This patch classifies scheduler domains and runqueues into types depending
the number of tasks that are about their NUMA placement and the number
that are currently running on their preferred node. The types are
regular: There are tasks running that do not care about their NUMA
placement.
remote: There are tasks running that care about their placement but are
currently running on a node remote to their ideal placement
all: No distinction
To implement this the patch tracks the number of tasks that are optimally
NUMA placed (rq->nr_preferred_running) and the number of tasks running
that care about their placement (nr_numa_running). The load balancer
uses this information to avoid migrating idea placed NUMA tasks as long
as better options for load balancing exists. For example, it will not
consider balancing between a group whose tasks are all perfectly placed
and a group with remote tasks.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is possible for a task in a numa group to call exec, and
have the new (unrelated) executable inherit the numa group
association from its former self.
This has the potential to break numa grouping, and is trivial
to fix.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.
This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch implements a system-wide search for swap/migration candidates
based on total NUMA hinting faults. It has a balance limit, however it
doesn't properly consider total node balance.
In the old scheme a task selected a preferred node based on the highest
number of private faults recorded on the node. In this scheme, the preferred
node is based on the total number of faults. If the preferred node for a
task changes then task_numa_migrate will search the whole system looking
for tasks to swap with that would improve both the overall compute
balance and minimise the expected number of remote NUMA hinting faults.
Not there is no guarantee that the node the source task is placed
on by task_numa_migrate() has any relationship to the newly selected
task->numa_preferred_nid due to compute overloading.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Do not swap with tasks that cannot run on source cpu]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Fixed compiler warning on UP. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.
I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.
The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A preferred node is selected based on the node the most NUMA hinting
faults was incurred on. There is no guarantee that the task is running
on that node at the time so this patch rescheules the task to run on
the most idle CPU of the selected node when selected. This avoids
waiting for the balancer to make a decision.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch tracks what nodes numa hinting faults were incurred on.
This information is later used to schedule a task on the node storing
the pages most frequently faulted by the task.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In this patch, we keep track of the max cost we spend doing idle load balancing
for each sched domain. If the avg time the CPU remains idle is less then the
time we have already spent on idle balancing + the max cost of idle balancing
in the sched domain, then we don't continue to attempt the balance. We also
keep a per rq variable, max_idle_balance_cost, which keeps track of the max
time spent on newidle load balances throughout all its domains so that we can
determine the avg_idle's max value.
By using the max, we avoid overrunning the average. This further reduces the
chance we attempt balancing when the CPU is not idle for longer than the cost
to balance.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the group_imb detection from the old 'load-spike' detector to
an actual imbalance detector. We set it from the lower domain balance
pass when it fails to create a balance in the presence of task
affinities.
The advantage is that this should no longer generate the false
positive group_imb conditions generated by transient load spikes from
the normal balancing/bulk-wakeup etc. behaviour.
While I haven't actually observed those they could happen.
I'm not entirely happy with this patch; it somehow feels a little
fragile.
Nor does it solve the biggest issue I have with the group_imb code; it
it still a fragile construct in that once we 'fixed' the imbalance
we'll not detect the group_imb again and could end up re-creating it.
That said, this patch does seem to preserve behaviour for the
described degenerate case. In particular on my 2*6*2 wsm-ep:
taskset -c 3-11 bash -c 'for ((i=0;i<9;i++)) do while :; do :; done & done'
ends up with 9 spinners, each on their own CPU; whereas if you disable
the group_imb code that typically doesn't happen (you'll get one pair
sharing a CPU most of the time).
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-36fpbgl39dv4u51b6yz2ypz5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf changes from Ingo Molnar:
"As a first remark I'd like to point out that the obsolete '-f'
(--force) option, which has not done anything for several releases,
has been removed from 'perf record' and related utilities. Everyone
please update muscle memory accordingly! :-)
Main changes on the perf kernel side:
- Performance optimizations:
. for trace events, by Steve Rostedt.
. for time values, by Peter Zijlstra
- New hardware support:
. for Intel Silvermont (22nm Atom) CPUs, by Zheng Yan
. for Intel SNB-EP uncore PMUs, by Zheng Yan
- Enhanced hardware support:
. for Intel uncore PMUs: add filter support for QPI boxes, by Zheng Yan
- Core perf events code enhancements and fixes:
. for full-nohz feature handling, by Frederic Weisbecker
. for group events, by Jiri Olsa
. for call chains, by Frederic Weisbecker
. for event stream parsing, by Adrian Hunter
- New ABI details:
. Add attr->mmap2 attribute, by Stephane Eranian
. Add PERF_EVENT_IOC_ID ioctl to return event ID, by Jiri Olsa
. Export u64 time_zero on the mmap header page to allow TSC
calculation, by Adrian Hunter
. Add dummy software event, by Adrian Hunter.
. Add a new PERF_SAMPLE_IDENTIFIER to make samples always
parseable, by Adrian Hunter.
. Make Power7 events available via sysfs, by Runzhen Wang.
- Code cleanups and refactorings:
. for nohz-full, by Frederic Weisbecker
. for group events, by Jiri Olsa
- Documentation updates:
. for perf_event_type, by Peter Zijlstra
Main changes on the perf tooling side (some of these tooling changes
utilize the above kernel side changes):
- Lots of 'perf trace' enhancements:
. Make 'perf trace' command line arguments consistent with
'perf record', by David Ahern.
. Allow specifying syscalls a la strace, by Arnaldo Carvalho de Melo.
. Add --verbose and -o/--output options, by Arnaldo Carvalho de Melo.
. Support ! in -e expressions, to filter a list of syscalls,
by Arnaldo Carvalho de Melo.
. Arg formatting improvements to allow masking arguments in
syscalls such as futex and open, where the some arguments are
ignored and thus should not be printed depending on other args,
by Arnaldo Carvalho de Melo.
. Beautify futex open, openat, open_by_handle_at, lseek and futex
syscalls, by Arnaldo Carvalho de Melo.
. Add option to analyze events in a file versus live, so that
one can do:
[root@zoo ~]# perf record -a -e raw_syscalls:* sleep 1
[ perf record: Woken up 0 times to write data ]
[ perf record: Captured and wrote 25.150 MB perf.data (~1098836 samples) ]
[root@zoo ~]# perf trace -i perf.data -e futex --duration 1
17.799 ( 1.020 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, ua
113.344 (95.429 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 4294967
133.778 ( 1.042 ms): 18004 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 429496
[root@zoo ~]#
By David Ahern.
. Honor target pid / tid options when analyzing a file, by David Ahern.
. Introduce better formatting of syscall arguments, including so
far beautifiers for mmap, madvise, syscall return values,
by Arnaldo Carvalho de Melo.
. Handle HUGEPAGE defines in the mmap beautifier, by David Ahern.
- 'perf report/top' enhancements:
. Do annotation using /proc/kcore and /proc/kallsyms when
available, removing the forced need for a vmlinux file kernel
assembly annotation. This also improves this use case because
vmlinux has just the initial kernel image, not what is actually
in use after various code patchings by things like alternatives.
By Adrian Hunter.
. Add --ignore-callees=<regex> option to collapse undesired parts
of call graphs, by Greg Price.
. Simplify symbol filtering by doing it at machine class level,
by Adrian Hunter.
. Add support for callchains in the gtk UI, by Namhyung Kim.
. Add --objdump option to 'perf top', by Sukadev Bhattiprolu.
- 'perf kvm' enhancements:
. Add option to print only events that exceed a specified time
duration, by David Ahern.
. Improve stack trace printing, by David Ahern.
. Update documentation of the live command, by David Ahern
. Add perf kvm stat live mode that combines aspects of 'perf kvm
stat' record and report, by David Ahern.
. Add option to analyze specific VM in perf kvm stat report, by
David Ahern.
. Do not require /lib/modules/* on a guest, by Jason Wessel.
- 'perf script' enhancements:
. Fix symbol offset computation for some dsos, by David Ahern.
. Fix named threads support, by David Ahern.
. Don't install scripting files files when perl/python support
is disabled, by Arnaldo Carvalho de Melo.
- 'perf test' enhancements:
. Add various improvements and fixes to the "vmlinux matches
kallsyms" 'perf test' entry, related to the /proc/kcore
annotation feature. By Adrian Hunter.
. Add sample parsing test, by Adrian Hunter.
. Add test for reading object code, by Adrian Hunter.
. Add attr record group sampling test, by Jiri Olsa.
. Misc testing infrastructure improvements and other details,
by Jiri Olsa.
- 'perf list' enhancements:
. Skip unsupported hardware events, by Namhyung Kim.
. List pmu events, by Andi Kleen.
- 'perf diff' enhancements:
. Add support for more than two files comparison, by Jiri Olsa.
- 'perf sched' enhancements:
. Various improvements, including removing reliance on some
scheduler tracepoints that provide the same information as the
PERF_RECORD_{FORK,EXIT} events. By David Ahern.
. Remove odd build stall by moving a large struct initialization
from a local variable to a global one, by Namhyung Kim.
- 'perf stat' enhancements:
. Add --initial-delay option to skip measuring for a defined
startup phase, by Andi Kleen.
- Generic perf tooling infrastructure/plumbing changes:
. Tidy up sample parsing validation, by Adrian Hunter.
. Fix up jobserver setup in libtraceevent Makefile.
by Arnaldo Carvalho de Melo.
. Debug improvements, by Adrian Hunter.
. Fix correlation of samples coming after PERF_RECORD_EXIT event,
by David Ahern.
. Improve robustness of the topology parsing code,
by Stephane Eranian.
. Add group leader sampling, that allows just one event in a group
to sample while the other events have just its values read,
by Jiri Olsa.
. Add support for a new modifier "D", which requests that the
event, or group of events, be pinned to the PMU.
By Michael Ellerman.
. Support callchain sorting based on addresses, by Andi Kleen
. Prep work for multi perf data file storage, by Jiri Olsa.
. libtraceevent cleanups, by Namhyung Kim.
And lots and lots of other fixes and code reorganizations that did not
make it into the list, see the shortlog, diffstat and the Git log for
details!"
[ Also merge a leftover from the 3.11 cycle ]
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Prevent race in unthrottling code
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (237 commits)
perf trace: Tell arg formatters the arg index
perf trace: Add beautifier for open's flags arg
perf trace: Add beautifier for lseek's whence arg
perf tools: Fix symbol offset computation for some dsos
perf list: Skip unsupported events
perf tests: Add 'keep tracking' test
perf tools: Add support for PERF_COUNT_SW_DUMMY
perf: Add a dummy software event to keep tracking
perf trace: Add beautifier for futex 'operation' parm
perf trace: Allow syscall arg formatters to mask args
perf: Convert kmalloc_node(...GFP_ZERO...) to kzalloc_node()
perf: Export struct perf_branch_entry to userspace
perf: Add attr->mmap2 attribute to an event
perf/x86: Add Silvermont (22nm Atom) support
perf/x86: use INTEL_UEVENT_EXTRA_REG to define MSR_OFFCORE_RSP_X
perf trace: Handle missing HUGEPAGE defines
perf trace: Honor target pid / tid options when analyzing a file
perf trace: Add option to analyze events in a file versus live
perf evlist: Add tracepoint lookup by name
perf tests: Add a sample parsing test
...
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.
We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward. Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.
Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css(). This patch is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Smart wake-affine is using node-size as the factor currently, but the overhead
of the mask operation is high.
Thus, this patch introduce the 'sd_llc_size' percpu variable, which will record
the highest cache-share domain size, and make it to be the new factor, in order
to reduce the overhead and make it more reasonable.
Tested-by: Davidlohr Bueso <davidlohr.bueso@hp.com>
Tested-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/51D5008E.6030102@linux.vnet.ibm.com
[ Tidied up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bad thing about update_h_load(), which computes hierarchical load
factor for task groups, is that it is called for each task group in the
system before every load balancer run, and since rebalance can be
triggered very often, this function can eat really a lot of cpu time if
there are many cpu cgroups in the system.
Although the situation was improved significantly by commit a35b646
('sched, cgroup: Reduce rq->lock hold times for large cgroup
hierarchies'), the problem still can arise under some kinds of loads,
e.g. when cpus are switching from idle to busy and back very frequently.
For instance, when I start 1000 of processes that wake up every
millisecond on my 8 cpus host, 'top' and 'perf top' show:
Cpu(s): 17.8%us, 24.3%sy, 0.0%ni, 57.9%id, 0.0%wa, 0.0%hi, 0.0%si
Events: 243K cycles
7.57% [kernel] [k] __schedule
7.08% [kernel] [k] timerqueue_add
6.13% libc-2.12.so [.] usleep
Then if I create 10000 *idle* cpu cgroups (no processes in them), cpu
usage increases significantly although the 'wakers' are still executing
in the root cpu cgroup:
Cpu(s): 19.1%us, 48.7%sy, 0.0%ni, 31.6%id, 0.0%wa, 0.0%hi, 0.7%si
Events: 230K cycles
24.56% [kernel] [k] tg_load_down
5.76% [kernel] [k] __schedule
This happens because this particular kind of load triggers 'new idle'
rebalance very frequently, which requires calling update_h_load(),
which, in turn, calls tg_load_down() for every *idle* cpu cgroup even
though it is absolutely useless, because idle cpu cgroups have no tasks
to pull.
This patch tries to improve the situation by making h_load calculation
proceed only when h_load is really necessary. To achieve this, it
substitutes update_h_load() with update_cfs_rq_h_load(), which computes
h_load only for a given cfs_rq and all its ascendants, and makes the
load balancer call this function whenever it considers if a task should
be pulled, i.e. it moves h_load calculations directly to task_h_load().
For h_load of the same cfs_rq not to be updated multiple times (in case
several tasks in the same cgroup are considered during the same balance
run), the patch keeps the time of the last h_load update for each cfs_rq
and breaks calculation when it finds h_load to be uptodate.
The benefit of it is that h_load is computed only for those cfs_rq's,
which really need it, in particular all idle task groups are skipped.
Although this, in fact, moves h_load calculation under rq lock, it
should not affect latency much, because the amount of work done under rq
lock while trying to pull tasks is limited by sched_nr_migrate.
After the patch applied with the setup described above (1000 wakers in
the root cgroup and 10000 idle cgroups), I get:
Cpu(s): 16.9%us, 24.8%sy, 0.0%ni, 58.4%id, 0.0%wa, 0.0%hi, 0.0%si
Events: 242K cycles
7.57% [kernel] [k] __schedule
6.70% [kernel] [k] timerqueue_add
5.93% libc-2.12.so [.] usleep
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1373896159-1278-1-git-send-email-vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since no one use it.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-13-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Similar to runnable_load_avg, blocked_load_avg variable, long type is
enough for removed_load in 64 bit or 32 bit machine.
Then we avoid the expensive atomic64 operations on 32 bit machine.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-12-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since tg->load_avg is smaller than tg->load_weight, we don't need a
atomic64_t variable for load_avg in 32 bit machine.
The same reason for cfs_rq->tg_load_contrib.
The atomic_long_t/unsigned long variable type are more efficient and
convenience for them.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-11-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the 'u64 runnable_load_avg, blocked_load_avg' in cfs_rq struct are
smaller than 'unsigned long' cfs_rq->load.weight. We don't need u64
vaiables to describe them. unsigned long is more efficient and convenience.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-10-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to initialize the se.avg.{decay_count, load_avg_contrib} for a
new forked task. Otherwise random values of above variables cause a
mess when a new task is enqueued:
enqueue_task_fair
enqueue_entity
enqueue_entity_load_avg
and make fork balancing imbalance due to incorrect load_avg_contrib.
Further more, Morten Rasmussen notice some tasks were not launched at
once after created. So Paul and Peter suggest giving a start value for
new task runnable avg time same as sched_slice().
PeterZ said:
> So the 'problem' is that our running avg is a 'floating' average; ie. it
> decays with time. Now we have to guess about the future of our newly
> spawned task -- something that is nigh impossible seeing these CPU
> vendors keep refusing to implement the crystal ball instruction.
>
> So there's two asymptotic cases we want to deal well with; 1) the case
> where the newly spawned program will be 'nearly' idle for its lifetime;
> and 2) the case where its cpu-bound.
>
> Since we have to guess, we'll go for worst case and assume its
> cpu-bound; now we don't want to make the avg so heavy adjusting to the
> near-idle case takes forever. We want to be able to quickly adjust and
> lower our running avg.
>
> Now we also don't want to make our avg too light, such that it gets
> decremented just for the new task not having had a chance to run yet --
> even if when it would run, it would be more cpu-bound than not.
>
> So what we do is we make the initial avg of the same duration as that we
> guess it takes to run each task on the system at least once -- aka
> sched_slice().
>
> Of course we can defeat this with wakeup/fork bombs, but in the 'normal'
> case it should be good enough.
Paul also contributed most of the code comments in this commit.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Paul Turner <pjt@google.com>
[peterz; added explanation of sched_slice() usage]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-4-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following 2 variables are only used under CONFIG_SMP, so its
better to move their definiation into CONFIG_SMP too.
atomic64_t load_avg;
atomic_t runnable_avg;
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-3-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then
we can use runnable load variables.
Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted
patch(introduced in 9ee474f), but also need to revert.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Peter, this is based off of some of my work, I ran it though a few
tests and it passed. I also reviewed it, and added my SOB as I am
somewhat a co-author to it. ]
Based on the patch by Steven Rostedt from previous year:
https://lkml.org/lkml/2012/4/18/517
1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue.
The only pullable tasks are the tasks which are pushable in their local rq,
and no others.
2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected
with it: nobody uses it since now.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
migration_call() will do all the things that update_runtime() does.
So let's remove it.
Furthermore, there is potential risk that the current code will catch
BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime
threads running because of enabling runtime twice while the rt_runtime
may already changed.
Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These inlines are only used by kernel/sched/fair.c so they do
not need to be present in the main kernel/sched/sched.h file.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This large chunk of load calculation code can be easily divorced
from the main core.c scheduler file, with only a couple
prototypes and externs added to a kernel/sched header.
Some recent commits expanded the code and the documentation of
it, making it large enough to warrant separation. For example,
see:
556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"
More importantly, it helps reduce the size of the main
sched/core.c by yet another significant amount (~600 lines).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.
In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.
This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().
This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
On my SMP platform which is made of 5 cores in 2 clusters, I
have the nr_busy_cpu field of sched_group_power struct that is
not null when the platform is fully idle - which makes the
scheduler unhappy.
The root cause is:
During the boot sequence, some CPUs reach the idle loop and set
their NOHZ_IDLE flag while waiting for others CPUs to boot. But
the nr_busy_cpus field is initialized later with the assumption
that all CPUs are in the busy state whereas some CPUs have
already set their NOHZ_IDLE flag.
More generally, the NOHZ_IDLE flag must be initialized when new
sched_domains are created in order to ensure that NOHZ_IDLE and
nr_busy_cpus are aligned.
This condition can be ensured by adding a synchronize_rcu()
between the destruction of old sched_domains and the creation of
new ones so the NOHZ_IDLE flag will not be updated with old
sched_domain once it has been initialized. But this solution
introduces a additionnal latency in the rebuild sequence that is
called during cpu hotplug.
As suggested by Frederic Weisbecker, another solution is to have
the same rcu lifecycle for both NOHZ_IDLE and sched_domain
struct. A new nohz_idle field is added to sched_domain so both
status and sched_domain will share the same RCU lifecycle and
will be always synchronized. In addition, there is no more need
to protect nohz_idle against concurrent access as it is only
modified by 2 exclusive functions called by local cpu.
This solution has been prefered to the creation of a new struct
with an extra pointer indirection for sched_domain.
The synchronization is done at the cost of :
- An additional indirection and a rcu_dereference for accessing nohz_idle.
- We use only the nohz_idle field of the top sched_domain.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: fweisbec@gmail.com
Cc: pjt@google.com
Cc: rostedt@goodmis.org
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366729142-14662-1-git-send-email-vincent.guittot@linaro.org
[ Fixed !NO_HZ build bug. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kick the tick on full dynticks CPUs when they get more
than one task running on their queue. This makes sure that
local fairness is maintained by the tick on the destination.
This is done regardless of these tasks' class. We should
be able to be more clever in the future depending on these. eg:
a CPU that runs a SCHED_FIFO task doesn't need to maintain
fairness against local pending tasks of the fair class.
But keep things simple for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The current update of the rq's load can be erroneous when RT
tasks are involved.
The update of the load of a rq that becomes idle, is done only
if the avg_idle is less than sysctl_sched_migration_cost. If RT
tasks and short idle duration alternate, the runnable_avg will
not be updated correctly and the time will be accounted as idle
time when a CFS task wakes up.
A new idle_enter function is called when the next task is the
idle function so the elapsed time will be accounted as run time
in the load of the rq, whatever the average idle time is. The
function update_rq_runnable_avg is removed from idle_balance.
When a RT task is scheduled on an idle CPU, the update of the
rq's load is not done when the rq exit idle state because CFS's
functions are not called. Then, the idle_balance, which is
called just before entering the idle function, updates the rq's
load and makes the assumption that the elapsed time since the
last update, was only running time.
As a consequence, the rq's load of a CPU that only runs a
periodic RT task, is close to LOAD_AVG_MAX whatever the running
duration of the RT task is.
A new idle_exit function is called when the prev task is the
idle function so the elapsed time will be accounted as idle time
in the rq's load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: pjt@google.com
Cc: fweisbec@gmail.com
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366302867-5055-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add cpuacct.h and let sched.h include it.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5155367B.2060506@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
All warnings:
In file included from kernel/sched/core.c:85:0:
kernel/sched/sched.h:1036:39: warning: 'struct sched_domain' declared inside parameter list
kernel/sched/sched.h:1036:39: warning: its scope is only this definition or declaration, which is probably not what you want
It's because struct sched_domain is defined inside #if CONFIG_SMP,
while update_group_power() is declared unconditionally.
Fix this warning by declaring update_group_power() only if
CONFIG_SMP=n.
Build tested with CONFIG_SMP enabled and then disabled.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5137F4BA.2060101@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are used internally only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A78E.7040609@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move struct sched_group_power and sched_group and related inline
functions to kernel/sched/sched.h, as they are used internally
only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A77F.2010705@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are used internally only.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A771.4070104@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move rt scheduler definitions out of include/linux/sched.h into
new file include/linux/sched/rt.h
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the sysctl-related bits from include/linux/sched.h into
a new file: include/linux/sched/sysctl.h. Then update source
files requiring access to those bits by including the new
header file.
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
The "mm: sched: numa: Control enabling and disabling of NUMA balancing"
depends on scheduling debug being enabled but it's perfectly legimate to
disable automatic NUMA balancing even without this option. This should
take care of it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
NOTE: This patch is based on "sched, numa, mm: Add fault driven
placement and migration policy" but as it throws away all the policy
to just leave a basic foundation I had to drop the signed-offs-by.
This patch creates a bare-bones method for setting PTEs pte_numa in the
context of the scheduler that when faulted later will be faulted onto the
node the CPU is running on. In itself this does nothing useful but any
placement policy will fundamentally depend on receiving hints on placement
from fault context and doing something intelligent about it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.
These facilities are not yet consumers of this data. This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the machinery in place is in place to compute contributed load in a
bottom up fashion; replace the shares distribution code within update_shares()
accordingly.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.061208672@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With bandwidth control tracked entities may cease execution according to user
specified bandwidth limits. Charging this time as either throttled or blocked
however, is incorrect and would falsely skew in either direction.
What we actually want is for any throttled periods to be "invisible" to
load-tracking as they are removed from the system for that interval and
contribute normally otherwise.
Do this by moderating the progression of time to omit any periods in which the
entity belonged to a throttled hierarchy.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.998912151@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Entities of equal weight should receive equitable distribution of cpu time.
This is challenging in the case of a task_group's shares as execution may be
occurring on multiple cpus simultaneously.
To handle this we divide up the shares into weights proportionate with the load
on each cfs_rq. This does not however, account for the fact that the sum of
the parts may be less than one cpu and so we need to normalize:
load(tg) = min(runnable_avg(tg), 1) * tg->shares
Where runnable_avg is the aggregate time in which the task_group had runnable
children.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.930124292@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Maintain a global running sum of the average load seen on each cfs_rq belonging
to each task group so that it may be used in calculating an appropriate
shares:weight distribution.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.792901086@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a running entity blocks we migrate its tracked load to
cfs_rq->blocked_runnable_avg. In the sleep case this occurs while holding
rq->lock and so is a natural transition. Wake-ups however, are potentially
asynchronous in the presence of migration and so special care must be taken.
We use an atomic counter to track such migrated load, taking care to match this
with the previously introduced decay counters so that we don't migrate too much
load.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.726077467@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>