last_balance = jiffies, \
|
||||
.balance_interval = 1, \
|
||||
}
|
||||
|
|
|
@ -96,6 +96,7 @@
|
|||
#define X86_FEATURE_CLFLUSH_MONITOR (3*32+25) /* "" clflush reqd with monitor */
|
||||
#define X86_FEATURE_EXTD_APICID (3*32+26) /* has extended APICID (8 bits) */
|
||||
#define X86_FEATURE_AMD_DCM (3*32+27) /* multi-node processor */
|
||||
#define X86_FEATURE_APERFMPERF (3*32+28) /* APERFMPERF */
|
||||
|
||||
/* Intel-defined CPU features, CPUID level 0x00000001 (ecx), word 4 */
|
||||
#define X86_FEATURE_XMM3 (4*32+ 0) /* "pni" SSE-3 */
|
||||
|
|
|
@ -27,6 +27,7 @@ struct mm_struct;
|
|||
#include <linux/cpumask.h>
|
||||
#include <linux/cache.h>
|
||||
#include <linux/threads.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
/*
|
||||
|
@ -1022,4 +1023,33 @@ extern int set_tsc_mode(unsigned int val);
|
|||
|
||||
extern int amd_get_nb_id(int cpu);
|
||||
|
||||
struct aperfmperf {
|
||||
u64 aperf, mperf;
|
||||
};
|
||||
|
||||
static inline void get_aperfmperf(struct aperfmperf *am)
|
||||
{
|
||||
WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_APERFMPERF));
|
||||
|
||||
rdmsrl(MSR_IA32_APERF, am->aperf);
|
||||
rdmsrl(MSR_IA32_MPERF, am->mperf);
|
||||
}
|
||||
|
||||
#define APERFMPERF_SHIFT 10
|
||||
|
||||
static inline
|
||||
unsigned long calc_aperfmperf_ratio(struct aperfmperf *old,
|
||||
struct aperfmperf *new)
|
||||
{
|
||||
u64 aperf = new->aperf - old->aperf;
|
||||
u64 mperf = new->mperf - old->mperf;
|
||||
unsigned long ratio = aperf;
|
||||
|
||||
mperf >>= APERFMPERF_SHIFT;
|
||||
if (mperf)
|
||||
ratio = div64_u64(aperf, mperf);
|
||||
|
||||
return ratio;
|
||||
}
|
||||
|
||||
#endif /* _ASM_X86_PROCESSOR_H */
|
||||
|
|
|
@ -116,15 +116,11 @@ extern unsigned long node_remap_size[];
|
|||
|
||||
# define SD_CACHE_NICE_TRIES 1
|
||||
# define SD_IDLE_IDX 1
|
||||
# define SD_NEWIDLE_IDX 2
|
||||
# define SD_FORKEXEC_IDX 0
|
||||
|
||||
#else
|
||||
|
||||
# define SD_CACHE_NICE_TRIES 2
|
||||
# define SD_IDLE_IDX 2
|
||||
# define SD_NEWIDLE_IDX 2
|
||||
# define SD_FORKEXEC_IDX 1
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -137,22 +133,20 @@ extern unsigned long node_remap_size[];
|
|||
.cache_nice_tries = SD_CACHE_NICE_TRIES, \
|
||||
.busy_idx = 3, \
|
||||
.idle_idx = SD_IDLE_IDX, \
|
||||
.newidle_idx = SD_NEWIDLE_IDX, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = SD_FORKEXEC_IDX, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
\
|
||||
.flags = 1*SD_LOAD_BALANCE \
|
||||
| 1*SD_BALANCE_NEWIDLE \
|
||||
| 1*SD_BALANCE_EXEC \
|
||||
| 1*SD_BALANCE_FORK \
|
||||
| 0*SD_WAKE_IDLE \
|
||||
| 0*SD_BALANCE_WAKE \
|
||||
| 1*SD_WAKE_AFFINE \
|
||||
| 1*SD_WAKE_BALANCE \
|
||||
| 0*SD_SHARE_CPUPOWER \
|
||||
| 0*SD_POWERSAVINGS_BALANCE \
|
||||
| 0*SD_SHARE_PKG_RESOURCES \
|
||||
| 1*SD_SERIALIZE \
|
||||
| 1*SD_WAKE_IDLE_FAR \
|
||||
| 0*SD_PREFER_SIBLING \
|
||||
, \
|
||||
.last_balance = jiffies, \
|
||||
|
|
|
@ -13,7 +13,7 @@ CFLAGS_common.o := $(nostackp)
|
|||
|
||||
obj-y := intel_cacheinfo.o addon_cpuid_features.o
|
||||
obj-y += proc.o capflags.o powerflags.o common.o
|
||||
obj-y += vmware.o hypervisor.o
|
||||
obj-y += vmware.o hypervisor.o sched.o
|
||||
|
||||
obj-$(CONFIG_X86_32) += bugs.o cmpxchg.o
|
||||
obj-$(CONFIG_X86_64) += bugs_64.o
|
||||
|
|
|
@ -60,7 +60,6 @@ enum {
|
|||
};
|
||||
|
||||
#define INTEL_MSR_RANGE (0xffff)
|
||||
#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
|
||||
|
||||
struct acpi_cpufreq_data {
|
||||
struct acpi_processor_performance *acpi_data;
|
||||
|
@ -71,11 +70,7 @@ struct acpi_cpufreq_data {
|
|||
|
||||
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
|
||||
|
||||
struct acpi_msr_data {
|
||||
u64 saved_aperf, saved_mperf;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
|
||||
static DEFINE_PER_CPU(struct aperfmperf, old_perf);
|
||||
|
||||
DEFINE_TRACE(power_mark);
|
||||
|
||||
|
@ -244,23 +239,12 @@ static u32 get_cur_val(const struct cpumask *mask)
|
|||
return cmd.val;
|
||||
}
|
||||
|
||||
struct perf_pair {
|
||||
union {
|
||||
struct {
|
||||
u32 lo;
|
||||
u32 hi;
|
||||
} split;
|
||||
u64 whole;
|
||||
} aperf, mperf;
|
||||
};
|
||||
|
||||
/* Called via smp_call_function_single(), on the target CPU */
|
||||
static void read_measured_perf_ctrs(void *_cur)
|
||||
{
|
||||
struct perf_pair *cur = _cur;
|
||||
struct aperfmperf *am = _cur;
|
||||
|
||||
rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
|
||||
rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
|
||||
get_aperfmperf(am);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -279,63 +263,17 @@ static void read_measured_perf_ctrs(void *_cur)
|
|||
static unsigned int get_measured_perf(struct cpufreq_policy *policy,
|
||||
unsigned int cpu)
|
||||
{
|
||||
struct perf_pair readin, cur;
|
||||
unsigned int perf_percent;
|
||||
struct aperfmperf perf;
|
||||
unsigned long ratio;
|
||||
unsigned int retval;
|
||||
|
||||
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
|
||||
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
|
||||
return 0;
|
||||
|
||||
cur.aperf.whole = readin.aperf.whole -
|
||||
per_cpu(msr_data, cpu).saved_aperf;
|
||||
cur.mperf.whole = readin.mperf.whole -
|
||||
per_cpu(msr_data, cpu).saved_mperf;
|
||||
per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
|
||||
per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
|
||||
ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
|
||||
per_cpu(old_perf, cpu) = perf;
|
||||
|
||||
#ifdef __i386__
|
||||
/*
|
||||
* We dont want to do 64 bit divide with 32 bit kernel
|
||||
* Get an approximate value. Return failure in case we cannot get
|
||||
* an approximate value.
|
||||
*/
|
||||
if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
|
||||
int shift_count;
|
||||
u32 h;
|
||||
|
||||
h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
|
||||
shift_count = fls(h);
|
||||
|
||||
cur.aperf.whole >>= shift_count;
|
||||
cur.mperf.whole >>= shift_count;
|
||||
}
|
||||
|
||||
if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
|
||||
int shift_count = 7;
|
||||
cur.aperf.split.lo >>= shift_count;
|
||||
cur.mperf.split.lo >>= shift_count;
|
||||
}
|
||||
|
||||
if (cur.aperf.split.lo && cur.mperf.split.lo)
|
||||
perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
|
||||
else
|
||||
perf_percent = 0;
|
||||
|
||||
#else
|
||||
if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
|
||||
int shift_count = 7;
|
||||
cur.aperf.whole >>= shift_count;
|
||||
cur.mperf.whole >>= shift_count;
|
||||
}
|
||||
|
||||
if (cur.aperf.whole && cur.mperf.whole)
|
||||
perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
|
||||
else
|
||||
perf_percent = 0;
|
||||
|
||||
#endif
|
||||
|
||||
retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
|
||||
retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
@ -731,12 +669,8 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|||
acpi_processor_notify_smm(THIS_MODULE);
|
||||
|
||||
/* Check for APERF/MPERF support in hardware */
|
||||
if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
|
||||
unsigned int ecx;
|
||||
ecx = cpuid_ecx(6);
|
||||
if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
|
||||
acpi_cpufreq_driver.getavg = get_measured_perf;
|
||||
}
|
||||
if (cpu_has(c, X86_FEATURE_APERFMPERF))
|
||||
acpi_cpufreq_driver.getavg = get_measured_perf;
|
||||
|
||||
dprintk("CPU%u - ACPI performance management activated.\n", cpu);
|
||||
for (i = 0; i < perf->state_count; i++)
|
||||
|
|
|
@ -350,6 +350,12 @@ static void __cpuinit init_intel(struct cpuinfo_x86 *c)
|
|||
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
|
||||
}
|
||||
|
||||
if (c->cpuid_level > 6) {
|
||||
unsigned ecx = cpuid_ecx(6);
|
||||
if (ecx & 0x01)
|
||||
set_cpu_cap(c, X86_FEATURE_APERFMPERF);
|
||||
}
|
||||
|
||||
if (cpu_has_xmm2)
|
||||
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
||||
if (cpu_has_ds) {
|
||||
|
|
55
arch/x86/kernel/cpu/sched.c
Normal file
55
arch/x86/kernel/cpu/sched.c
Normal file
|
@ -0,0 +1,55 @@
|
|||
#include <linux/sched.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/irqflags.h>
|
||||
|
||||
#include <asm/cpufeature.h>
|
||||
#include <asm/processor.h>
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
static DEFINE_PER_CPU(struct aperfmperf, old_perf_sched);
|
||||
|
||||
static unsigned long scale_aperfmperf(void)
|
||||
{
|
||||
struct aperfmperf val, *old = &__get_cpu_var(old_perf_sched);
|
||||
unsigned long ratio, flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
get_aperfmperf(&val);
|
||||
local_irq_restore(flags);
|
||||
|
||||
ratio = calc_aperfmperf_ratio(old, &val);
|
||||
*old = val;
|
||||
|
||||
return ratio;
|
||||
}
|
||||
|
||||
unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
/*
|
||||
* do aperf/mperf on the cpu level because it includes things
|
||||
* like turbo mode, which are relevant to full cores.
|
||||
*/
|
||||
if (boot_cpu_has(X86_FEATURE_APERFMPERF))
|
||||
return scale_aperfmperf();
|
||||
|
||||
/*
|
||||
* maybe have something cpufreq here
|
||||
*/
|
||||
|
||||
return default_scale_freq_power(sd, cpu);
|
||||
}
|
||||
|
||||
unsigned long arch_scale_smt_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
/*
|
||||
* aperf/mperf already includes the smt gain
|
||||
*/
|
||||
if (boot_cpu_has(X86_FEATURE_APERFMPERF))
|
||||
return SCHED_LOAD_SCALE;
|
||||
|
||||
return default_scale_smt_power(sd, cpu);
|
||||
}
|
||||
|
||||
#endif
|
|
@ -190,6 +190,7 @@ extern unsigned long long time_sync_thresh;
|
|||
/* in tsk->state again */
|
||||
#define TASK_DEAD 64
|
||||
#define TASK_WAKEKILL 128
|
||||
#define TASK_WAKING 256
|
||||
|
||||
/* Convenience macros for the sake of set_task_state */
|
||||
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
|
||||
|
@ -802,14 +803,14 @@ enum cpu_idle_type {
|
|||
#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
|
||||
#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
|
||||
#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
|
||||
#define SD_WAKE_IDLE 0x0010 /* Wake to idle CPU on task wakeup */
|
||||
#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
|
||||
#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
|
||||
#define SD_WAKE_BALANCE 0x0040 /* Perform balancing at task wakeup */
|
||||
#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
|
||||
#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
|
||||
#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
|
||||
#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
|
||||
#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
|
||||
#define SD_WAKE_IDLE_FAR 0x0800 /* Gain latency sacrificing cache hit */
|
||||
|
||||
#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
|
||||
|
||||
enum powersavings_balance_level {
|
||||
|
@ -991,6 +992,9 @@ static inline int test_sd_parent(struct sched_domain *sd, int flag)
|
|||
return 0;
|
||||
}
|
||||
|
||||
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
|
||||
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
|
||||
|
||||
#else /* CONFIG_SMP */
|
||||
|
||||
struct sched_domain_attr;
|
||||
|
@ -1002,6 +1006,7 @@ partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
|
|||
}
|
||||
#endif /* !CONFIG_SMP */
|
||||
|
||||
|
||||
struct io_context; /* See blkdev.h */
|
||||
|
||||
|
||||
|
@ -1019,6 +1024,12 @@ struct uts_namespace;
|
|||
struct rq;
|
||||
struct sched_domain;
|
||||
|
||||
/*
|
||||
* wake flags
|
||||
*/
|
||||
#define WF_SYNC 0x01 /* waker goes to sleep after wakup */
|
||||
#define WF_FORK 0x02 /* child wakeup after fork */
|
||||
|
||||
struct sched_class {
|
||||
const struct sched_class *next;
|
||||
|
||||
|
@ -1026,13 +1037,13 @@ struct sched_class {
|
|||
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
|
||||
void (*yield_task) (struct rq *rq);
|
||||
|
||||
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
|
||||
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
|
||||
|
||||
struct task_struct * (*pick_next_task) (struct rq *rq);
|
||||
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
int (*select_task_rq)(struct task_struct *p, int sync);
|
||||
int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
|
||||
|
||||
unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
|
||||
struct rq *busiest, unsigned long max_load_move,
|
||||
|
@ -1102,6 +1113,8 @@ struct sched_entity {
|
|||
u64 start_runtime;
|
||||
u64 avg_wakeup;
|
||||
|
||||
u64 avg_running;
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
u64 wait_start;
|
||||
u64 wait_max;
|
||||
|
|
|
@ -95,14 +95,12 @@ int arch_update_cpu_topology(void);
|
|||
| 1*SD_BALANCE_NEWIDLE \
|
||||
| 1*SD_BALANCE_EXEC \
|
||||
| 1*SD_BALANCE_FORK \
|
||||
| 0*SD_WAKE_IDLE \
|
||||
| 0*SD_BALANCE_WAKE \
|
||||
| 1*SD_WAKE_AFFINE \
|
||||
| 1*SD_WAKE_BALANCE \
|
||||
| 1*SD_SHARE_CPUPOWER \
|
||||
| 0*SD_POWERSAVINGS_BALANCE \
|
||||
| 0*SD_SHARE_PKG_RESOURCES \
|
||||
| 0*SD_SERIALIZE \
|
||||
| 0*SD_WAKE_IDLE_FAR \
|
||||
| 0*SD_PREFER_SIBLING \
|
||||
, \
|
||||
.last_balance = jiffies, \
|
||||
|
@ -122,20 +120,19 @@ int arch_update_cpu_topology(void);
|
|||
.imbalance_pct = 125, \
|
||||
.cache_nice_tries = 1, \
|
||||
.busy_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
\
|
||||
.flags = 1*SD_LOAD_BALANCE \
|
||||
| 1*SD_BALANCE_NEWIDLE \
|
||||
| 1*SD_BALANCE_EXEC \
|
||||
| 1*SD_BALANCE_FORK \
|
||||
| 1*SD_WAKE_IDLE \
|
||||
| 0*SD_BALANCE_WAKE \
|
||||
| 1*SD_WAKE_AFFINE \
|
||||
| 1*SD_WAKE_BALANCE \
|
||||
| 1*SD_PREFER_LOCAL \
|
||||
| 0*SD_SHARE_CPUPOWER \
|
||||
| 1*SD_SHARE_PKG_RESOURCES \
|
||||
| 0*SD_SERIALIZE \
|
||||
| 0*SD_WAKE_IDLE_FAR \
|
||||
| sd_balance_for_mc_power() \
|
||||
| sd_power_saving_flags() \
|
||||
, \
|
||||
|
@ -155,21 +152,20 @@ int arch_update_cpu_topology(void);
|
|||
.cache_nice_tries = 1, \
|
||||
.busy_idx = 2, \
|
||||
.idle_idx = 1, \
|
||||
.newidle_idx = 2, \
|
||||
.wake_idx = 1, \
|
||||
.forkexec_idx = 1, \
|
||||
.newidle_idx = 0, \
|
||||
.wake_idx = 0, \
|
||||
.forkexec_idx = 0, \
|
||||
\
|
||||
.flags = 1*SD_LOAD_BALANCE \
|
||||
| 1*SD_BALANCE_NEWIDLE \
|
||||
| 1*SD_BALANCE_EXEC \
|
||||
| 1*SD_BALANCE_FORK \
|
||||
| 1*SD_WAKE_IDLE \
|
||||
| 0*SD_WAKE_AFFINE \
|
||||
| 1*SD_WAKE_BALANCE \
|
||||
| 0*SD_BALANCE_WAKE \
|
||||
| 1*SD_WAKE_AFFINE \
|
||||
| 1*SD_PREFER_LOCAL \
|
||||
| 0*SD_SHARE_CPUPOWER \
|
||||
| 0*SD_SHARE_PKG_RESOURCES \
|
||||
| 0*SD_SERIALIZE \
|
||||
| 0*SD_WAKE_IDLE_FAR \
|
||||
| sd_balance_for_package_power() \
|
||||
| sd_power_saving_flags() \
|
||||
, \
|
||||
|
@ -191,14 +187,12 @@ int arch_update_cpu_topology(void);
|
|||
| 1*SD_BALANCE_NEWIDLE \
|
||||
| 0*SD_BALANCE_EXEC \
|
||||
| 0*SD_BALANCE_FORK \
|
||||
| 0*SD_WAKE_IDLE \
|
||||
| 1*SD_WAKE_AFFINE \
|
||||
| 0*SD_WAKE_BALANCE \
|
||||
| 0*SD_BALANCE_WAKE \
|
||||
| 0*SD_WAKE_AFFINE \
|
||||
| 0*SD_SHARE_CPUPOWER \
|
||||
| 0*SD_POWERSAVINGS_BALANCE \
|
||||
| 0*SD_SHARE_PKG_RESOURCES \
|
||||
| 1*SD_SERIALIZE \
|
||||
| 1*SD_WAKE_IDLE_FAR \
|
||||
| 0*SD_PREFER_SIBLING \
|
||||
, \
|
||||
.last_balance = jiffies, \
|
||||
|
|
|
@ -26,8 +26,8 @@
|
|||
#include <asm/current.h>
|
||||
|
||||
typedef struct __wait_queue wait_queue_t;
|
||||
typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int sync, void *key);
|
||||
int default_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
|
||||
typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
|
||||
int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
|
||||
|
||||
struct __wait_queue {
|
||||
unsigned int flags;
|
||||
|
|
446
kernel/sched.c
446
kernel/sched.c
|
@ -119,8 +119,6 @@
|
|||
*/
|
||||
#define RUNTIME_INF ((u64)~0ULL)
|
||||
|
||||
static void double_rq_lock(struct rq *rq1, struct rq *rq2);
|
||||
|
||||
static inline int rt_policy(int policy)
|
||||
{
|
||||
if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
|
||||
|
@ -378,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
|
|||
|
||||
#else
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static int root_task_group_empty(void)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
|
||||
static inline struct task_group *task_group(struct task_struct *p)
|
||||
{
|
||||
|
@ -514,14 +505,6 @@ struct root_domain {
|
|||
#ifdef CONFIG_SMP
|
||||
struct cpupri cpupri;
|
||||
#endif
|
||||
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
||||
/*
|
||||
* Preferred wake up cpu nominated by sched_mc balance that will be
|
||||
* used when most cpus are idle in the system indicating overall very
|
||||
* low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
|
||||
*/
|
||||
unsigned int sched_mc_preferred_wakeup_cpu;
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -646,9 +629,10 @@ struct rq {
|
|||
|
||||
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
||||
|
||||
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
|
||||
static inline
|
||||
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
rq->curr->sched_class->check_preempt_curr(rq, p, sync);
|
||||
rq->curr->sched_class->check_preempt_curr(rq, p, flags);
|
||||
}
|
||||
|
||||
static inline int cpu_of(struct rq *rq)
|
||||
|
@ -1509,8 +1493,65 @@ static int tg_nop(struct task_group *tg, void *data)
|
|||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static unsigned long source_load(int cpu, int type);
|
||||
static unsigned long target_load(int cpu, int type);
|
||||
/* Used instead of source_load when we know the type == 0 */
|
||||
static unsigned long weighted_cpuload(const int cpu)
|
||||
{
|
||||
return cpu_rq(cpu)->load.weight;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a low guess at the load of a migration-source cpu weighted
|
||||
* according to the scheduling class and "nice" value.
|
||||
*
|
||||
* We want to under-estimate the load of migration sources, to
|
||||
* balance conservatively.
|
||||
*/
|
||||
static unsigned long source_load(int cpu, int type)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long total = weighted_cpuload(cpu);
|
||||
|
||||
if (type == 0 || !sched_feat(LB_BIAS))
|
||||
return total;
|
||||
|
||||
return min(rq->cpu_load[type-1], total);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a high guess at the load of a migration-target cpu weighted
|
||||
* according to the scheduling class and "nice" value.
|
||||
*/
|
||||
static unsigned long target_load(int cpu, int type)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long total = weighted_cpuload(cpu);
|
||||
|
||||
if (type == 0 || !sched_feat(LB_BIAS))
|
||||
return total;
|
||||
|
||||
return max(rq->cpu_load[type-1], total);
|
||||
}
|
||||
|
||||
static struct sched_group *group_of(int cpu)
|
||||
{
|
||||
struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
|
||||
|
||||
if (!sd)
|
||||
return NULL;
|
||||
|
||||
return sd->groups;
|
||||
}
|
||||
|
||||
static unsigned long power_of(int cpu)
|
||||
{
|
||||
struct sched_group *group = group_of(cpu);
|
||||
|
||||
if (!group)
|
||||
return SCHED_LOAD_SCALE;
|
||||
|
||||
return group->cpu_power;
|
||||
}
|
||||
|
||||
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
|
||||
|
||||
static unsigned long cpu_avg_load_per_task(int cpu)
|
||||
|
@ -1695,6 +1736,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
|
|||
|
||||
#ifdef CONFIG_PREEMPT
|
||||
|
||||
static void double_rq_lock(struct rq *rq1, struct rq *rq2);
|
||||
|
||||
/*
|
||||
* fair double_lock_balance: Safely acquires both rq->locks in a fair
|
||||
* way at the expense of forcing extra atomic operations in all
|
||||
|
@ -1959,13 +2002,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
|
|||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
/* Used instead of source_load when we know the type == 0 */
|
||||
static unsigned long weighted_cpuload(const int cpu)
|
||||
{
|
||||
return cpu_rq(cpu)->load.weight;
|
||||
}
|
||||
|
||||
/*
|
||||
* Is this task likely cache-hot:
|
||||
*/
|
||||
|
@ -2239,185 +2275,6 @@ void kick_process(struct task_struct *p)
|
|||
preempt_enable();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kick_process);
|
||||
|
||||
/*
|
||||
* Return a low guess at the load of a migration-source cpu weighted
|
||||
* according to the scheduling class and "nice" value.
|
||||
*
|
||||
* We want to under-estimate the load of migration sources, to
|
||||
* balance conservatively.
|
||||
*/
|
||||
static unsigned long source_load(int cpu, int type)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long total = weighted_cpuload(cpu);
|
||||
|
||||
if (type == 0 || !sched_feat(LB_BIAS))
|
||||
return total;
|
||||
|
||||
return min(rq->cpu_load[type-1], total);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a high guess at the load of a migration-target cpu weighted
|
||||
* according to the scheduling class and "nice" value.
|
||||
*/
|
||||
static unsigned long target_load(int cpu, int type)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long total = weighted_cpuload(cpu);
|
||||
|
||||
if (type == 0 || !sched_feat(LB_BIAS))
|
||||
return total;
|
||||
|
||||
return max(rq->cpu_load[type-1], total);
|
||||
}
|
||||
|
||||
/*
|
||||
* find_idlest_group finds and returns the least busy CPU group within the
|
||||
* domain.
|
||||
*/
|
||||
static struct sched_group *
|
||||
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
|
||||
{
|
||||
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
|
||||
unsigned long min_load = ULONG_MAX, this_load = 0;
|
||||
int load_idx = sd->forkexec_idx;
|
||||
int imbalance = 100 + (sd->imbalance_pct-100)/2;
|
||||
|
||||
do {
|
||||
unsigned long load, avg_load;
|
||||
int local_group;
|
||||
int i;
|
||||
|
||||
/* Skip over this group if it has no CPUs allowed */
|
||||
if (!cpumask_intersects(sched_group_cpus(group),
|
||||
&p->cpus_allowed))
|
||||
continue;
|
||||
|
||||
local_group = cpumask_test_cpu(this_cpu,
|
||||
sched_group_cpus(group));
|
||||
|
||||
/* Tally up the load of all CPUs in the group */
|
||||
avg_load = 0;
|
||||
|
||||
for_each_cpu(i, sched_group_cpus(group)) {
|
||||
/* Bias balancing toward cpus of our domain */
|
||||
if (local_group)
|
||||
load = source_load(i, load_idx);
|
||||
else
|
||||
load = target_load(i, load_idx);
|
||||
|
||||
avg_load += load;
|
||||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
||||
|
||||
if (local_group) {
|
||||
this_load = avg_load;
|
||||
this = group;
|
||||
} else if (avg_load < min_load) {
|
||||
min_load = avg_load;
|
||||
idlest = group;
|
||||
}
|
||||
} while (group = group->next, group != sd->groups);
|
||||
|
||||
if (!idlest || 100*this_load < imbalance*min_load)
|
||||
return NULL;
|
||||
return idlest;
|
||||
}
|
||||
|
||||
/*
|
||||
* find_idlest_cpu - find the idlest cpu among the cpus in group.
|
||||
*/
|
||||
static int
|
||||
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
|
||||
{
|
||||
unsigned long load, min_load = ULONG_MAX;
|
||||
int idlest = -1;
|
||||
int i;
|
||||
|
||||
/* Traverse only the allowed CPUs */
|
||||
for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
|
||||
load = weighted_cpuload(i);
|
||||
|
||||
if (load < min_load || (load == min_load && i == this_cpu)) {
|
||||
min_load = load;
|
||||
idlest = i;
|
||||
}
|
||||
}
|
||||
|
||||
return idlest;
|
||||
}
|
||||
|
||||
/*
|
||||
* sched_balance_self: balance the current task (running on cpu) in domains
|
||||
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
|
||||
* SD_BALANCE_EXEC.
|
||||
*
|
||||
* Balance, ie. select the least loaded group.
|
||||
*
|
||||
* Returns the target CPU number, or the same CPU if no balancing is needed.
|
||||
*
|
||||
* preempt must be disabled.
|
||||
*/
|
||||
static int sched_balance_self(int cpu, int flag)
|
||||
{
|
||||
struct task_struct *t = current;
|
||||
struct sched_domain *tmp, *sd = NULL;
|
||||
|
||||
for_each_domain(cpu, tmp) {
|
||||
/*
|
||||
* If power savings logic is enabled for a domain, stop there.
|
||||
*/
|
||||
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
|
||||
break;
|
||||
if (tmp->flags & flag)
|
||||
sd = tmp;
|
||||
}
|
||||
|
||||
if (sd)
|
||||
update_shares(sd);
|
||||
|
||||
while (sd) {
|
||||
struct sched_group *group;
|
||||
int new_cpu, weight;
|
||||
|
||||
if (!(sd->flags & flag)) {
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
group = find_idlest_group(sd, t, cpu);
|
||||
if (!group) {
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
new_cpu = find_idlest_cpu(group, t, cpu);
|
||||
if (new_cpu == -1 || new_cpu == cpu) {
|
||||
/* Now try balancing at a lower domain level of cpu */
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Now try balancing at a lower domain level of new_cpu */
|
||||
cpu = new_cpu;
|
||||
weight = cpumask_weight(sched_domain_span(sd));
|
||||
sd = NULL;
|
||||
for_each_domain(cpu, tmp) {
|
||||
if (weight <= cpumask_weight(sched_domain_span(tmp)))
|
||||
break;
|
||||
if (tmp->flags & flag)
|
||||
sd = tmp;
|
||||
}
|
||||
/* while loop will break here if sd == NULL */
|
||||
}
|
||||
|
||||
return cpu;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
/**
|
||||
|
@ -2455,37 +2312,22 @@ void task_oncpu_function_call(struct task_struct *p,
|
|||
*
|
||||
* returns failure only if the task is already active.
|
||||
*/
|
||||
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
||||
static int try_to_wake_up(struct task_struct *p, unsigned int state,
|
||||
int wake_flags)
|
||||
{
|
||||
int cpu, orig_cpu, this_cpu, success = 0;
|
||||
unsigned long flags;
|
||||
long old_state;
|
||||
struct rq *rq;
|
||||
|
||||
if (!sched_feat(SYNC_WAKEUPS))
|
||||
sync = 0;
|
||||
wake_flags &= ~WF_SYNC;
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
|
||||
struct sched_domain *sd;
|
||||
|
||||
this_cpu = raw_smp_processor_id();
|
||||
cpu = task_cpu(p);
|
||||
|
||||
for_each_domain(this_cpu, sd) {
|
||||
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
||||
update_shares(sd);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
this_cpu = get_cpu();
|
||||
|
||||
smp_wmb();
|
||||
rq = task_rq_lock(p, &flags);
|
||||
update_rq_clock(rq);
|
||||
old_state = p->state;
|
||||
if (!(old_state & state))
|
||||
if (!(p->state & state))
|
||||
goto out;
|
||||
|
||||
if (p->se.on_rq)
|
||||
|
@ -2493,27 +2335,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|||
|
||||
cpu = task_cpu(p);
|
||||
orig_cpu = cpu;
|
||||
this_cpu = smp_processor_id();
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
if (unlikely(task_running(rq, p)))
|
||||
goto out_activate;
|
||||
|
||||
cpu = p->sched_class->select_task_rq(p, sync);
|
||||
if (cpu != orig_cpu) {
|
||||
set_task_cpu(p, cpu);
|
||||
task_rq_unlock(rq, &flags);
|
||||
/* might preempt at this point */
|
||||
rq = task_rq_lock(p, &flags);
|
||||
old_state = p->state;
|
||||
if (!(old_state & state))
|
||||
goto out;
|
||||
if (p->se.on_rq)
|
||||
goto out_running;
|
||||
/*
|
||||
* In order to handle concurrent wakeups and release the rq->lock
|
||||
* we put the task in TASK_WAKING state.
|
||||
*
|
||||
* First fix up the nr_uninterruptible count:
|
||||
*/
|
||||
if (task_contributes_to_load(p))
|
||||
rq->nr_uninterruptible--;
|
||||
p->state = TASK_WAKING;
|
||||
task_rq_unlock(rq, &flags);
|
||||
|
||||
this_cpu = smp_processor_id();
|
||||
cpu = task_cpu(p);
|
||||
}
|
||||
cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
|
||||
if (cpu != orig_cpu)
|
||||
set_task_cpu(p, cpu);
|
||||
|
||||
rq = task_rq_lock(p, &flags);
|
||||
WARN_ON(p->state != TASK_WAKING);
|
||||
cpu = task_cpu(p);
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
schedstat_inc(rq, ttwu_count);
|
||||
|
@ -2533,7 +2377,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|||
out_activate:
|
||||
#endif /* CONFIG_SMP */
|
||||
schedstat_inc(p, se.nr_wakeups);
|
||||
if (sync)
|
||||
if (wake_flags & WF_SYNC)
|
||||
schedstat_inc(p, se.nr_wakeups_sync);
|
||||
if (orig_cpu != cpu)
|
||||
schedstat_inc(p, se.nr_wakeups_migrate);
|
||||
|
@ -2562,7 +2406,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|||
|
||||
out_running:
|
||||
trace_sched_wakeup(rq, p, success);
|
||||
check_preempt_curr(rq, p, sync);
|
||||
check_preempt_curr(rq, p, wake_flags);
|
||||
|
||||
p->state = TASK_RUNNING;
|
||||
#ifdef CONFIG_SMP
|
||||
|
@ -2571,6 +2415,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|||
#endif
|
||||
out:
|
||||
task_rq_unlock(rq, &flags);
|
||||
put_cpu();
|
||||
|
||||
return success;
|
||||
}
|
||||
|
@ -2613,6 +2458,7 @@ static void __sched_fork(struct task_struct *p)
|
|||
p->se.avg_overlap = 0;
|
||||
p->se.start_runtime = 0;
|
||||
p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
|
||||
p->se.avg_running = 0;
|
||||
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
p->se.wait_start = 0;
|
||||
|
@ -2674,11 +2520,6 @@ void sched_fork(struct task_struct *p, int clone_flags)
|
|||
|
||||
__sched_fork(p);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
|
||||
#endif
|
||||
set_task_cpu(p, cpu);
|
||||
|
||||
/*
|
||||
* Make sure we do not leak PI boosting priority to the child.
|
||||
*/
|
||||
|
@ -2709,6 +2550,11 @@ void sched_fork(struct task_struct *p, int clone_flags)
|
|||
if (!rt_prio(p->prio))
|
||||
p->sched_class = &fair_sched_class;
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
|
||||
#endif
|
||||
set_task_cpu(p, cpu);
|
||||
|
||||
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
||||
if (likely(sched_info_on()))
|
||||
memset(&p->sched_info, 0, sizeof(p->sched_info));
|
||||
|
@ -2754,7 +2600,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
|
|||
inc_nr_running(rq);
|
||||
}
|
||||
trace_sched_wakeup_new(rq, p, 1);
|
||||
check_preempt_curr(rq, p, 0);
|
||||
check_preempt_curr(rq, p, WF_FORK);
|
||||
#ifdef CONFIG_SMP
|
||||
if (p->sched_class->task_wake_up)
|
||||
p->sched_class->task_wake_up(rq, p);
|
||||
|
@ -3263,7 +3109,7 @@ static void sched_migrate_task(struct task_struct *p, int dest_cpu)
|
|||
void sched_exec(void)
|
||||
{
|
||||
int new_cpu, this_cpu = get_cpu();
|
||||
new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
|
||||
new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
|
||||
put_cpu();
|
||||
if (new_cpu != this_cpu)
|
||||
sched_migrate_task(current, new_cpu);
|
||||
|
@ -3683,11 +3529,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
|
|||
*imbalance = sds->min_load_per_task;
|
||||
sds->busiest = sds->group_min;
|
||||
|
||||
if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
|
||||
cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
|
||||
group_first_cpu(sds->group_leader);
|
||||
}
|
||||
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
@ -3711,7 +3552,18 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
|
|||
}
|
||||
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
|
||||
|
||||
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
|
||||
|
||||
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return SCHED_LOAD_SCALE;
|
||||
}
|
||||
|
||||
unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return default_scale_freq_power(sd, cpu);
|
||||
}
|
||||
|
||||
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
unsigned long weight = cpumask_weight(sched_domain_span(sd));
|
||||
unsigned long smt_gain = sd->smt_gain;
|
||||
|
@ -3721,6 +3573,11 @@ unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
|
|||
return smt_gain;
|
||||
}
|
||||
|
||||
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return default_scale_smt_power(sd, cpu);
|
||||
}
|
||||
|
||||
unsigned long scale_rt_power(int cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
|
@ -3745,10 +3602,19 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
|
|||
unsigned long power = SCHED_LOAD_SCALE;
|
||||
struct sched_group *sdg = sd->groups;
|
||||
|
||||
/* here we could scale based on cpufreq */
|
||||
if (sched_feat(ARCH_POWER))
|
||||
power *= arch_scale_freq_power(sd, cpu);
|
||||
else
|
||||
power *= default_scale_freq_power(sd, cpu);
|
||||
|
||||
power >>= SCHED_LOAD_SHIFT;
|
||||
|
||||
if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
|
||||
power *= arch_scale_smt_power(sd, cpu);
|
||||
if (sched_feat(ARCH_POWER))
|
||||
power *= arch_scale_smt_power(sd, cpu);
|
||||
else
|
||||
power *= default_scale_smt_power(sd, cpu);
|
||||
|
||||
power >>= SCHED_LOAD_SHIFT;
|
||||
}
|
||||
|
||||
|
@ -4161,26 +4027,6 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|||
return NULL;
|
||||
}
|
||||
|
||||
static struct sched_group *group_of(int cpu)
|
||||
{
|
||||
struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
|
||||
|
||||
if (!sd)
|
||||
return NULL;
|
||||
|
||||
return sd->groups;
|
||||
}
|
||||
|
||||
static unsigned long power_of(int cpu)
|
||||
{
|
||||
struct sched_group *group = group_of(cpu);
|
||||
|
||||
if (!group)
|
||||
return SCHED_LOAD_SCALE;
|
||||
|
||||
return group->cpu_power;
|
||||
}
|
||||
|
||||
/*
|
||||
* find_busiest_queue - find the busiest runqueue among the cpus in group.
|
||||
*/
|
||||
|
@ -5465,14 +5311,13 @@ static inline void schedule_debug(struct task_struct *prev)
|
|||
#endif
|
||||
}
|
||||
|
||||
static void put_prev_task(struct rq *rq, struct task_struct *prev)
|
||||
static void put_prev_task(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
if (prev->state == TASK_RUNNING) {
|
||||
u64 runtime = prev->se.sum_exec_runtime;
|
||||
u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
|
||||
|
||||
runtime -= prev->se.prev_sum_exec_runtime;
|
||||
runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
|
||||
update_avg(&p->se.avg_running, runtime);
|
||||
|
||||
if (p->state == TASK_RUNNING) {
|
||||
/*
|
||||
* In order to avoid avg_overlap growing stale when we are
|
||||
* indeed overlapping and hence not getting put to sleep, grow
|
||||
|
@ -5482,9 +5327,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev)
|
|||
* correlates to the amount of cache footprint a task can
|
||||
* build up.
|
||||
*/
|
||||
update_avg(&prev->se.avg_overlap, runtime);
|
||||
runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
|
||||
update_avg(&p->se.avg_overlap, runtime);
|
||||
} else {
|
||||
update_avg(&p->se.avg_running, 0);
|
||||
}
|
||||
prev->sched_class->put_prev_task(rq, prev);
|
||||
p->sched_class->put_prev_task(rq, p);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -5716,10 +5564,10 @@ asmlinkage void __sched preempt_schedule_irq(void)
|
|||
|
||||
#endif /* CONFIG_PREEMPT */
|
||||
|
||||
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
|
||||
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
|
||||
void *key)
|
||||
{
|
||||
return try_to_wake_up(curr->private, mode, sync);
|
||||
return try_to_wake_up(curr->private, mode, wake_flags);
|
||||
}
|
||||
EXPORT_SYMBOL(default_wake_function);
|
||||
|
||||
|
@ -5733,14 +5581,14 @@ EXPORT_SYMBOL(default_wake_function);
|
|||
* zero in this (rare) case, and we handle it by continuing to scan the queue.
|
||||
*/
|
||||
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
|
||||
int nr_exclusive, int sync, void *key)
|
||||
int nr_exclusive, int wake_flags, void *key)
|
||||
{
|
||||
wait_queue_t *curr, *next;
|
||||
|
||||
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
|
||||
unsigned flags = curr->flags;
|
||||
|
||||
if (curr->func(curr, mode, sync, key) &&
|
||||
if (curr->func(curr, mode, wake_flags, key) &&
|
||||
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
|
||||
break;
|
||||
}
|
||||
|
@ -5801,16 +5649,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
|
|||
int nr_exclusive, void *key)
|
||||
{
|
||||
unsigned long flags;
|
||||
int sync = 1;
|
||||
int wake_flags = WF_SYNC;
|
||||
|
||||
if (unlikely(!q))
|
||||
return;
|
||||
|
||||
if (unlikely(!nr_exclusive))
|
||||
sync = 0;
|
||||
wake_flags = 0;
|
||||
|
||||
spin_lock_irqsave(&q->lock, flags);
|
||||
__wake_up_common(q, mode, nr_exclusive, sync, key);
|
||||
__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
|
||||
spin_unlock_irqrestore(&q->lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__wake_up_sync_key);
|
||||
|
@ -8000,9 +7848,7 @@ static int sd_degenerate(struct sched_domain *sd)
|
|||
}
|
||||
|
||||
/* Following flags don't use groups */
|
||||
if (sd->flags & (SD_WAKE_IDLE |
|
||||
SD_WAKE_AFFINE |
|
||||
SD_WAKE_BALANCE))
|
||||
if (sd->flags & (SD_WAKE_AFFINE))
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
|
@ -8019,10 +7865,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
|
|||
if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
|
||||
return 0;
|
||||
|
||||
/* Does parent contain flags not in child? */
|
||||
/* WAKE_BALANCE is a subset of WAKE_AFFINE */
|
||||
if (cflags & SD_WAKE_AFFINE)
|
||||
pflags &= ~SD_WAKE_BALANCE;
|
||||
/* Flags needing groups don't count if only 1 group in parent */
|
||||
if (parent->groups == parent->groups->next) {
|
||||
pflags &= ~(SD_LOAD_BALANCE |
|
||||
|
@ -8708,10 +8550,10 @@ static void set_domain_attribute(struct sched_domain *sd,
|
|||
request = attr->relax_domain_level;
|
||||
if (request < sd->level) {
|
||||
/* turn off idle balance on this domain */
|
||||
sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
|
||||
sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
|
||||
} else {
|
||||
/* turn on idle balance on this domain */
|
||||
sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
|
||||
sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
|
|||
PN(se.sum_exec_runtime);
|
||||
PN(se.avg_overlap);
|
||||
PN(se.avg_wakeup);
|
||||
PN(se.avg_running);
|
||||
|
||||
nr_switches = p->nvcsw + p->nivcsw;
|
||||
|
||||
|
|
|
@ -711,7 +711,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
|||
|
||||
if (!initial) {
|
||||
/* sleeps upto a single latency don't count. */
|
||||
if (sched_feat(NEW_FAIR_SLEEPERS)) {
|
||||
if (sched_feat(FAIR_SLEEPERS)) {
|
||||
unsigned long thresh = sysctl_sched_latency;
|
||||
|
||||
/*
|
||||
|
@ -725,6 +725,13 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
|||
task_of(se)->policy != SCHED_IDLE))
|
||||
thresh = calc_delta_fair(thresh, se);
|
||||
|
||||
/*
|
||||
* Halve their sleep time's effect, to allow
|
||||
* for a gentler effect of sleepers:
|
||||
*/
|
||||
if (sched_feat(GENTLE_FAIR_SLEEPERS))
|
||||
thresh >>= 1;
|
||||
|
||||
vruntime -= thresh;
|
||||
}
|
||||
}
|
||||
|
@ -757,10 +764,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
|
|||
|
||||
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
if (cfs_rq->last == se)
|
||||
if (!se || cfs_rq->last == se)
|
||||
cfs_rq->last = NULL;
|
||||
|
||||
if (cfs_rq->next == se)
|
||||
if (!se || cfs_rq->next == se)
|
||||
cfs_rq->next = NULL;
|
||||
}
|
||||
|
||||
|
@ -1062,83 +1069,6 @@ static void yield_task_fair(struct rq *rq)
|
|||
se->vruntime = rightmost->vruntime + 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* wake_idle() will wake a task on an idle cpu if task->cpu is
|
||||
* not idle and an idle cpu is available. The span of cpus to
|
||||
* search starts with cpus closest then further out as needed,
|
||||
* so we always favor a closer, idle cpu.
|
||||
* Domains may include CPUs that are not usable for migration,
|
||||
* hence we need to mask them out (rq->rd->online)
|
||||
*
|
||||
* Returns the CPU we should wake onto.
|
||||
*/
|
||||
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
|
||||
|
||||
#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
|
||||
|
||||
static int wake_idle(int cpu, struct task_struct *p)
|
||||
{
|
||||
struct sched_domain *sd;
|
||||
int i;
|
||||
unsigned int chosen_wakeup_cpu;
|
||||
int this_cpu;
|
||||
struct rq *task_rq = task_rq(p);
|
||||
|
||||
/*
|
||||
* At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
|
||||
* are idle and this is not a kernel thread and this task's affinity
|
||||
* allows it to be moved to preferred cpu, then just move!
|
||||
*/
|
||||
|
||||
this_cpu = smp_processor_id();
|
||||
chosen_wakeup_cpu =
|
||||
cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
|
||||
|
||||
if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
|
||||
idle_cpu(cpu) && idle_cpu(this_cpu) &&
|
||||
p->mm && !(p->flags & PF_KTHREAD) &&
|
||||
cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
|
||||
return chosen_wakeup_cpu;
|
||||
|
||||
/*
|
||||
* If it is idle, then it is the best cpu to run this task.
|
||||
*
|
||||
* This cpu is also the best, if it has more than one task already.
|
||||
* Siblings must be also busy(in most cases) as they didn't already
|
||||
* pickup the extra load from this cpu and hence we need not check
|
||||
* sibling runqueue info. This will avoid the checks and cache miss
|
||||
* penalities associated with that.
|
||||
*/
|
||||
if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
|
||||
return cpu;
|
||||
|
||||
for_each_domain(cpu, sd) {
|
||||
if ((sd->flags & SD_WAKE_IDLE)
|
||||
|| ((sd->flags & SD_WAKE_IDLE_FAR)
|
||||
&& !task_hot(p, task_rq->clock, sd))) {
|
||||
for_each_cpu_and(i, sched_domain_span(sd),
|
||||
&p->cpus_allowed) {
|
||||
if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
|
||||
if (i != task_cpu(p)) {
|
||||
schedstat_inc(p,
|
||||
se.nr_wakeups_idle);
|
||||
}
|
||||
return i;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return cpu;
|
||||
}
|
||||
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
|
||||
static inline int wake_idle(int cpu, struct task_struct *p)
|
||||
{
|
||||
return cpu;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
|
@ -1225,25 +1155,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
|
|||
|
||||
#endif
|
||||
|
||||
static int
|
||||
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
|
||||
struct task_struct *p, int prev_cpu, int this_cpu, int sync,
|
||||
int idx, unsigned long load, unsigned long this_load,
|
||||
unsigned int imbalance)
|
||||
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
||||
{
|
||||
struct task_struct *curr = this_rq->curr;
|
||||
struct task_group *tg;
|
||||
unsigned long tl = this_load;
|
||||
struct task_struct *curr = current;
|
||||
unsigned long this_load, load;
|
||||
int idx, this_cpu, prev_cpu;
|
||||
unsigned long tl_per_task;
|
||||
unsigned int imbalance;
|
||||
struct task_group *tg;
|
||||
unsigned long weight;
|
||||
int balanced;
|
||||
|
||||
if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
|
||||
return 0;
|
||||
idx = sd->wake_idx;
|
||||
this_cpu = smp_processor_id();
|
||||
prev_cpu = task_cpu(p);
|
||||
load = source_load(prev_cpu, idx);
|
||||
this_load = target_load(this_cpu, idx);
|
||||
|
||||
if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
|
||||
p->se.avg_overlap > sysctl_sched_migration_cost))
|
||||
sync = 0;
|
||||
if (sync) {
|
||||
if (sched_feat(SYNC_LESS) &&
|
||||
(curr->se.avg_overlap > sysctl_sched_migration_cost ||
|
||||
p->se.avg_overlap > sysctl_sched_migration_cost))
|
||||
sync = 0;
|
||||
} else {
|
||||
if (sched_feat(SYNC_MORE) &&
|
||||
(curr->se.avg_overlap < sysctl_sched_migration_cost &&
|
||||
p->se.avg_overlap < sysctl_sched_migration_cost))
|
||||
sync = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* If sync wakeup then subtract the (maximum possible)
|
||||
|
@ -1254,24 +1193,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
|
|||
tg = task_group(current);
|
||||
weight = current->se.load.weight;
|
||||
|
||||
tl += effective_load(tg, this_cpu, -weight, -weight);
|
||||
this_load += effective_load(tg, this_cpu, -weight, -weight);
|
||||
load += effective_load(tg, prev_cpu, 0, -weight);
|
||||
}
|
||||
|
||||
tg = task_group(p);
|
||||
weight = p->se.load.weight;
|
||||
|
||||
imbalance = 100 + (sd->imbalance_pct - 100) / 2;
|
||||
|
||||
/*
|
||||
* In low-load situations, where prev_cpu is idle and this_cpu is idle
|
||||
* due to the sync cause above having dropped tl to 0, we'll always have
|
||||
* an imbalance, but there's really nothing you can do about that, so
|
||||
* that's good too.
|
||||
* due to the sync cause above having dropped this_load to 0, we'll
|
||||
* always have an imbalance, but there's really nothing you can do
|
||||
* about that, so that's good too.
|
||||
*
|
||||
* Otherwise check if either cpus are near enough in load to allow this
|
||||
* task to be woken on this_cpu.
|
||||
*/
|
||||
balanced = !tl ||
|
||||
100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
|
||||
balanced = !this_load ||
|
||||
100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
|
||||
imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
|
||||
|
||||
/*
|
||||
|
@ -1285,14 +1226,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
|
|||
schedstat_inc(p, se.nr_wakeups_affine_attempts);
|
||||
tl_per_task = cpu_avg_load_per_task(this_cpu);
|
||||
|
||||
if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
|
||||
tl_per_task)) {
|
||||
if (balanced ||
|
||||
(this_load <= load &&
|
||||
this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
|
||||
/*
|
||||
* This domain has SD_WAKE_AFFINE and
|
||||
* p is cache cold in this domain, and
|
||||
* there is no bad imbalance.
|
||||
*/
|
||||
schedstat_inc(this_sd, ttwu_move_affine);
|
||||
schedstat_inc(sd, ttwu_move_affine);
|
||||
schedstat_inc(p, se.nr_wakeups_affine);
|
||||
|
||||
return 1;
|
||||
|
@ -1300,65 +1242,215 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int select_task_rq_fair(struct task_struct *p, int sync)
|
||||
/*
|
||||
* find_idlest_group finds and returns the least busy CPU group within the
|
||||
* domain.
|
||||
*/
|
||||
static struct sched_group *
|
||||
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
|
||||
int this_cpu, int load_idx)
|
||||
{
|
||||
struct sched_domain *sd, *this_sd = NULL;
|
||||
int prev_cpu, this_cpu, new_cpu;
|
||||
unsigned long load, this_load;
|
||||
struct rq *this_rq;
|
||||
unsigned int imbalance;
|
||||
int idx;
|
||||
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
|
||||
unsigned long min_load = ULONG_MAX, this_load = 0;
|
||||
int imbalance = 100 + (sd->imbalance_pct-100)/2;
|
||||
|
||||
prev_cpu = task_cpu(p);
|
||||
this_cpu = smp_processor_id();
|
||||
this_rq = cpu_rq(this_cpu);
|
||||
new_cpu = prev_cpu;
|
||||
do {
|
||||
unsigned long load, avg_load;
|
||||
int local_group;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* 'this_sd' is the first domain that both
|
||||
* this_cpu and prev_cpu are present in:
|
||||
*/
|
||||
for_each_domain(this_cpu, sd) {
|
||||
if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
|
||||
this_sd = sd;
|
||||
break;
|
||||
/* Skip over this group if it has no CPUs allowed */
|
||||
if (!cpumask_intersects(sched_group_cpus(group),
|
||||
&p->cpus_allowed))
|
||||
continue;
|
||||
|
||||
local_group = cpumask_test_cpu(this_cpu,
|
||||
sched_group_cpus(group));
|
||||
|
||||
/* Tally up the load of all CPUs in the group */
|
||||
avg_load = 0;
|
||||
|
||||
for_each_cpu(i, sched_group_cpus(group)) {
|
||||
/* Bias balancing toward cpus of our domain */
|
||||
if (local_group)
|
||||
load = source_load(i, load_idx);
|
||||
else
|
||||
load = target_load(i, load_idx);
|
||||
|
||||
avg_load += load;
|
||||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
||||
|
||||
if (local_group) {
|
||||
this_load = avg_load;
|
||||
this = group;
|
||||
} else if (avg_load < min_load) {
|
||||
min_load = avg_load;
|
||||
idlest = group;
|
||||
}
|
||||
} while (group = group->next, group != sd->groups);
|
||||
|
||||
if (!idlest || 100*this_load < imbalance*min_load)
|
||||
return NULL;
|
||||
return idlest;
|
||||
}
|
||||
|
||||
/*
|
||||
* find_idlest_cpu - find the idlest cpu among the cpus in group.
|
||||
*/
|
||||
static int
|
||||
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
|
||||
{
|
||||
unsigned long load, min_load = ULONG_MAX;
|
||||
int idlest = -1;
|
||||
int i;
|
||||
|
||||
/* Traverse only the allowed CPUs */
|
||||
for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
|
||||
load = weighted_cpuload(i);
|
||||
|
||||
if (load < min_load || (load == min_load && i == this_cpu)) {
|
||||
min_load = load;
|
||||
idlest = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
|
||||
goto out;
|
||||
return idlest;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for affine wakeup and passive balancing possibilities.
|
||||
*/
|
||||
if (!this_sd)
|
||||
goto out;
|
||||
/*
|
||||
* sched_balance_self: balance the current task (running on cpu) in domains
|
||||
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
|
||||
* SD_BALANCE_EXEC.
|
||||
*
|
||||
* Balance, ie. select the least loaded group.
|
||||
*
|
||||
* Returns the target CPU number, or the same CPU if no balancing is needed.
|
||||
*
|
||||
* preempt must be disabled.
|
||||
*/
|
||||
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
|
||||
{
|
||||
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
|
||||
int cpu = smp_processor_id();
|
||||
int prev_cpu = task_cpu(p);
|
||||
int new_cpu = cpu;
|
||||
int want_affine = 0;
|
||||
int want_sd = 1;
|
||||
int sync = wake_flags & WF_SYNC;
|
||||
|
||||
idx = this_sd->wake_idx;
|
||||
if (sd_flag & SD_BALANCE_WAKE) {
|
||||
if (sched_feat(AFFINE_WAKEUPS))
|
||||
want_affine = 1;
|
||||
new_cpu = prev_cpu;
|
||||
}
|
||||
|
||||
imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
|
||||
rcu_read_lock();
|
||||
for_each_domain(cpu, tmp) {
|
||||
/*
|
||||
* If power savings logic is enabled for a domain, see if we
|
||||
* are not overloaded, if so, don't balance wider.
|
||||
*/
|
||||
if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
|
||||
unsigned long power = 0;
|
||||
unsigned long nr_running = 0;
|
||||
unsigned long capacity;
|
||||
int i;
|
||||
|
||||
load = source_load(prev_cpu, idx);
|
||||
this_load = target_load(this_cpu, idx);
|
||||
for_each_cpu(i, sched_domain_span(tmp)) {
|
||||
power += power_of(i);
|
||||
nr_running += cpu_rq(i)->cfs.nr_running;
|
||||
}
|
||||
|
||||
if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
|
||||
load, this_load, imbalance))
|
||||
return this_cpu;
|
||||
capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
|
||||
|
||||
/*
|
||||
* Start passive balancing when half the imbalance_pct
|
||||
* limit is reached.
|
||||
*/
|
||||
if (this_sd->flags & SD_WAKE_BALANCE) {
|
||||
if (imbalance*this_load <= 100*load) {
|
||||
schedstat_inc(this_sd, ttwu_move_balance);
|
||||
schedstat_inc(p, se.nr_wakeups_passive);
|
||||
return this_cpu;
|
||||
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
|
||||
nr_running /= 2;
|
||||
|
||||
if (nr_running < capacity)
|
||||
want_sd = 0;
|
||||
}
|
||||
|
||||
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
|
||||
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
|
||||
|
||||
affine_sd = tmp;
|
||||
want_affine = 0;
|
||||
}
|
||||
|
||||
if (!want_sd && !want_affine)
|
||||
break;
|
||||
|
||||
if (!(tmp->flags & sd_flag))
|
||||
continue;
|
||||
|
||||
if (want_sd)
|
||||
sd = tmp;
|
||||
}
|
||||
|
||||
if (sched_feat(LB_SHARES_UPDATE)) {
|
||||
/*
|
||||
* Pick the largest domain to update shares over
|
||||
*/
|
||||
tmp = sd;
|
||||
if (affine_sd && (!tmp ||
|
||||
cpumask_weight(sched_domain_span(affine_sd)) >
|
||||
cpumask_weight(sched_domain_span(sd))))
|
||||
tmp = affine_sd;
|
||||
|
||||
if (tmp)
|
||||
update_shares(tmp);
|
||||
}
|
||||
|
||||
if (affine_sd && wake_affine(affine_sd, p, sync)) {
|
||||
new_cpu = cpu;
|
||||
goto out;
|
||||
}
|
||||
|
||||
while (sd) {
|
||||
int load_idx = sd->forkexec_idx;
|
||||
struct sched_group *group;
|
||||
int weight;
|
||||
|
||||
if (!(sd->flags & sd_flag)) {
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (sd_flag & SD_BALANCE_WAKE)
|
||||
load_idx = sd->wake_idx;
|
||||
|
||||
group = find_idlest_group(sd, p, cpu, load_idx);
|
||||
if (!group) {
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
new_cpu = find_idlest_cpu(group, p, cpu);
|
||||
if (new_cpu == -1 || new_cpu == cpu) {
|
||||
/* Now try balancing at a lower domain level of cpu */
|
||||
sd = sd->child;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Now try balancing at a lower domain level of new_cpu */
|
||||
cpu = new_cpu;
|
||||
weight = cpumask_weight(sched_domain_span(sd));
|
||||
sd = NULL;
|
||||
for_each_domain(cpu, tmp) {
|
||||
if (weight <= cpumask_weight(sched_domain_span(tmp)))
|
||||
break;
|
||||
if (tmp->flags & sd_flag)
|
||||
sd = tmp;
|
||||
}
|
||||
/* while loop will break here if sd == NULL */
|
||||
}
|
||||
|
||||
out:
|
||||
return wake_idle(new_cpu, p);
|
||||
rcu_read_unlock();
|
||||
return new_cpu;
|
||||
}
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
|
@ -1471,11 +1563,12 @@ static void set_next_buddy(struct sched_entity *se)
|
|||
/*
|
||||
* Preempt the current task with a newly woken task if needed:
|
||||
*/
|
||||
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
|
||||
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
|
||||
{
|
||||
struct task_struct *curr = rq->curr;
|
||||
struct sched_entity *se = &curr->se, *pse = &p->se;
|
||||
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
||||
int sync = wake_flags & WF_SYNC;
|
||||
|
||||
update_curr(cfs_rq);
|
||||
|
||||
|
@ -1501,7 +1594,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
|
|||
*/
|
||||
if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
|
||||
set_last_buddy(se);
|
||||
set_next_buddy(pse);
|
||||
if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
|
||||
set_next_buddy(pse);
|
||||
|
||||
/*
|
||||
* We can come here with TIF_NEED_RESCHED already set from new task
|
||||
|
@ -1523,16 +1617,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
|
|||
return;
|
||||
}
|
||||
|
||||
if (!sched_feat(WAKEUP_PREEMPT))
|
||||
return;
|
||||
|
||||
if (sched_feat(WAKEUP_OVERLAP) && (sync ||
|
||||
(se->avg_overlap < sysctl_sched_migration_cost &&
|
||||
pse->avg_overlap < sysctl_sched_migration_cost))) {
|
||||
if ((sched_feat(WAKEUP_SYNC) && sync) ||
|
||||
(sched_feat(WAKEUP_OVERLAP) &&
|
||||
(se->avg_overlap < sysctl_sched_migration_cost &&
|
||||
pse->avg_overlap < sysctl_sched_migration_cost))) {
|
||||
resched_task(curr);
|
||||
return;
|
||||
}
|
||||
|
||||
if (sched_feat(WAKEUP_RUNNING)) {
|
||||
if (pse->avg_running < se->avg_running) {
|
||||
set_next_buddy(pse);
|
||||
resched_task(curr);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!sched_feat(WAKEUP_PREEMPT))
|
||||
return;
|
||||
|
||||
find_matching_se(&se, &pse);
|
||||
|
||||
BUG_ON(!pse);
|
||||
|
@ -1555,8 +1658,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq)
|
|||
/*
|
||||
* If se was a buddy, clear it so that it will have to earn
|
||||
* the favour again.
|
||||
*
|
||||
* If se was not a buddy, clear the buddies because neither
|
||||
* was elegible to run, let them earn it again.
|
||||
*
|
||||
* IOW. unconditionally clear buddies.
|
||||
*/
|
||||
__clear_buddies(cfs_rq, se);
|
||||
__clear_buddies(cfs_rq, NULL);
|
||||
set_next_entity(cfs_rq, se);
|
||||
cfs_rq = group_cfs_rq(se);
|
||||
} while (cfs_rq);
|
||||
|
|
|
@ -1,17 +1,123 @@
|
|||
SCHED_FEAT(NEW_FAIR_SLEEPERS, 0)
|
||||
/*
|
||||
* Disregards a certain amount of sleep time (sched_latency_ns) and
|
||||
* considers the task to be running during that period. This gives it
|
||||
* a service deficit on wakeup, allowing it to run sooner.
|
||||
*/
|
||||
SCHED_FEAT(FAIR_SLEEPERS, 1)
|
||||
|
||||
/*
|
||||
* Only give sleepers 50% of their service deficit. This allows
|
||||
* them to run sooner, but does not allow tons of sleepers to
|
||||
* rip the spread apart.
|
||||
*/
|
||||
SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1)
|
||||
|
||||
/*
|
||||
* By not normalizing the sleep time, heavy tasks get an effective
|
||||
* longer period, and lighter task an effective shorter period they
|
||||
* are considered running.
|
||||
*/
|
||||
SCHED_FEAT(NORMALIZED_SLEEPER, 0)
|
||||
SCHED_FEAT(ADAPTIVE_GRAN, 1)
|
||||
SCHED_FEAT(WAKEUP_PREEMPT, 1)
|
||||
|
||||
/*
|
||||
* Place new tasks ahead so that they do not starve already running
|
||||
* tasks
|
||||
*/
|
||||
SCHED_FEAT(START_DEBIT, 1)
|
||||
SCHED_FEAT(AFFINE_WAKEUPS, 1)
|
||||
SCHED_FEAT(CACHE_HOT_BUDDY, 1)
|
||||
|
||||
/*
|
||||
* Should wakeups try to preempt running tasks.
|
||||
*/
|
||||
SCHED_FEAT(WAKEUP_PREEMPT, 1)
|
||||
|
||||
/*
|
||||
* Compute wakeup_gran based on task behaviour, clipped to
|
||||
* [0, sched_wakeup_gran_ns]
|
||||
*/
|
||||
SCHED_FEAT(ADAPTIVE_GRAN, 1)
|
||||
|
||||
/*
|
||||
* When converting the wakeup granularity to virtual time, do it such
|
||||
* that heavier tasks preempting a lighter task have an edge.
|
||||
*/
|
||||
SCHED_FEAT(ASYM_GRAN, 1)
|
||||
|
||||
/*
|
||||
* Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS.
|
||||
*/
|
||||
SCHED_FEAT(WAKEUP_SYNC, 0)
|
||||
|
||||
/*
|
||||
* Wakeup preempt based on task behaviour. Tasks that do not overlap
|
||||
* don't get preempted.
|
||||
*/
|
||||
SCHED_FEAT(WAKEUP_OVERLAP, 0)
|
||||
|
||||
/*
|
||||
* Wakeup preemption towards tasks that run short
|
||||
*/
|
||||
SCHED_FEAT(WAKEUP_RUNNING, 0)
|
||||
|
||||
/*
|
||||
* Use the SYNC wakeup hint, pipes and the likes use this to indicate
|
||||
* the remote end is likely to consume the data we just wrote, and
|
||||
* therefore has cache benefit from being placed on the same cpu, see
|
||||
* also AFFINE_WAKEUPS.
|
||||
*/
|
||||
SCHED_FEAT(SYNC_WAKEUPS, 1)
|
||||
|
||||
/*
|
||||
* Based on load and program behaviour, see if it makes sense to place
|
||||
* a newly woken task on the same cpu as the task that woke it --
|
||||
* improve cache locality. Typically used with SYNC wakeups as
|
||||
* generated by pipes and the like, see also SYNC_WAKEUPS.
|
||||
*/
|
||||
SCHED_FEAT(AFFINE_WAKEUPS, 1)
|
||||
|
||||
/*
|
||||
* Weaken SYNC hint based on overlap
|
||||
*/
|
||||
SCHED_FEAT(SYNC_LESS, 1)
|
||||
|
||||
/*
|
||||
* Add SYNC hint based on overlap
|
||||
*/
|
||||
SCHED_FEAT(SYNC_MORE, 0)
|
||||
|
||||
/*
|
||||
* Prefer to schedule the task we woke last (assuming it failed
|
||||
* wakeup-preemption), since its likely going to consume data we
|
||||
* touched, increases cache locality.
|
||||
*/
|
||||
SCHED_FEAT(NEXT_BUDDY, 0)
|
||||
|
||||
/*
|
||||
* Prefer to schedule the task that ran last (when we did
|
||||
* wake-preempt) as that likely will touch the same data, increases
|
||||
* cache locality.
|
||||
*/
|
||||
SCHED_FEAT(LAST_BUDDY, 1)
|
||||
|
||||
/*
|
||||
* Consider buddies to be cache hot, decreases the likelyness of a
|
||||
* cache buddy being migrated away, increases cache locality.
|
||||
*/
|
||||
SCHED_FEAT(CACHE_HOT_BUDDY, 1)
|
||||
|
||||
/*
|
||||
* Use arch dependent cpu power functions
|
||||
*/
|
||||
SCHED_FEAT(ARCH_POWER, 0)
|
||||
|
||||
SCHED_FEAT(HRTICK, 0)
|
||||
SCHED_FEAT(DOUBLE_TICK, 0)
|
||||
SCHED_FEAT(ASYM_GRAN, 1)
|
||||
SCHED_FEAT(LB_BIAS, 1)
|
||||
SCHED_FEAT(LB_WAKEUP_UPDATE, 1)
|
||||
SCHED_FEAT(LB_SHARES_UPDATE, 1)
|
||||
SCHED_FEAT(ASYM_EFF_LOAD, 1)
|
||||
SCHED_FEAT(WAKEUP_OVERLAP, 0)
|
||||
SCHED_FEAT(LAST_BUDDY, 1)
|
||||
|
||||
/*
|
||||
* Spin-wait on mutex acquisition when the mutex owner is running on
|
||||
* another cpu -- assumes that when the owner is running, it will soon
|
||||
* release the lock. Decreases scheduling overhead.
|
||||
*/
|
||||
SCHED_FEAT(OWNER_SPIN, 1)
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
*/
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static int select_task_rq_idle(struct task_struct *p, int sync)
|
||||
static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags)
|
||||
{
|
||||
return task_cpu(p); /* IDLE tasks as never migrated */
|
||||
}
|
||||
|
@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync)
|
|||
/*
|
||||
* Idle tasks are unconditionally rescheduled:
|
||||
*/
|
||||
static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync)
|
||||
static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
resched_task(rq->idle);
|
||||
}
|
||||
|
|
|
@ -938,10 +938,13 @@ static void yield_task_rt(struct rq *rq)
|
|||
#ifdef CONFIG_SMP
|
||||
static int find_lowest_rq(struct task_struct *task);
|
||||
|
||||
static int select_task_rq_rt(struct task_struct *p, int sync)
|
||||
static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
|
||||
{
|
||||
struct rq *rq = task_rq(p);
|
||||
|
||||
if (sd_flag != SD_BALANCE_WAKE)
|
||||
return smp_processor_id();
|
||||
|
||||
/*
|
||||
* If the current task is an RT task, then
|
||||
* try to see if we can wake this RT task up on another
|
||||
|
@ -999,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
|
|||
/*
|
||||
* Preempt the current task with a newly woken task if needed:
|
||||
*/
|
||||
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
|
||||
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
if (p->prio < rq->curr->prio) {
|
||||
resched_task(rq->curr);
|
||||
|
|
Loading…
Reference in New Issue
Block a user