bpf: permit multiple bpf attachments for a single perf event

This patch enables multiple bpf attachments for a
kprobe/uprobe/tracepoint single trace event.
Each trace_event keeps a list of attached perf events.
When an event happens, all attached bpf programs will
be executed based on the order of attachment.

A global bpf_event_mutex lock is introduced to protect
prog_array attaching and detaching. An alternative will
be introduce a mutex lock in every trace_event_call
structure, but it takes a lot of extra memory.
So a global bpf_event_mutex lock is a good compromise.

The bpf prog detachment involves allocation of memory.
If the allocation fails, a dummy do-nothing program
will replace to-be-detached program in-place.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Yonghong Song 2017-10-23 23:53:08 -07:00 committed by David S. Miller
parent 0b4c6841fe
commit e87c6bc385
9 changed files with 255 additions and 56 deletions

View File

@ -273,18 +273,38 @@ int bpf_prog_array_length(struct bpf_prog_array __rcu *progs);
int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
__u32 __user *prog_ids, u32 cnt);
#define BPF_PROG_RUN_ARRAY(array, ctx, func) \
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
struct bpf_prog *old_prog);
int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
struct bpf_prog_array **new_array);
#define __BPF_PROG_RUN_ARRAY(array, ctx, func, check_non_null) \
({ \
struct bpf_prog **_prog; \
struct bpf_prog **_prog, *__prog; \
struct bpf_prog_array *_array; \
u32 _ret = 1; \
rcu_read_lock(); \
_prog = rcu_dereference(array)->progs; \
for (; *_prog; _prog++) \
_ret &= func(*_prog, ctx); \
_array = rcu_dereference(array); \
if (unlikely(check_non_null && !_array))\
goto _out; \
_prog = _array->progs; \
while ((__prog = READ_ONCE(*_prog))) { \
_ret &= func(__prog, ctx); \
_prog++; \
} \
_out: \
rcu_read_unlock(); \
_ret; \
})
#define BPF_PROG_RUN_ARRAY(array, ctx, func) \
__BPF_PROG_RUN_ARRAY(array, ctx, func, false)
#define BPF_PROG_RUN_ARRAY_CHECK(array, ctx, func) \
__BPF_PROG_RUN_ARRAY(array, ctx, func, true)
#ifdef CONFIG_BPF_SYSCALL
DECLARE_PER_CPU(int, bpf_prog_active);

View File

@ -271,14 +271,37 @@ struct trace_event_call {
#ifdef CONFIG_PERF_EVENTS
int perf_refcount;
struct hlist_head __percpu *perf_events;
struct bpf_prog *prog;
struct perf_event *bpf_prog_owner;
struct bpf_prog_array __rcu *prog_array;
int (*perf_perm)(struct trace_event_call *,
struct perf_event *);
#endif
};
#ifdef CONFIG_PERF_EVENTS
static inline bool bpf_prog_array_valid(struct trace_event_call *call)
{
/*
* This inline function checks whether call->prog_array
* is valid or not. The function is called in various places,
* outside rcu_read_lock/unlock, as a heuristic to speed up execution.
*
* If this function returns true, and later call->prog_array
* becomes false inside rcu_read_lock/unlock region,
* we bail out then. If this function return false,
* there is a risk that we might miss a few events if the checking
* were delayed until inside rcu_read_lock/unlock region and
* call->prog_array happened to become non-NULL then.
*
* Here, READ_ONCE() is used instead of rcu_access_pointer().
* rcu_access_pointer() requires the actual definition of
* "struct bpf_prog_array" while READ_ONCE() only needs
* a declaration of the same type.
*/
return !!READ_ONCE(call->prog_array);
}
#endif
static inline const char *
trace_event_name(struct trace_event_call *call)
{
@ -435,12 +458,23 @@ trace_trigger_soft_disabled(struct trace_event_file *file)
}
#ifdef CONFIG_BPF_EVENTS
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx);
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx);
int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog);
void perf_event_detach_bpf_prog(struct perf_event *event);
#else
static inline unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
static inline unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
{
return 1;
}
static inline int
perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog)
{
return -EOPNOTSUPP;
}
static inline void perf_event_detach_bpf_prog(struct perf_event *event) { }
#endif
enum {
@ -511,6 +545,7 @@ perf_trace_buf_submit(void *raw_data, int size, int rctx, u16 type,
{
perf_tp_event(type, count, raw_data, size, regs, head, rctx, task, event);
}
#endif
#endif /* _LINUX_TRACE_EVENT_H */

View File

@ -34,7 +34,6 @@ perf_trace_##call(void *__data, proto) \
struct trace_event_call *event_call = __data; \
struct trace_event_data_offsets_##call __maybe_unused __data_offsets;\
struct trace_event_raw_##call *entry; \
struct bpf_prog *prog = event_call->prog; \
struct pt_regs *__regs; \
u64 __count = 1; \
struct task_struct *__task = NULL; \
@ -46,8 +45,9 @@ perf_trace_##call(void *__data, proto) \
__data_size = trace_event_get_offsets_##call(&__data_offsets, args); \
\
head = this_cpu_ptr(event_call->perf_events); \
if (!prog && __builtin_constant_p(!__task) && !__task && \
hlist_empty(head)) \
if (!bpf_prog_array_valid(event_call) && \
__builtin_constant_p(!__task) && !__task && \
hlist_empty(head)) \
return; \
\
__entry_size = ALIGN(__data_size + sizeof(*entry) + sizeof(u32),\

View File

@ -1394,6 +1394,20 @@ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
}
EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
static unsigned int __bpf_prog_ret1(const void *ctx,
const struct bpf_insn *insn)
{
return 1;
}
static struct bpf_prog_dummy {
struct bpf_prog prog;
} dummy_bpf_prog = {
.prog = {
.bpf_func = __bpf_prog_ret1,
},
};
/* to avoid allocating empty bpf_prog_array for cgroups that
* don't have bpf program attached use one global 'empty_prog_array'
* It will not be modified the caller of bpf_prog_array_alloc()
@ -1463,6 +1477,73 @@ int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
return 0;
}
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
struct bpf_prog *old_prog)
{
struct bpf_prog **prog = progs->progs;
for (; *prog; prog++)
if (*prog == old_prog) {
WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
break;
}
}
int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
struct bpf_prog_array **new_array)
{
int new_prog_cnt, carry_prog_cnt = 0;
struct bpf_prog **existing_prog;
struct bpf_prog_array *array;
int new_prog_idx = 0;
/* Figure out how many existing progs we need to carry over to
* the new array.
*/
if (old_array) {
existing_prog = old_array->progs;
for (; *existing_prog; existing_prog++) {
if (*existing_prog != exclude_prog &&
*existing_prog != &dummy_bpf_prog.prog)
carry_prog_cnt++;
if (*existing_prog == include_prog)
return -EEXIST;
}
}
/* How many progs (not NULL) will be in the new array? */
new_prog_cnt = carry_prog_cnt;
if (include_prog)
new_prog_cnt += 1;
/* Do we have any prog (not NULL) in the new array? */
if (!new_prog_cnt) {
*new_array = NULL;
return 0;
}
/* +1 as the end of prog_array is marked with NULL */
array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
if (!array)
return -ENOMEM;
/* Fill in the new prog array */
if (carry_prog_cnt) {
existing_prog = old_array->progs;
for (; *existing_prog; existing_prog++)
if (*existing_prog != exclude_prog &&
*existing_prog != &dummy_bpf_prog.prog)
array->progs[new_prog_idx++] = *existing_prog;
}
if (include_prog)
array->progs[new_prog_idx++] = include_prog;
array->progs[new_prog_idx] = NULL;
*new_array = array;
return 0;
}
static void bpf_prog_free_deferred(struct work_struct *work)
{
struct bpf_prog_aux *aux;

View File

@ -7954,11 +7954,9 @@ void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
struct pt_regs *regs, struct hlist_head *head,
struct task_struct *task)
{
struct bpf_prog *prog = call->prog;
if (prog) {
if (bpf_prog_array_valid(call)) {
*(struct pt_regs **)raw_data = regs;
if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
perf_swevent_put_recursion_context(rctx);
return;
}
@ -8147,13 +8145,11 @@ static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
bool is_kprobe, is_tracepoint, is_syscall_tp;
struct bpf_prog *prog;
int ret;
if (event->attr.type != PERF_TYPE_TRACEPOINT)
return perf_event_set_bpf_handler(event, prog_fd);
if (event->tp_event->prog)
return -EEXIST;
is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
is_syscall_tp = is_syscall_trace_event(event->tp_event);
@ -8181,26 +8177,20 @@ static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
return -EACCES;
}
}
event->tp_event->prog = prog;
event->tp_event->bpf_prog_owner = event;
return 0;
ret = perf_event_attach_bpf_prog(event, prog);
if (ret)
bpf_prog_put(prog);
return ret;
}
static void perf_event_free_bpf_prog(struct perf_event *event)
{
struct bpf_prog *prog;
if (event->attr.type != PERF_TYPE_TRACEPOINT) {
perf_event_free_bpf_handler(event);
return;
}
prog = event->tp_event->prog;
if (prog && event->tp_event->bpf_prog_owner == event) {
event->tp_event->prog = NULL;
bpf_prog_put(prog);
}
perf_event_detach_bpf_prog(event);
}
#else

View File

@ -17,7 +17,7 @@
/**
* trace_call_bpf - invoke BPF program
* @prog: BPF program
* @call: tracepoint event
* @ctx: opaque context pointer
*
* kprobe handlers execute BPF programs via this helper.
@ -29,7 +29,7 @@
* 1 - store kprobe event into ring buffer
* Other values are reserved and currently alias to 1
*/
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
{
unsigned int ret;
@ -49,9 +49,22 @@ unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
goto out;
}
rcu_read_lock();
ret = BPF_PROG_RUN(prog, ctx);
rcu_read_unlock();
/*
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
* to all call sites, we did a bpf_prog_array_valid() there to check
* whether call->prog_array is empty or not, which is
* a heurisitc to speed up execution.
*
* If bpf_prog_array_valid() fetched prog_array was
* non-NULL, we go into trace_call_bpf() and do the actual
* proper rcu_dereference() under RCU lock.
* If it turns out that prog_array is NULL then, we bail out.
* For the opposite, if the bpf_prog_array_valid() fetched pointer
* was NULL, you'll skip the prog_array with the risk of missing
* out of events when it was updated in between this and the
* rcu_dereference() which is accepted risk.
*/
ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
out:
__this_cpu_dec(bpf_prog_active);
@ -741,3 +754,62 @@ const struct bpf_verifier_ops perf_event_verifier_ops = {
const struct bpf_prog_ops perf_event_prog_ops = {
};
static DEFINE_MUTEX(bpf_event_mutex);
int perf_event_attach_bpf_prog(struct perf_event *event,
struct bpf_prog *prog)
{
struct bpf_prog_array __rcu *old_array;
struct bpf_prog_array *new_array;
int ret = -EEXIST;
mutex_lock(&bpf_event_mutex);
if (event->prog)
goto out;
old_array = rcu_dereference_protected(event->tp_event->prog_array,
lockdep_is_held(&bpf_event_mutex));
ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
if (ret < 0)
goto out;
/* set the new array to event->tp_event and set event->prog */
event->prog = prog;
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
out:
mutex_unlock(&bpf_event_mutex);
return ret;
}
void perf_event_detach_bpf_prog(struct perf_event *event)
{
struct bpf_prog_array __rcu *old_array;
struct bpf_prog_array *new_array;
int ret;
mutex_lock(&bpf_event_mutex);
if (!event->prog)
goto out;
old_array = rcu_dereference_protected(event->tp_event->prog_array,
lockdep_is_held(&bpf_event_mutex));
ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
if (ret < 0) {
bpf_prog_array_delete_safe(old_array, event->prog);
} else {
rcu_assign_pointer(event->tp_event->prog_array, new_array);
bpf_prog_array_free(old_array);
}
bpf_prog_put(event->prog);
event->prog = NULL;
out:
mutex_unlock(&bpf_event_mutex);
}

View File

@ -1174,13 +1174,12 @@ static void
kprobe_perf_func(struct trace_kprobe *tk, struct pt_regs *regs)
{
struct trace_event_call *call = &tk->tp.call;
struct bpf_prog *prog = call->prog;
struct kprobe_trace_entry_head *entry;
struct hlist_head *head;
int size, __size, dsize;
int rctx;
if (prog && !trace_call_bpf(prog, regs))
if (bpf_prog_array_valid(call) && !trace_call_bpf(call, regs))
return;
head = this_cpu_ptr(call->perf_events);
@ -1210,13 +1209,12 @@ kretprobe_perf_func(struct trace_kprobe *tk, struct kretprobe_instance *ri,
struct pt_regs *regs)
{
struct trace_event_call *call = &tk->tp.call;
struct bpf_prog *prog = call->prog;
struct kretprobe_trace_entry_head *entry;
struct hlist_head *head;
int size, __size, dsize;
int rctx;
if (prog && !trace_call_bpf(prog, regs))
if (bpf_prog_array_valid(call) && !trace_call_bpf(call, regs))
return;
head = this_cpu_ptr(call->perf_events);

View File

@ -559,9 +559,10 @@ static DECLARE_BITMAP(enabled_perf_exit_syscalls, NR_syscalls);
static int sys_perf_refcount_enter;
static int sys_perf_refcount_exit;
static int perf_call_bpf_enter(struct bpf_prog *prog, struct pt_regs *regs,
struct syscall_metadata *sys_data,
struct syscall_trace_enter *rec) {
static int perf_call_bpf_enter(struct trace_event_call *call, struct pt_regs *regs,
struct syscall_metadata *sys_data,
struct syscall_trace_enter *rec)
{
struct syscall_tp_t {
unsigned long long regs;
unsigned long syscall_nr;
@ -573,7 +574,7 @@ static int perf_call_bpf_enter(struct bpf_prog *prog, struct pt_regs *regs,
param.syscall_nr = rec->nr;
for (i = 0; i < sys_data->nb_args; i++)
param.args[i] = rec->args[i];
return trace_call_bpf(prog, &param);
return trace_call_bpf(call, &param);
}
static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id)
@ -581,7 +582,7 @@ static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id)
struct syscall_metadata *sys_data;
struct syscall_trace_enter *rec;
struct hlist_head *head;
struct bpf_prog *prog;
bool valid_prog_array;
int syscall_nr;
int rctx;
int size;
@ -596,9 +597,9 @@ static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id)
if (!sys_data)
return;
prog = READ_ONCE(sys_data->enter_event->prog);
head = this_cpu_ptr(sys_data->enter_event->perf_events);
if (!prog && hlist_empty(head))
valid_prog_array = bpf_prog_array_valid(sys_data->enter_event);
if (!valid_prog_array && hlist_empty(head))
return;
/* get the size after alignment with the u32 buffer size field */
@ -614,7 +615,8 @@ static void perf_syscall_enter(void *ignore, struct pt_regs *regs, long id)
syscall_get_arguments(current, regs, 0, sys_data->nb_args,
(unsigned long *)&rec->args);
if ((prog && !perf_call_bpf_enter(prog, regs, sys_data, rec)) ||
if ((valid_prog_array &&
!perf_call_bpf_enter(sys_data->enter_event, regs, sys_data, rec)) ||
hlist_empty(head)) {
perf_swevent_put_recursion_context(rctx);
return;
@ -659,8 +661,9 @@ static void perf_sysenter_disable(struct trace_event_call *call)
mutex_unlock(&syscall_trace_lock);
}
static int perf_call_bpf_exit(struct bpf_prog *prog, struct pt_regs *regs,
struct syscall_trace_exit *rec) {
static int perf_call_bpf_exit(struct trace_event_call *call, struct pt_regs *regs,
struct syscall_trace_exit *rec)
{
struct syscall_tp_t {
unsigned long long regs;
unsigned long syscall_nr;
@ -670,7 +673,7 @@ static int perf_call_bpf_exit(struct bpf_prog *prog, struct pt_regs *regs,
*(struct pt_regs **)&param = regs;
param.syscall_nr = rec->nr;
param.ret = rec->ret;
return trace_call_bpf(prog, &param);
return trace_call_bpf(call, &param);
}
static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret)
@ -678,7 +681,7 @@ static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret)
struct syscall_metadata *sys_data;
struct syscall_trace_exit *rec;
struct hlist_head *head;
struct bpf_prog *prog;
bool valid_prog_array;
int syscall_nr;
int rctx;
int size;
@ -693,9 +696,9 @@ static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret)
if (!sys_data)
return;
prog = READ_ONCE(sys_data->exit_event->prog);
head = this_cpu_ptr(sys_data->exit_event->perf_events);
if (!prog && hlist_empty(head))
valid_prog_array = bpf_prog_array_valid(sys_data->exit_event);
if (!valid_prog_array && hlist_empty(head))
return;
/* We can probably do that at build time */
@ -709,7 +712,8 @@ static void perf_syscall_exit(void *ignore, struct pt_regs *regs, long ret)
rec->nr = syscall_nr;
rec->ret = syscall_get_return_value(current, regs);
if ((prog && !perf_call_bpf_exit(prog, regs, rec)) ||
if ((valid_prog_array &&
!perf_call_bpf_exit(sys_data->exit_event, regs, rec)) ||
hlist_empty(head)) {
perf_swevent_put_recursion_context(rctx);
return;

View File

@ -1113,13 +1113,12 @@ static void __uprobe_perf_func(struct trace_uprobe *tu,
{
struct trace_event_call *call = &tu->tp.call;
struct uprobe_trace_entry_head *entry;
struct bpf_prog *prog = call->prog;
struct hlist_head *head;
void *data;
int size, esize;
int rctx;
if (prog && !trace_call_bpf(prog, regs))
if (bpf_prog_array_valid(call) && !trace_call_bpf(call, regs))
return;
esize = SIZEOF_TRACE_ENTRY(is_ret_probe(tu));