forked from luck/tmp_suning_uos_patched
e1000: update README for e1000
Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
This commit is contained in:
parent
25006ac61e
commit
de3edab427
|
@ -1,7 +1,7 @@
|
|||
Linux* Base Driver for the Intel(R) PRO/1000 Family of Adapters
|
||||
===============================================================
|
||||
|
||||
November 15, 2005
|
||||
September 26, 2006
|
||||
|
||||
|
||||
Contents
|
||||
|
@ -9,6 +9,7 @@ Contents
|
|||
|
||||
- In This Release
|
||||
- Identifying Your Adapter
|
||||
- Building and Installation
|
||||
- Command Line Parameters
|
||||
- Speed and Duplex Configuration
|
||||
- Additional Configurations
|
||||
|
@ -41,6 +42,9 @@ or later), lspci, and ifconfig to obtain the same information.
|
|||
Instructions on updating ethtool can be found in the section "Additional
|
||||
Configurations" later in this document.
|
||||
|
||||
NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100
|
||||
support.
|
||||
|
||||
|
||||
Identifying Your Adapter
|
||||
========================
|
||||
|
@ -51,28 +55,27 @@ Driver ID Guide at:
|
|||
http://support.intel.com/support/network/adapter/pro100/21397.htm
|
||||
|
||||
For the latest Intel network drivers for Linux, refer to the following
|
||||
website. In the search field, enter your adapter name or type, or use the
|
||||
website. In the search field, enter your adapter name or type, or use the
|
||||
networking link on the left to search for your adapter:
|
||||
|
||||
http://downloadfinder.intel.com/scripts-df/support_intel.asp
|
||||
|
||||
|
||||
Command Line Parameters =======================
|
||||
Command Line Parameters
|
||||
=======================
|
||||
|
||||
If the driver is built as a module, the following optional parameters
|
||||
are used by entering them on the command line with the modprobe or insmod
|
||||
command using this syntax:
|
||||
are used by entering them on the command line with the modprobe command
|
||||
using this syntax:
|
||||
|
||||
modprobe e1000 [<option>=<VAL1>,<VAL2>,...]
|
||||
|
||||
insmod e1000 [<option>=<VAL1>,<VAL2>,...]
|
||||
|
||||
For example, with two PRO/1000 PCI adapters, entering:
|
||||
|
||||
insmod e1000 TxDescriptors=80,128
|
||||
modprobe e1000 TxDescriptors=80,128
|
||||
|
||||
loads the e1000 driver with 80 TX descriptors for the first adapter and 128
|
||||
TX descriptors for the second adapter.
|
||||
loads the e1000 driver with 80 TX descriptors for the first adapter and
|
||||
128 TX descriptors for the second adapter.
|
||||
|
||||
The default value for each parameter is generally the recommended setting,
|
||||
unless otherwise noted.
|
||||
|
@ -87,7 +90,7 @@ NOTES: For more information about the AutoNeg, Duplex, and Speed
|
|||
http://www.intel.com/design/network/applnots/ap450.htm
|
||||
|
||||
A descriptor describes a data buffer and attributes related to
|
||||
the data buffer. This information is accessed by the hardware.
|
||||
the data buffer. This information is accessed by the hardware.
|
||||
|
||||
|
||||
AutoNeg
|
||||
|
@ -96,9 +99,9 @@ AutoNeg
|
|||
Valid Range: 0x01-0x0F, 0x20-0x2F
|
||||
Default Value: 0x2F
|
||||
|
||||
This parameter is a bit mask that specifies which speed and duplex
|
||||
settings the board advertises. When this parameter is used, the Speed
|
||||
and Duplex parameters must not be specified.
|
||||
This parameter is a bit-mask that specifies the speed and duplex settings
|
||||
advertised by the adapter. When this parameter is used, the Speed and
|
||||
Duplex parameters must not be specified.
|
||||
|
||||
NOTE: Refer to the Speed and Duplex section of this readme for more
|
||||
information on the AutoNeg parameter.
|
||||
|
@ -110,14 +113,15 @@ Duplex
|
|||
Valid Range: 0-2 (0=auto-negotiate, 1=half, 2=full)
|
||||
Default Value: 0
|
||||
|
||||
Defines the direction in which data is allowed to flow. Can be either
|
||||
one or two-directional. If both Duplex and the link partner are set to
|
||||
auto-negotiate, the board auto-detects the correct duplex. If the link
|
||||
partner is forced (either full or half), Duplex defaults to half-duplex.
|
||||
This defines the direction in which data is allowed to flow. Can be
|
||||
either one or two-directional. If both Duplex and the link partner are
|
||||
set to auto-negotiate, the board auto-detects the correct duplex. If the
|
||||
link partner is forced (either full or half), Duplex defaults to half-
|
||||
duplex.
|
||||
|
||||
|
||||
FlowControl
|
||||
----------
|
||||
-----------
|
||||
Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
|
||||
Default Value: Reads flow control settings from the EEPROM
|
||||
|
||||
|
@ -127,57 +131,107 @@ to Ethernet PAUSE frames.
|
|||
|
||||
InterruptThrottleRate
|
||||
---------------------
|
||||
(not supported on Intel 82542, 82543 or 82544-based adapters)
|
||||
Valid Range: 100-100000 (0=off, 1=dynamic)
|
||||
Default Value: 8000
|
||||
(not supported on Intel(R) 82542, 82543 or 82544-based adapters)
|
||||
Valid Range: 0,1,3,100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
|
||||
Default Value: 3
|
||||
|
||||
This value represents the maximum number of interrupts per second the
|
||||
controller generates. InterruptThrottleRate is another setting used in
|
||||
interrupt moderation. Dynamic mode uses a heuristic algorithm to adjust
|
||||
InterruptThrottleRate based on the current traffic load.
|
||||
The driver can limit the amount of interrupts per second that the adapter
|
||||
will generate for incoming packets. It does this by writing a value to the
|
||||
adapter that is based on the maximum amount of interrupts that the adapter
|
||||
will generate per second.
|
||||
|
||||
Setting InterruptThrottleRate to a value greater or equal to 100
|
||||
will program the adapter to send out a maximum of that many interrupts
|
||||
per second, even if more packets have come in. This reduces interrupt
|
||||
load on the system and can lower CPU utilization under heavy load,
|
||||
but will increase latency as packets are not processed as quickly.
|
||||
|
||||
The default behaviour of the driver previously assumed a static
|
||||
InterruptThrottleRate value of 8000, providing a good fallback value for
|
||||
all traffic types,but lacking in small packet performance and latency.
|
||||
The hardware can handle many more small packets per second however, and
|
||||
for this reason an adaptive interrupt moderation algorithm was implemented.
|
||||
|
||||
Since 7.3.x, the driver has two adaptive modes (setting 1 or 3) in which
|
||||
it dynamically adjusts the InterruptThrottleRate value based on the traffic
|
||||
that it receives. After determining the type of incoming traffic in the last
|
||||
timeframe, it will adjust the InterruptThrottleRate to an appropriate value
|
||||
for that traffic.
|
||||
|
||||
The algorithm classifies the incoming traffic every interval into
|
||||
classes. Once the class is determined, the InterruptThrottleRate value is
|
||||
adjusted to suit that traffic type the best. There are three classes defined:
|
||||
"Bulk traffic", for large amounts of packets of normal size; "Low latency",
|
||||
for small amounts of traffic and/or a significant percentage of small
|
||||
packets; and "Lowest latency", for almost completely small packets or
|
||||
minimal traffic.
|
||||
|
||||
In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
|
||||
for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
|
||||
latency" or "Lowest latency" class, the InterruptThrottleRate is increased
|
||||
stepwise to 20000. This default mode is suitable for most applications.
|
||||
|
||||
For situations where low latency is vital such as cluster or
|
||||
grid computing, the algorithm can reduce latency even more when
|
||||
InterruptThrottleRate is set to mode 1. In this mode, which operates
|
||||
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
|
||||
70000 for traffic in class "Lowest latency".
|
||||
|
||||
Setting InterruptThrottleRate to 0 turns off any interrupt moderation
|
||||
and may improve small packet latency, but is generally not suitable
|
||||
for bulk throughput traffic.
|
||||
|
||||
NOTE: InterruptThrottleRate takes precedence over the TxAbsIntDelay and
|
||||
RxAbsIntDelay parameters. In other words, minimizing the receive
|
||||
RxAbsIntDelay parameters. In other words, minimizing the receive
|
||||
and/or transmit absolute delays does not force the controller to
|
||||
generate more interrupts than what the Interrupt Throttle Rate
|
||||
allows.
|
||||
|
||||
CAUTION: If you are using the Intel PRO/1000 CT Network Connection
|
||||
CAUTION: If you are using the Intel(R) PRO/1000 CT Network Connection
|
||||
(controller 82547), setting InterruptThrottleRate to a value
|
||||
greater than 75,000, may hang (stop transmitting) adapters
|
||||
under certain network conditions. If this occurs a NETDEV
|
||||
WATCHDOG message is logged in the system event log. In
|
||||
under certain network conditions. If this occurs a NETDEV
|
||||
WATCHDOG message is logged in the system event log. In
|
||||
addition, the controller is automatically reset, restoring
|
||||
the network connection. To eliminate the potential for the
|
||||
the network connection. To eliminate the potential for the
|
||||
hang, ensure that InterruptThrottleRate is set no greater
|
||||
than 75,000 and is not set to 0.
|
||||
|
||||
NOTE: When e1000 is loaded with default settings and multiple adapters
|
||||
are in use simultaneously, the CPU utilization may increase non-
|
||||
linearly. In order to limit the CPU utilization without impacting
|
||||
linearly. In order to limit the CPU utilization without impacting
|
||||
the overall throughput, we recommend that you load the driver as
|
||||
follows:
|
||||
|
||||
insmod e1000.o InterruptThrottleRate=3000,3000,3000
|
||||
modprobe e1000 InterruptThrottleRate=3000,3000,3000
|
||||
|
||||
This sets the InterruptThrottleRate to 3000 interrupts/sec for
|
||||
the first, second, and third instances of the driver. The range
|
||||
the first, second, and third instances of the driver. The range
|
||||
of 2000 to 3000 interrupts per second works on a majority of
|
||||
systems and is a good starting point, but the optimal value will
|
||||
be platform-specific. If CPU utilization is not a concern, use
|
||||
be platform-specific. If CPU utilization is not a concern, use
|
||||
RX_POLLING (NAPI) and default driver settings.
|
||||
|
||||
|
||||
|
||||
RxDescriptors
|
||||
-------------
|
||||
Valid Range: 80-256 for 82542 and 82543-based adapters
|
||||
80-4096 for all other supported adapters
|
||||
Default Value: 256
|
||||
|
||||
This value specifies the number of receive descriptors allocated by the
|
||||
driver. Increasing this value allows the driver to buffer more incoming
|
||||
packets. Each descriptor is 16 bytes. A receive buffer is also
|
||||
allocated for each descriptor and is 2048.
|
||||
This value specifies the number of receive buffer descriptors allocated
|
||||
by the driver. Increasing this value allows the driver to buffer more
|
||||
incoming packets, at the expense of increased system memory utilization.
|
||||
|
||||
Each descriptor is 16 bytes. A receive buffer is also allocated for each
|
||||
descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending
|
||||
on the MTU setting. The maximum MTU size is 16110.
|
||||
|
||||
NOTE: MTU designates the frame size. It only needs to be set for Jumbo
|
||||
Frames. Depending on the available system resources, the request
|
||||
for a higher number of receive descriptors may be denied. In this
|
||||
case, use a lower number.
|
||||
|
||||
|
||||
RxIntDelay
|
||||
|
@ -187,17 +241,17 @@ Default Value: 0
|
|||
|
||||
This value delays the generation of receive interrupts in units of 1.024
|
||||
microseconds. Receive interrupt reduction can improve CPU efficiency if
|
||||
properly tuned for specific network traffic. Increasing this value adds
|
||||
properly tuned for specific network traffic. Increasing this value adds
|
||||
extra latency to frame reception and can end up decreasing the throughput
|
||||
of TCP traffic. If the system is reporting dropped receives, this value
|
||||
of TCP traffic. If the system is reporting dropped receives, this value
|
||||
may be set too high, causing the driver to run out of available receive
|
||||
descriptors.
|
||||
|
||||
CAUTION: When setting RxIntDelay to a value other than 0, adapters may
|
||||
hang (stop transmitting) under certain network conditions. If
|
||||
hang (stop transmitting) under certain network conditions. If
|
||||
this occurs a NETDEV WATCHDOG message is logged in the system
|
||||
event log. In addition, the controller is automatically reset,
|
||||
restoring the network connection. To eliminate the potential
|
||||
event log. In addition, the controller is automatically reset,
|
||||
restoring the network connection. To eliminate the potential
|
||||
for the hang ensure that RxIntDelay is set to 0.
|
||||
|
||||
|
||||
|
@ -208,7 +262,7 @@ Valid Range: 0-65535 (0=off)
|
|||
Default Value: 128
|
||||
|
||||
This value, in units of 1.024 microseconds, limits the delay in which a
|
||||
receive interrupt is generated. Useful only if RxIntDelay is non-zero,
|
||||
receive interrupt is generated. Useful only if RxIntDelay is non-zero,
|
||||
this value ensures that an interrupt is generated after the initial
|
||||
packet is received within the set amount of time. Proper tuning,
|
||||
along with RxIntDelay, may improve traffic throughput in specific network
|
||||
|
@ -222,9 +276,9 @@ Valid Settings: 0, 10, 100, 1000
|
|||
Default Value: 0 (auto-negotiate at all supported speeds)
|
||||
|
||||
Speed forces the line speed to the specified value in megabits per second
|
||||
(Mbps). If this parameter is not specified or is set to 0 and the link
|
||||
(Mbps). If this parameter is not specified or is set to 0 and the link
|
||||
partner is set to auto-negotiate, the board will auto-detect the correct
|
||||
speed. Duplex should also be set when Speed is set to either 10 or 100.
|
||||
speed. Duplex should also be set when Speed is set to either 10 or 100.
|
||||
|
||||
|
||||
TxDescriptors
|
||||
|
@ -234,7 +288,7 @@ Valid Range: 80-256 for 82542 and 82543-based adapters
|
|||
Default Value: 256
|
||||
|
||||
This value is the number of transmit descriptors allocated by the driver.
|
||||
Increasing this value allows the driver to queue more transmits. Each
|
||||
Increasing this value allows the driver to queue more transmits. Each
|
||||
descriptor is 16 bytes.
|
||||
|
||||
NOTE: Depending on the available system resources, the request for a
|
||||
|
@ -248,8 +302,8 @@ Valid Range: 0-65535 (0=off)
|
|||
Default Value: 64
|
||||
|
||||
This value delays the generation of transmit interrupts in units of
|
||||
1.024 microseconds. Transmit interrupt reduction can improve CPU
|
||||
efficiency if properly tuned for specific network traffic. If the
|
||||
1.024 microseconds. Transmit interrupt reduction can improve CPU
|
||||
efficiency if properly tuned for specific network traffic. If the
|
||||
system is reporting dropped transmits, this value may be set too high
|
||||
causing the driver to run out of available transmit descriptors.
|
||||
|
||||
|
@ -261,7 +315,7 @@ Valid Range: 0-65535 (0=off)
|
|||
Default Value: 64
|
||||
|
||||
This value, in units of 1.024 microseconds, limits the delay in which a
|
||||
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
|
||||
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
|
||||
this value ensures that an interrupt is generated after the initial
|
||||
packet is sent on the wire within the set amount of time. Proper tuning,
|
||||
along with TxIntDelay, may improve traffic throughput in specific
|
||||
|
@ -288,15 +342,15 @@ fiber interface board only links at 1000 Mbps full-duplex.
|
|||
|
||||
For copper-based boards, the keywords interact as follows:
|
||||
|
||||
The default operation is auto-negotiate. The board advertises all
|
||||
The default operation is auto-negotiate. The board advertises all
|
||||
supported speed and duplex combinations, and it links at the highest
|
||||
common speed and duplex mode IF the link partner is set to auto-negotiate.
|
||||
|
||||
If Speed = 1000, limited auto-negotiation is enabled and only 1000 Mbps
|
||||
is advertised (The 1000BaseT spec requires auto-negotiation.)
|
||||
|
||||
If Speed = 10 or 100, then both Speed and Duplex should be set. Auto-
|
||||
negotiation is disabled, and the AutoNeg parameter is ignored. Partner
|
||||
If Speed = 10 or 100, then both Speed and Duplex should be set. Auto-
|
||||
negotiation is disabled, and the AutoNeg parameter is ignored. Partner
|
||||
SHOULD also be forced.
|
||||
|
||||
The AutoNeg parameter is used when more control is required over the
|
||||
|
@ -304,7 +358,7 @@ auto-negotiation process. It should be used when you wish to control which
|
|||
speed and duplex combinations are advertised during the auto-negotiation
|
||||
process.
|
||||
|
||||
The parameter may be specified as either a decimal or hexidecimal value as
|
||||
The parameter may be specified as either a decimal or hexadecimal value as
|
||||
determined by the bitmap below.
|
||||
|
||||
Bit position 7 6 5 4 3 2 1 0
|
||||
|
@ -337,20 +391,19 @@ Additional Configurations
|
|||
|
||||
Configuring the Driver on Different Distributions
|
||||
-------------------------------------------------
|
||||
|
||||
Configuring a network driver to load properly when the system is started
|
||||
is distribution dependent. Typically, the configuration process involves
|
||||
is distribution dependent. Typically, the configuration process involves
|
||||
adding an alias line to /etc/modules.conf or /etc/modprobe.conf as well
|
||||
as editing other system startup scripts and/or configuration files. Many
|
||||
as editing other system startup scripts and/or configuration files. Many
|
||||
popular Linux distributions ship with tools to make these changes for you.
|
||||
To learn the proper way to configure a network device for your system,
|
||||
refer to your distribution documentation. If during this process you are
|
||||
refer to your distribution documentation. If during this process you are
|
||||
asked for the driver or module name, the name for the Linux Base Driver
|
||||
for the Intel PRO/1000 Family of Adapters is e1000.
|
||||
for the Intel(R) PRO/1000 Family of Adapters is e1000.
|
||||
|
||||
As an example, if you install the e1000 driver for two PRO/1000 adapters
|
||||
(eth0 and eth1) and set the speed and duplex to 10full and 100half, add
|
||||
the following to modules.conf or modprobe.conf:
|
||||
the following to modules.conf or or modprobe.conf:
|
||||
|
||||
alias eth0 e1000
|
||||
alias eth1 e1000
|
||||
|
@ -358,9 +411,8 @@ Additional Configurations
|
|||
|
||||
Viewing Link Messages
|
||||
---------------------
|
||||
|
||||
Link messages will not be displayed to the console if the distribution is
|
||||
restricting system messages. In order to see network driver link messages
|
||||
restricting system messages. In order to see network driver link messages
|
||||
on your console, set dmesg to eight by entering the following:
|
||||
|
||||
dmesg -n 8
|
||||
|
@ -369,11 +421,9 @@ Additional Configurations
|
|||
|
||||
Jumbo Frames
|
||||
------------
|
||||
|
||||
The driver supports Jumbo Frames for all adapters except 82542 and
|
||||
82573-based adapters. Jumbo Frames support is enabled by changing the
|
||||
MTU to a value larger than the default of 1500. Use the ifconfig command
|
||||
to increase the MTU size. For example:
|
||||
Jumbo Frames support is enabled by changing the MTU to a value larger than
|
||||
the default of 1500. Use the ifconfig command to increase the MTU size.
|
||||
For example:
|
||||
|
||||
ifconfig eth<x> mtu 9000 up
|
||||
|
||||
|
@ -390,26 +440,49 @@ Additional Configurations
|
|||
|
||||
- To enable Jumbo Frames, increase the MTU size on the interface beyond
|
||||
1500.
|
||||
- The maximum MTU setting for Jumbo Frames is 16110. This value coincides
|
||||
|
||||
- The maximum MTU setting for Jumbo Frames is 16110. This value coincides
|
||||
with the maximum Jumbo Frames size of 16128.
|
||||
|
||||
- Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or
|
||||
loss of link.
|
||||
|
||||
- Some Intel gigabit adapters that support Jumbo Frames have a frame size
|
||||
limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes.
|
||||
The adapters with this limitation are based on the Intel 82571EB and
|
||||
82572EI controllers, which correspond to these product names:
|
||||
Intel® PRO/1000 PT Dual Port Server Adapter
|
||||
Intel® PRO/1000 PF Dual Port Server Adapter
|
||||
Intel® PRO/1000 PT Server Adapter
|
||||
Intel® PRO/1000 PT Desktop Adapter
|
||||
Intel® PRO/1000 PF Server Adapter
|
||||
The adapters with this limitation are based on the Intel(R) 82571EB,
|
||||
82572EI, 82573L and 80003ES2LAN controller. These correspond to the
|
||||
following product names:
|
||||
Intel(R) PRO/1000 PT Server Adapter
|
||||
Intel(R) PRO/1000 PT Desktop Adapter
|
||||
Intel(R) PRO/1000 PT Network Connection
|
||||
Intel(R) PRO/1000 PT Dual Port Server Adapter
|
||||
Intel(R) PRO/1000 PT Dual Port Network Connection
|
||||
Intel(R) PRO/1000 PF Server Adapter
|
||||
Intel(R) PRO/1000 PF Network Connection
|
||||
Intel(R) PRO/1000 PF Dual Port Server Adapter
|
||||
Intel(R) PRO/1000 PB Server Connection
|
||||
Intel(R) PRO/1000 PL Network Connection
|
||||
Intel(R) PRO/1000 EB Network Connection with I/O Acceleration
|
||||
Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration
|
||||
Intel(R) PRO/1000 PT Quad Port Server Adapter
|
||||
|
||||
- The Intel PRO/1000 PM Network Connection does not support jumbo frames.
|
||||
- Adapters based on the Intel(R) 82542 and 82573V/E controller do not
|
||||
support Jumbo Frames. These correspond to the following product names:
|
||||
Intel(R) PRO/1000 Gigabit Server Adapter
|
||||
Intel(R) PRO/1000 PM Network Connection
|
||||
|
||||
- The following adapters do not support Jumbo Frames:
|
||||
Intel(R) 82562V 10/100 Network Connection
|
||||
Intel(R) 82566DM Gigabit Network Connection
|
||||
Intel(R) 82566DC Gigabit Network Connection
|
||||
Intel(R) 82566MM Gigabit Network Connection
|
||||
Intel(R) 82566MC Gigabit Network Connection
|
||||
Intel(R) 82562GT 10/100 Network Connection
|
||||
Intel(R) 82562G 10/100 Network Connection
|
||||
|
||||
|
||||
Ethtool
|
||||
-------
|
||||
|
||||
The driver utilizes the ethtool interface for driver configuration and
|
||||
diagnostics, as well as displaying statistical information. Ethtool
|
||||
version 1.6 or later is required for this functionality.
|
||||
|
@ -417,15 +490,14 @@ Additional Configurations
|
|||
The latest release of ethtool can be found from
|
||||
http://sourceforge.net/projects/gkernel.
|
||||
|
||||
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
|
||||
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
|
||||
for a more complete ethtool feature set can be enabled by upgrading
|
||||
ethtool to ethtool-1.8.1.
|
||||
|
||||
Enabling Wake on LAN* (WoL)
|
||||
---------------------------
|
||||
|
||||
WoL is configured through the Ethtool* utility. Ethtool is included with
|
||||
all versions of Red Hat after Red Hat 7.2. For other Linux distributions,
|
||||
WoL is configured through the Ethtool* utility. Ethtool is included with
|
||||
all versions of Red Hat after Red Hat 7.2. For other Linux distributions,
|
||||
download and install Ethtool from the following website:
|
||||
http://sourceforge.net/projects/gkernel.
|
||||
|
||||
|
@ -436,11 +508,17 @@ Additional Configurations
|
|||
For this driver version, in order to enable WoL, the e1000 driver must be
|
||||
loaded when shutting down or rebooting the system.
|
||||
|
||||
Wake On LAN is only supported on port A for the following devices:
|
||||
Intel(R) PRO/1000 PT Dual Port Network Connection
|
||||
Intel(R) PRO/1000 PT Dual Port Server Connection
|
||||
Intel(R) PRO/1000 PT Dual Port Server Adapter
|
||||
Intel(R) PRO/1000 PF Dual Port Server Adapter
|
||||
Intel(R) PRO/1000 PT Quad Port Server Adapter
|
||||
|
||||
NAPI
|
||||
----
|
||||
|
||||
NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled
|
||||
or disabled based on the configuration of the kernel. To override
|
||||
NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled
|
||||
or disabled based on the configuration of the kernel. To override
|
||||
the default, use the following compile-time flags.
|
||||
|
||||
To enable NAPI, compile the driver module, passing in a configuration option:
|
||||
|
@ -457,88 +535,105 @@ Additional Configurations
|
|||
Known Issues
|
||||
============
|
||||
|
||||
Jumbo Frames System Requirement
|
||||
-------------------------------
|
||||
Dropped Receive Packets on Half-duplex 10/100 Networks
|
||||
------------------------------------------------------
|
||||
If you have an Intel PCI Express adapter running at 10mbps or 100mbps, half-
|
||||
duplex, you may observe occasional dropped receive packets. There are no
|
||||
workarounds for this problem in this network configuration. The network must
|
||||
be updated to operate in full-duplex, and/or 1000mbps only.
|
||||
|
||||
Memory allocation failures have been observed on Linux systems with 64 MB
|
||||
of RAM or less that are running Jumbo Frames. If you are using Jumbo
|
||||
Frames, your system may require more than the advertised minimum
|
||||
requirement of 64 MB of system memory.
|
||||
Jumbo Frames System Requirement
|
||||
-------------------------------
|
||||
Memory allocation failures have been observed on Linux systems with 64 MB
|
||||
of RAM or less that are running Jumbo Frames. If you are using Jumbo
|
||||
Frames, your system may require more than the advertised minimum
|
||||
requirement of 64 MB of system memory.
|
||||
|
||||
Performance Degradation with Jumbo Frames
|
||||
-----------------------------------------
|
||||
Performance Degradation with Jumbo Frames
|
||||
-----------------------------------------
|
||||
Degradation in throughput performance may be observed in some Jumbo frames
|
||||
environments. If this is observed, increasing the application's socket
|
||||
buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values
|
||||
may help. See the specific application manual and
|
||||
/usr/src/linux*/Documentation/
|
||||
networking/ip-sysctl.txt for more details.
|
||||
|
||||
Degradation in throughput performance may be observed in some Jumbo frames
|
||||
environments. If this is observed, increasing the application's socket
|
||||
buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values
|
||||
may help. See the specific application manual and
|
||||
/usr/src/linux*/Documentation/
|
||||
networking/ip-sysctl.txt for more details.
|
||||
Jumbo Frames on Foundry BigIron 8000 switch
|
||||
-------------------------------------------
|
||||
There is a known issue using Jumbo frames when connected to a Foundry
|
||||
BigIron 8000 switch. This is a 3rd party limitation. If you experience
|
||||
loss of packets, lower the MTU size.
|
||||
|
||||
Jumbo frames on Foundry BigIron 8000 switch
|
||||
-------------------------------------------
|
||||
There is a known issue using Jumbo frames when connected to a Foundry
|
||||
BigIron 8000 switch. This is a 3rd party limitation. If you experience
|
||||
loss of packets, lower the MTU size.
|
||||
Allocating Rx Buffers when Using Jumbo Frames
|
||||
---------------------------------------------
|
||||
Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if
|
||||
the available memory is heavily fragmented. This issue may be seen with PCI-X
|
||||
adapters or with packet split disabled. This can be reduced or eliminated
|
||||
by changing the amount of available memory for receive buffer allocation, by
|
||||
increasing /proc/sys/vm/min_free_kbytes.
|
||||
|
||||
Multiple Interfaces on Same Ethernet Broadcast Network
|
||||
------------------------------------------------------
|
||||
Multiple Interfaces on Same Ethernet Broadcast Network
|
||||
------------------------------------------------------
|
||||
Due to the default ARP behavior on Linux, it is not possible to have
|
||||
one system on two IP networks in the same Ethernet broadcast domain
|
||||
(non-partitioned switch) behave as expected. All Ethernet interfaces
|
||||
will respond to IP traffic for any IP address assigned to the system.
|
||||
This results in unbalanced receive traffic.
|
||||
|
||||
Due to the default ARP behavior on Linux, it is not possible to have
|
||||
one system on two IP networks in the same Ethernet broadcast domain
|
||||
(non-partitioned switch) behave as expected. All Ethernet interfaces
|
||||
will respond to IP traffic for any IP address assigned to the system.
|
||||
This results in unbalanced receive traffic.
|
||||
If you have multiple interfaces in a server, either turn on ARP
|
||||
filtering by entering:
|
||||
|
||||
If you have multiple interfaces in a server, either turn on ARP
|
||||
filtering by entering:
|
||||
echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
|
||||
(this only works if your kernel's version is higher than 2.4.5),
|
||||
|
||||
echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
|
||||
(this only works if your kernel's version is higher than 2.4.5),
|
||||
NOTE: This setting is not saved across reboots. The configuration
|
||||
change can be made permanent by adding the line:
|
||||
net.ipv4.conf.all.arp_filter = 1
|
||||
to the file /etc/sysctl.conf
|
||||
|
||||
NOTE: This setting is not saved across reboots. The configuration
|
||||
change can be made permanent by adding the line:
|
||||
net.ipv4.conf.all.arp_filter = 1
|
||||
to the file /etc/sysctl.conf
|
||||
or,
|
||||
|
||||
or,
|
||||
install the interfaces in separate broadcast domains (either in
|
||||
different switches or in a switch partitioned to VLANs).
|
||||
|
||||
install the interfaces in separate broadcast domains (either in
|
||||
different switches or in a switch partitioned to VLANs).
|
||||
82541/82547 can't link or are slow to link with some link partners
|
||||
-----------------------------------------------------------------
|
||||
There is a known compatibility issue with 82541/82547 and some
|
||||
low-end switches where the link will not be established, or will
|
||||
be slow to establish. In particular, these switches are known to
|
||||
be incompatible with 82541/82547:
|
||||
|
||||
82541/82547 can't link or are slow to link with some link partners
|
||||
-----------------------------------------------------------------
|
||||
Planex FXG-08TE
|
||||
I-O Data ETG-SH8
|
||||
|
||||
There is a known compatibility issue with 82541/82547 and some
|
||||
low-end switches where the link will not be established, or will
|
||||
be slow to establish. In particular, these switches are known to
|
||||
be incompatible with 82541/82547:
|
||||
To workaround this issue, the driver can be compiled with an override
|
||||
of the PHY's master/slave setting. Forcing master or forcing slave
|
||||
mode will improve time-to-link.
|
||||
|
||||
Planex FXG-08TE
|
||||
I-O Data ETG-SH8
|
||||
# make CFLAGS_EXTRA=-DE1000_MASTER_SLAVE=<n>
|
||||
|
||||
To workaround this issue, the driver can be compiled with an override
|
||||
of the PHY's master/slave setting. Forcing master or forcing slave
|
||||
mode will improve time-to-link.
|
||||
Where <n> is:
|
||||
|
||||
# make EXTRA_CFLAGS=-DE1000_MASTER_SLAVE=<n>
|
||||
0 = Hardware default
|
||||
1 = Master mode
|
||||
2 = Slave mode
|
||||
3 = Auto master/slave
|
||||
|
||||
Where <n> is:
|
||||
Disable rx flow control with ethtool
|
||||
------------------------------------
|
||||
In order to disable receive flow control using ethtool, you must turn
|
||||
off auto-negotiation on the same command line.
|
||||
|
||||
0 = Hardware default
|
||||
1 = Master mode
|
||||
2 = Slave mode
|
||||
3 = Auto master/slave
|
||||
For example:
|
||||
|
||||
Disable rx flow control with ethtool
|
||||
------------------------------------
|
||||
ethtool -A eth? autoneg off rx off
|
||||
|
||||
In order to disable receive flow control using ethtool, you must turn
|
||||
off auto-negotiation on the same command line.
|
||||
|
||||
For example:
|
||||
|
||||
ethtool -A eth? autoneg off rx off
|
||||
Unplugging network cable while ethtool -p is running
|
||||
----------------------------------------------------
|
||||
In kernel versions 2.5.50 and later (including 2.6 kernel), unplugging
|
||||
the network cable while ethtool -p is running will cause the system to
|
||||
become unresponsive to keyboard commands, except for control-alt-delete.
|
||||
Restarting the system appears to be the only remedy.
|
||||
|
||||
|
||||
Support
|
||||
|
@ -548,24 +643,10 @@ For general information, go to the Intel support website at:
|
|||
|
||||
http://support.intel.com
|
||||
|
||||
or the Intel Wired Networking project hosted by Sourceforge at:
|
||||
or the Intel Wired Networking project hosted by Sourceforge at:
|
||||
|
||||
http://sourceforge.net/projects/e1000
|
||||
|
||||
If an issue is identified with the released source code on the supported
|
||||
kernel with a supported adapter, email the specific information related
|
||||
to the issue to e1000-devel@lists.sourceforge.net
|
||||
|
||||
|
||||
License
|
||||
=======
|
||||
|
||||
This software program is released under the terms of a license agreement
|
||||
between you ('Licensee') and Intel. Do not use or load this software or any
|
||||
associated materials (collectively, the 'Software') until you have carefully
|
||||
read the full terms and conditions of the file COPYING located in this software
|
||||
package. By loading or using the Software, you agree to the terms of this
|
||||
Agreement. If you do not agree with the terms of this Agreement, do not
|
||||
install or use the Software.
|
||||
|
||||
* Other names and brands may be claimed as the property of others.
|
||||
to the issue to e1000-devel@lists.sf.net
|
||||
|
|
Loading…
Reference in New Issue
Block a user