Make hibernate_setup() follow the coding style more closely by adding
some missing braces to the if () statement in it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
One of the memory bitmaps used by the hibernation image restoration
code is freed after the image has been loaded.
That is not quite efficient, though, because the memory pages used
for building that bitmap are known to be safe (ie. they were not
used by the image kernel before hibernation) and the arch-specific
code finalizing the image restoration may need them. In that case
it needs to allocate those pages again via the memory management
subsystem, check if they are really safe again by consulting the
other bitmaps and so on.
To avoid that, recycle those pages by putting them into the global
list of known safe pages so that they can be given to the arch code
right away when necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Rework mark_unsafe_pages() to use a simpler method of clearing
all bits in free_pages_map and to set the bits for the "unsafe"
pages (ie. pages that were used by the image kernel before
hibernation) with the help of duplicate_memory_bitmap().
For this purpose, move the pfn_valid() check from mark_unsafe_pages()
to unpack_orig_pfns() where the "unsafe" pages are discovered.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The core image restoration code preallocates some safe pages
(ie. pages that weren't used by the image kernel before hibernation)
for future use before allocating the bulk of memory for loading the
image data. Those safe pages are then freed so they can be allocated
again (with the memory management subsystem's help). That's done to
ensure that there will be enough safe pages for temporary data
structures needed during image restoration.
However, it is not really necessary to free those pages after they
have been allocated. They can be added to the (global) list of
safe pages right away and then picked up from there when needed
without freeing.
That reduces the overhead related to using safe pages, especially
in the arch-specific code, so modify the code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If freezable workqueue aborts suspend flow, show
workqueue state for debug purpose.
Signed-off-by: Roger Lu <roger.lu@mediatek.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This makes pm notifier PREPARE/POST symmetrical: if PREPARE
fails, we will only undo what ever happened on PREPARE.
It fixes the unbalanced CPU hotplug enable in CPU PM notifier.
Signed-off-by: Lianwei Wang <lianwei.wang@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tetsuo has reported the following potential oom_killer_disable vs.
oom_reaper race:
(1) freeze_processes() starts freezing user space threads.
(2) Somebody (maybe a kenrel thread) calls out_of_memory().
(3) The OOM killer calls mark_oom_victim() on a user space thread
P1 which is already in __refrigerator().
(4) oom_killer_disable() sets oom_killer_disabled = true.
(5) P1 leaves __refrigerator() and enters do_exit().
(6) The OOM reaper calls exit_oom_victim(P1) before P1 can call
exit_oom_victim(P1).
(7) oom_killer_disable() returns while P1 not yet finished
(8) P1 perform IO/interfere with the freezer.
This situation is unfortunate. We cannot move oom_killer_disable after
all the freezable kernel threads are frozen because the oom victim might
depend on some of those kthreads to make a forward progress to exit so
we could deadlock. It is also far from trivial to teach the oom_reaper
to not call exit_oom_victim() because then we would lose a guarantee of
the OOM killer and oom_killer_disable forward progress because
exit_mm->mmput might block and never call exit_oom_victim.
It seems the easiest way forward is to workaround this race by calling
try_to_freeze_tasks again after oom_killer_disable. This will make sure
that all the tasks are frozen or it bails out.
Fixes: 449d777d7a ("mm, oom_reaper: clear TIF_MEMDIE for all tasks queued for oom_reaper")
Link: http://lkml.kernel.org/r/1466597634-16199-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nothing is using its return value so change it to return void.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Kasan causes the compiler to instrument C code and is used at runtime to
detect accesses to memory that has been freed, or not yet allocated.
The code in snapshot.c saves and restores memory when hibernating. This will
access whole pages in the slab cache that have both free and allocated
areas, resulting in a large number of false positives from Kasan.
Disable instrumentation of this file.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some architectures require code written to memory as if it were data to be
'cleaned' from any data caches before the processor can fetch them as new
instructions.
During resume from hibernate, the snapshot code copies some pages directly,
meaning these architectures do not get a chance to perform their cache
maintenance. Modify the read and decompress code to call
flush_icache_range() on all pages that are restored, so that the restored
in-place pages are guaranteed to be executable on these architectures.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[will: make clean_pages_on_* static and remove initialisers]
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Fix for an intel_pstate driver issue related to the handling of
MSR updates uncovered by the recent cpufreq rework (Rafael Wysocki).
- cpufreq core cleanups related to starting governors and frequency
synchronization during resume from system suspend and a locking
fix for cpufreq_quick_get() (Rafael Wysocki, Richard Cochran).
- acpi-cpufreq and powernv cpufreq driver updates (Jisheng Zhang,
Michael Neuling, Richard Cochran, Shilpasri Bhat).
- intel_idle driver update preventing some Skylake-H systems
from hanging during initialization by disabling deep C-states
mishandled by the platform in the problematic configurations (Len
Brown).
- Intel Xeon Phi Processor x200 support for intel_idle (Dasaratharaman
Chandramouli).
- cpuidle menu governor updates to make it always honor PM QoS
latency constraints (and prevent C1 from being used as the
fallback C-state on x86 when they are set below its exit latency)
and to restore the previous behavior to fall back to C1 if the next
timer event is set far enough in the future that was changed in 4.4
which led to an energy consumption regression (Rik van Riel, Rafael
Wysocki).
- New device ID for a future AMD UART controller in the ACPI driver
for AMD SoCs (Wang Hongcheng).
- Rockchip rk3399 support for the rockchip-io-domain adaptive voltage
scaling (AVS) driver (David Wu).
- ACPI PCI resources management fix for the handling of IO space
resources on architectures where the IO space is memory mapped
(IA64 and ARM64) broken by the introduction of common ACPI
resources parsing for PCI host bridges in 4.4 (Lorenzo Pieralisi).
- Fix for the ACPI backend of the generic device properties API
to make it parse non-device (data node only) children of an
ACPI device correctly (Irina Tirdea).
- Fixes for the handling of global suspend flags (introduced in 4.4)
during hibernation and resume from it (Lukas Wunner).
- Support for obtaining configuration information from Device Trees
in the PM clocks framework (Jon Hunter).
- ACPI _DSM helper code and devfreq framework cleanups (Colin Ian
King, Geert Uytterhoeven).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW9JaRAAoJEILEb/54YlRx/GAQAJujANWilWHZYm24a9JDcIE9
rsNZIC/FdeBVilPtRTZQnig/Pj32Z4Jm7IZ/DLOq0Deu1YK/9uv3y59M3BcX6WyL
H5VR80L8geUJZ7RRk0WfM5D4X82ovzwpE/kWt2Z7HDuvJSCBmFBZOvNrXbaRncKD
jIvat/p6uCuxt5c08+ebnBLQ6tOs8wLTWiCx3fO128GIrGRGN2xFV6hzRWVGnJ4g
WXGAR+AdLxRMZz4PPmqdTfRj4TNSR071GjKyaeKfZUjQGAsf5O9A77JFjeNVomDx
g1K37Byid2bTByzVavlEXPJZ7eKb5dAhlo7IJ9HAcOAXChLqH2Czjrpd+1XjR9MF
SV/78rCnF8eet83QYLbGV/Mzf7gbJP2Xp6wiaM22VAPpGe+sYfphJoQka9XRTfId
OgAjyYMYdWAKo5DhxVNI8WyN0W5dsoBFPxnaUFhHSGDCIJH7Ksy20m6y3plG2Bxf
ahoiQhmd9ohjtB5JbRnf4MY0hjekp8Srdf+DoNKsk/+JscIyROpYY3msQ3smUKo+
f628MC/wAosMpSV+l+KOYkbjCbtB49IabWtZ//NVD9hYB3E1f6aTN59yFbWB+1rp
L7Y8iaxzSkyJy/yYVuBal3rSk356+BvvoXBlLXmBsyu1TMlcDjALIYztSiTVT5MB
RZBhgNwdkxNCYJfU3ex+
=hUVj
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management and ACPI updates from Rafael Wysocki:
"The second batch of power management and ACPI updates for v4.6.
Included are fixups on top of the previous PM/ACPI pull request and
other material that didn't make into it but still should go into 4.6.
Among other things, there's a fix for an intel_pstate driver issue
uncovered by recent cpufreq changes, a workaround for a boot hang on
Skylake-H related to the handling of deep C-states by the platform and
a PCI/ACPI fix for the handling of IO port resources on non-x86
architectures plus some new device IDs and similar.
Specifics:
- Fix for an intel_pstate driver issue related to the handling of MSR
updates uncovered by the recent cpufreq rework (Rafael Wysocki).
- cpufreq core cleanups related to starting governors and frequency
synchronization during resume from system suspend and a locking fix
for cpufreq_quick_get() (Rafael Wysocki, Richard Cochran).
- acpi-cpufreq and powernv cpufreq driver updates (Jisheng Zhang,
Michael Neuling, Richard Cochran, Shilpasri Bhat).
- intel_idle driver update preventing some Skylake-H systems from
hanging during initialization by disabling deep C-states mishandled
by the platform in the problematic configurations (Len Brown).
- Intel Xeon Phi Processor x200 support for intel_idle
(Dasaratharaman Chandramouli).
- cpuidle menu governor updates to make it always honor PM QoS
latency constraints (and prevent C1 from being used as the fallback
C-state on x86 when they are set below its exit latency) and to
restore the previous behavior to fall back to C1 if the next timer
event is set far enough in the future that was changed in 4.4 which
led to an energy consumption regression (Rik van Riel, Rafael
Wysocki).
- New device ID for a future AMD UART controller in the ACPI driver
for AMD SoCs (Wang Hongcheng).
- Rockchip rk3399 support for the rockchip-io-domain adaptive voltage
scaling (AVS) driver (David Wu).
- ACPI PCI resources management fix for the handling of IO space
resources on architectures where the IO space is memory mapped
(IA64 and ARM64) broken by the introduction of common ACPI
resources parsing for PCI host bridges in 4.4 (Lorenzo Pieralisi).
- Fix for the ACPI backend of the generic device properties API to
make it parse non-device (data node only) children of an ACPI
device correctly (Irina Tirdea).
- Fixes for the handling of global suspend flags (introduced in 4.4)
during hibernation and resume from it (Lukas Wunner).
- Support for obtaining configuration information from Device Trees
in the PM clocks framework (Jon Hunter).
- ACPI _DSM helper code and devfreq framework cleanups (Colin Ian
King, Geert Uytterhoeven)"
* tag 'pm+acpi-4.6-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
PM / AVS: rockchip-io: add io selectors and supplies for rk3399
intel_idle: Support for Intel Xeon Phi Processor x200 Product Family
intel_idle: prevent SKL-H boot failure when C8+C9+C10 enabled
ACPI / PM: Runtime resume devices when waking from hibernate
PM / sleep: Clear pm_suspend_global_flags upon hibernate
cpufreq: governor: Always schedule work on the CPU running update
cpufreq: Always update current frequency before startig governor
cpufreq: Introduce cpufreq_update_current_freq()
cpufreq: Introduce cpufreq_start_governor()
cpufreq: powernv: Add sysfs attributes to show throttle stats
cpufreq: acpi-cpufreq: make Intel/AMD MSR access, io port access static
PCI: ACPI: IA64: fix IO port generic range check
ACPI / util: cast data to u64 before shifting to fix sign extension
cpufreq: powernv: Define per_cpu chip pointer to optimize hot-path
cpuidle: menu: Fall back to polling if next timer event is near
cpufreq: acpi-cpufreq: Clean up hot plug notifier callback
intel_pstate: Do not call wrmsrl_on_cpu() with disabled interrupts
cpufreq: Make cpufreq_quick_get() safe to call
ACPI / property: fix data node parsing in acpi_get_next_subnode()
ACPI / APD: Add device HID for future AMD UART controller
...
When suspending to RAM, waking up and later suspending to disk,
we gratuitously runtime resume devices after the thaw phase.
This does not occur if we always suspend to RAM or always to disk.
pm_complete_with_resume_check(), which gets called from
pci_pm_complete() among others, schedules a runtime resume
if PM_SUSPEND_FLAG_FW_RESUME is set. The flag is set during
a suspend-to-RAM cycle. It is cleared at the beginning of
the suspend-to-RAM cycle but not afterwards and it is not
cleared during a suspend-to-disk cycle at all. Fix it.
Fixes: ef25ba0476 (PM / sleep: Add flags to indicate platform firmware involvement)
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use the more common logging method with the eventual goal of removing
pr_warning altogether.
Miscellanea:
- Realign arguments
- Coalesce formats
- Add missing space between a few coalesced formats
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [kernel/power/suspend.c]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Redesign of cpufreq governors and the intel_pstate driver to
make them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers
for that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it
more straightforward and fix some concurrency problems in it
(Rafael Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve
its handling of voltage regulators and device clocks and updates
of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization
and cleanup problems in it and correct its worker thread handling
with respect to CPU offline, new powernv_throttle tracepoint
(Shilpasri Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced
by previos changes in the ACPICA code (Bob Moore, Lv Zheng,
David Box, Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers)
and ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as
a valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls made,
fixes related to Xeon x200 processors, compiler warning fixes) and
cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW50NXAAoJEILEb/54YlRxvr8QAIktC9+ft0y5AmU46hDcBWcK
QutyWJL9X9BS6DWBJZA2qclDYFmhMfi5Fza1se0gQ9TnLB/KrBwHWLsiYoTsb1k+
nPKf214aPk+qAhkVuyB4leNWML9Qz9n9jwku/EYxWWpgtbSRf3+0ioIKZeWWc/8V
JvuaOu4O+g/tkmL7QTrnGWBwhIIssAAV85QPsHkx+g68MrCj4UMMzm7z9G21SPXX
bmP8yIHsczX/XnRsY0W2NSno7Vdk6ImHpDJ26IAZg28WRNPWICHgGYHvB0TTWMvb
tts+yqfF7/7QLRjT/M8k9CzDBDE/DnVqoZ0fNJ+aYr7hNKF32mtAN+jH9ZB9dl/P
fEFapJkPxnWyzAoVoB9Dz0rkcZkYMlbxlLWzUGpaPq0JflUUTzLk0ApSjmMn4HRO
UddwCDdyHTaYThp3gn6GbOb0pIP0SdOVbI1M2QV2x/4PLcT2Ft8Np1+1RFWOeinZ
Bdl9AE890big0808mqbBzw/buETwr9FjHtCdDPXpP0vJpkBLu3nIYRNb0LCt39es
mWMp6dFhGgvGj3D3ahTuV3GI8hdpDkh9SObexa11RCjkTKrXcwEmFxHxLeFXwKYq
alG278bo6cSChRMziS1lis+W/3tsJRN4TXUSv1PPzJHrFgptQVFRStU9ngBKP+pN
WB+itPc4Fw0YHOrAFsrx
=cfty
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"This time the majority of changes go into cpufreq and they are
significant.
First off, the way CPU frequency updates are triggered is different
now. Instead of having to set up and manage a deferrable timer for
each CPU in the system to evaluate and possibly change its frequency
periodically, cpufreq governors set up callbacks to be invoked by the
scheduler on a regular basis (basically on utilization updates). The
"old" governors, "ondemand" and "conservative", still do all of their
work in process context (although that is triggered by the scheduler
now), but intel_pstate does it all in the callback invoked by the
scheduler with no need for any additional asynchronous processing.
Of course, this eliminates the overhead related to the management of
all those timers, but also it allows the cpufreq governor code to be
simplified quite a bit. On top of that, the common code and data
structures used by the "ondemand" and "conservative" governors are
cleaned up and made more straightforward and some long-standing and
quite annoying problems are addressed. In particular, the handling of
governor sysfs attributes is modified and the related locking becomes
more fine grained which allows some concurrency problems to be avoided
(particularly deadlocks with the core cpufreq code).
In principle, the new mechanism for triggering frequency updates
allows utilization information to be passed from the scheduler to
cpufreq. Although the current code doesn't make use of it, in the
works is a new cpufreq governor that will make decisions based on the
scheduler's utilization data. That should allow the scheduler and
cpufreq to work more closely together in the long run.
In addition to the core and governor changes, cpufreq drivers are
updated too. Fixes and optimizations go into intel_pstate, the
cpufreq-dt driver is updated on top of some modification in the
Operating Performance Points (OPP) framework and there are fixes and
other updates in the powernv cpufreq driver.
Apart from the cpufreq updates there is some new ACPICA material,
including a fix for a problem introduced by previous ACPICA updates,
and some less significant changes in the ACPI code, like CPPC code
optimizations, ACPI processor driver cleanups and support for loading
ACPI tables from initrd.
Also updated are the generic power domains framework, the Intel RAPL
power capping driver and the turbostat utility and we have a bunch of
traditional assorted fixes and cleanups.
Specifics:
- Redesign of cpufreq governors and the intel_pstate driver to make
them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers for
that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it more
straightforward and fix some concurrency problems in it (Rafael
Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve its
handling of voltage regulators and device clocks and updates of the
cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization and
cleanup problems in it and correct its worker thread handling with
respect to CPU offline, new powernv_throttle tracepoint (Shilpasri
Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced by
previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box,
Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers) and
ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as a
valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls
made, fixes related to Xeon x200 processors, compiler warning
fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)"
* tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits)
tools/power turbostat: bugfix: TDP MSRs print bits fixing
tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
tools/power turbostat: call __cpuid() instead of __get_cpuid()
tools/power turbostat: indicate SMX and SGX support
tools/power turbostat: detect and work around syscall jitter
tools/power turbostat: show GFX%rc6
tools/power turbostat: show GFXMHz
tools/power turbostat: show IRQs per CPU
tools/power turbostat: make fewer systems calls
tools/power turbostat: fix compiler warnings
tools/power turbostat: add --out option for saving output in a file
tools/power turbostat: re-name "%Busy" field to "Busy%"
tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
tools/power turbostat: allow sub-sec intervals
ACPI / APEI: ERST: Fixed leaked resources in erst_init
ACPI / APEI: Fix leaked resources
intel_pstate: Do not skip samples partially
intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
...
By default, page poisoning uses a poison value (0xaa) on free. If this
is changed to 0, the page is not only sanitized but zeroing on alloc
with __GFP_ZERO can be skipped as well. The tradeoff is that detecting
corruption from the poisoning is harder to detect. This feature also
cannot be used with hibernation since pages are not guaranteed to be
zeroed after hibernation.
Credit to Grsecurity/PaX team for inspiring this work
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
replacing printk(s) with appropriate pr_info and pr_err
in order to fix checkpatch.pl warnings
Signed-off-by: Saurabh Sengar <saurabh.truth@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Wall time obtained from do_gettimeofday gives 32 bit timeval which can only
represent time until January 2038. This patch moves to ktime_t, a 64-bit time.
Also, wall time is susceptible to sudden jumps due to user setting the time or
due to NTP. Boot time is constantly increasing time better suited for
subtracting two timestamps.
Signed-off-by: Abhilash Jindal <klock.android@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The APM emulation code does multiple things, and some of them depend on
PM_SLEEP, while the battery management does not. However, selecting
the symbol like SHARPSL_PM does causes a Kconfig warning:
warning: (SHARPSL_PM && PMAC_APM_EMU) selects APM_EMULATION which has unmet direct dependencies (PM && SYS_SUPPORTS_APM_EMULATION)
From all I can tell, this is completely harmless, and we can simply allow
APM_EMULATION to be enabled here, even if PM is not.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some sysfs attributes in /sys/power/ should really be read-only,
so add support for that, convert those attributes to read-only
and drop the stub .show() routines from them.
Original-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep. Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep. The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just fix a typo in a function name in kerneldoc comments.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are quite a few cases in which device drivers, bus types or
even the PM core itself may benefit from knowing whether or not
the platform firmware will be involved in the upcoming system power
transition (during system suspend) or whether or not it was involved
in it (during system resume).
For this reason, introduce global system suspend flags that can be
used by the platform code to expose that information for the benefit
of the other parts of the kernel and make the ACPI core set them
as appropriate.
Users of the new flags will be added later.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add a sysfs attribute, /sys/power/pm_wakeup_irq, reporting the IRQ
number of the first wakeup interrupt (that is, the first interrupt
from an IRQ line armed for system wakeup) seen by the kernel during
the most recent system suspend/resume cycle.
This feature will be useful for system wakeup diagnostics of
spurious wakeup interrupts.
Signed-off-by: Alexandra Yates <alexandra.yates@linux.intel.com>
[ rjw: Fixed up pm_wakeup_irq definition ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull core block updates from Jens Axboe:
"This first core part of the block IO changes contains:
- Cleanup of the bio IO error signaling from Christoph. We used to
rely on the uptodate bit and passing around of an error, now we
store the error in the bio itself.
- Improvement of the above from myself, by shrinking the bio size
down again to fit in two cachelines on x86-64.
- Revert of the max_hw_sectors cap removal from a revision again,
from Jeff Moyer. This caused performance regressions in various
tests. Reinstate the limit, bump it to a more reasonable size
instead.
- Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
Most devices have huge trim limits, which can cause nasty latencies
when deleting files. Enable the admin to configure the size down.
We will look into having a more sane default instead of UINT_MAX
sectors.
- Improvement of the SGP gaps logic from Keith Busch.
- Enable the block core to handle arbitrarily sized bios, which
enables a nice simplification of bio_add_page() (which is an IO hot
path). From Kent.
- Improvements to the partition io stats accounting, making it
faster. From Ming Lei.
- Also from Ming Lei, a basic fixup for overflow of the sysfs pending
file in blk-mq, as well as a fix for a blk-mq timeout race
condition.
- Ming Lin has been carrying Kents above mentioned patches forward
for a while, and testing them. Ming also did a few fixes around
that.
- Sasha Levin found and fixed a use-after-free problem introduced by
the bio->bi_error changes from Christoph.
- Small blk cgroup cleanup from Viresh Kumar"
* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
blk: Fix bio_io_vec index when checking bvec gaps
block: Replace SG_GAPS with new queue limits mask
block: bump BLK_DEF_MAX_SECTORS to 2560
Revert "block: remove artifical max_hw_sectors cap"
blk-mq: fix race between timeout and freeing request
blk-mq: fix buffer overflow when reading sysfs file of 'pending'
Documentation: update notes in biovecs about arbitrarily sized bios
block: remove bio_get_nr_vecs()
fs: use helper bio_add_page() instead of open coding on bi_io_vec
block: kill merge_bvec_fn() completely
md/raid5: get rid of bio_fits_rdev()
md/raid5: split bio for chunk_aligned_read
block: remove split code in blkdev_issue_{discard,write_same}
btrfs: remove bio splitting and merge_bvec_fn() calls
bcache: remove driver private bio splitting code
block: simplify bio_add_page()
block: make generic_make_request handle arbitrarily sized bios
blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
block: don't access bio->bi_error after bio_put()
block: shrink struct bio down to 2 cache lines again
...
The Linux kernel suspend path has traditionally invoked sys_sync()
before freezing user threads.
But sys_sync() can be expensive, and some user-space OS's do not want
the kernel to pay the cost of sys_sync() on every suspend -- preferring
invoke sync() from user-space if/when they want it.
So make sys_sync on suspend build-time optional.
The default is unchanged.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The synchronous synchronize_rcu() in wakeup_source_remove() makes
user process which writes to /sys/kernel/wake_unlock blocked sometimes.
For example, when android eventhub tries to release a wakelock, this
blocking process can occur, and eventhub can't get input events
for a while.
Using a work item instead of direct function call at pm_wake_unlock()
can prevent this unnecessary delay from happening.
Signed-off-by: SungEun Kim <cleaneye.kim@lge.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Fix a recently added memory leak in an error path in the ACPI
resources management code (Dan Carpenter).
- Fix a build warning triggered by an ACPI video header function
that should be static inline (Borislav Petkov).
- Change names of helper function converting struct fwnode_handle
pointers to either struct device_node or struct acpi_device
pointers so they don't conflict with local variable names
(Alexander Sverdlin).
- Make the hibernate core re-enable nonboot CPUs on failures to
disable them as expected (Vitaly Kuznetsov).
- Increase the default timeout of the device suspend watchdog to
prevent it from triggering too early on some systems (Takashi Iwai).
- Prevent the cpuidle powernv driver from registering idle
states with CPUIDLE_FLAG_TIMER_STOP set if CONFIG_TICK_ONESHOT
is unset which leads to boot hangs (Preeti U Murthy).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJVksL4AAoJEILEb/54YlRxY9cP/jnXE12Jv2aYQAram5Fd7nY7
LSiuKAzVCqJbdBa3sRILKjMwgxciYABXypw6Zapa8TimAV374GZh6W4VXgIAifDf
gdicSSxB4A5cViUEte3uebzdaM2QMcOcQ6A+UOe849q3emfbu91f0LXTWwahR0og
Hjs7QCcvZS/swQIIY0JaIivC5mRwxrx141oPVn4GNf0tnOzH7eOUktYCZwh4U4Qo
FwUn66XI+ttlrRxs/IV5QSQ9S5qDBHOKdv6MgmGwMzUXINTL4w2Zawg+Pw0m3Puf
2VnT9jsz4anD1jZMJGLpeKNAjFJZ6ODiv06HjYhscaUZuMSECUiE9f6auUkiSU1F
r463ujaIcCW5MWUGjRBq5GwP15IuIL/NxjWAVyyMxeYcjOKrpQeEJ2liWnXPv/Bh
JVOoktFvFu1iOojlWfwnaC83bjZiJIJ6BFEywIm7l0wD1VAmk8IFepMqIrTp4U9R
ptKD8Go9GripftHryqSQA5wgp64hIQKxSHi+fEM6RfcLskXVKxEYSButva3wnFHx
2lQSxro42jsaP8O9T1wmb+br0h3efPeo9qyewmjld+vISeUhmsCILta55VtXI0wu
ektWoAuaA97d+u+mTee4U2kONXo+yUuXe0YqlCb3x/7m8oMg6hoblWZPnWFSeqeH
T/vI5cRS+a3NqAjctwmX
=vkde
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI fixes from Rafael Wysocki:
"These are fixes that didn't make it to the previous PM+ACPI pull
request or are fixing issues introduced by it.
Specifics:
- Fix a recently added memory leak in an error path in the ACPI
resources management code (Dan Carpenter)
- Fix a build warning triggered by an ACPI video header function that
should be static inline (Borislav Petkov)
- Change names of helper function converting struct fwnode_handle
pointers to either struct device_node or struct acpi_device
pointers so they don't conflict with local variable names
(Alexander Sverdlin)
- Make the hibernate core re-enable nonboot CPUs on failures to
disable them as expected (Vitaly Kuznetsov)
- Increase the default timeout of the device suspend watchdog to
prevent it from triggering too early on some systems (Takashi Iwai)
- Prevent the cpuidle powernv driver from registering idle states
with CPUIDLE_FLAG_TIMER_STOP set if CONFIG_TICK_ONESHOT is unset
which leads to boot hangs (Preeti U Murthy)"
* tag 'pm+acpi-4.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
tick/idle/powerpc: Do not register idle states with CPUIDLE_FLAG_TIMER_STOP set in periodic mode
PM / sleep: Increase default DPM watchdog timeout to 60
PM / hibernate: re-enable nonboot cpus on disable_nonboot_cpus() failure
ACPI / OF: Rename of_node() and acpi_node() to to_of_node() and to_acpi_node()
ACPI / video: Inline acpi_video_set_dmi_backlight_type
ACPI / resources: free memory on error in add_region_before()
Pull core block IO update from Jens Axboe:
"Nothing really major in here, mostly a collection of smaller
optimizations and cleanups, mixed with various fixes. In more detail,
this contains:
- Addition of policy specific data to blkcg for block cgroups. From
Arianna Avanzini.
- Various cleanups around command types from Christoph.
- Cleanup of the suspend block I/O path from Christoph.
- Plugging updates from Shaohua and Jeff Moyer, for blk-mq.
- Eliminating atomic inc/dec of both remaining IO count and reference
count in a bio. From me.
- Fixes for SG gap and chunk size support for data-less (discards)
IO, so we can merge these better. From me.
- Small restructuring of blk-mq shared tag support, freeing drivers
from iterating hardware queues. From Keith Busch.
- A few cfq-iosched tweaks, from Tahsin Erdogan and me. Makes the
IOPS mode the default for non-rotational storage"
* 'for-4.2/core' of git://git.kernel.dk/linux-block: (35 commits)
cfq-iosched: fix other locations where blkcg_to_cfqgd() can return NULL
cfq-iosched: fix sysfs oops when attempting to read unconfigured weights
cfq-iosched: move group scheduling functions under ifdef
cfq-iosched: fix the setting of IOPS mode on SSDs
blktrace: Add blktrace.c to BLOCK LAYER in MAINTAINERS file
block, cgroup: implement policy-specific per-blkcg data
block: Make CFQ default to IOPS mode on SSDs
block: add blk_set_queue_dying() to blkdev.h
blk-mq: Shared tag enhancements
block: don't honor chunk sizes for data-less IO
block: only honor SG gap prevention for merges that contain data
block: fix returnvar.cocci warnings
block, dm: don't copy bios for request clones
block: remove management of bi_remaining when restoring original bi_end_io
block: replace trylock with mutex_lock in blkdev_reread_part()
block: export blkdev_reread_part() and __blkdev_reread_part()
suspend: simplify block I/O handling
block: collapse bio bit space
block: remove unused BIO_RW_BLOCK and BIO_EOF flags
block: remove BIO_EOPNOTSUPP
...
Many harddisks (mostly WD ones) have firmware problems and take too
long, more than 10 seconds, to resume from suspend. And this often
exceeds the default DPM watchdog timeout (12 seconds), resulting in a
kernel panic out of sudden.
Since most distros just take the default as is, we should give a bit
more safer value. This patch increases the default value from 12
seconds to one minute, which has been confirmed to be long enough for
such problematic disks.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=91921
Fixes: 70fea60d88 (PM / Sleep: Detect device suspend/resume lockup and log event)
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When disable_nonboot_cpus() fails on some cpu it doesn't bring back all
cpus it managed to offline, a consequent call to enable_nonboot_cpus() is
expected. In hibernation_platform_enter() we don't call
enable_nonboot_cpus() on error so cpus stay offlined.
create_image() and resume_target_kernel() functions handle
disable_nonboot_cpus() faults correctly, hibernation_platform_enter()
is the only one which is doing it wrong.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Stop abusing struct page functionality and the swap end_io handler, and
instead add a modified version of the blk-lib.c bio_batch helpers.
Also move the block I/O code into swap.c as they are directly tied into
each other.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Tested-by: Ming Lin <mlin@kernel.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Signed-off-by: Jens Axboe <axboe@fb.com>
If a wakeup source is found to be pending in the last stage of
suspend after syscore suspend, then the machine won't suspend, but
suspend_enter() will return 0. That is confusing, as wakeup detection
elsewhere causes -EBUSY to be returned from suspend_enter().
To avoid the confusion, make suspend_enter() return -EBUSY in that
case too.
Signed-off-by: Ruchi Kandoi <kandoiruchi@google.com>
[ rjw: Subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some of the system suspend diagnostic messages related to
suspend-to-idle refer to it as "freeze sleep" or "freeze state"
while the others say "suspend-to-idle". To reduce the possible
confusion that may result from that, refine the former either to
say "suspend to idle" too or to make it clearer that what is printed
is a state string written to /sys/power/state ("mem", "standby",
or "freeze").
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 84c91b7ae0 (PM / hibernate: avoid unsafe pages in e820 reserved
regions) is reported to make resume from hibernation on Lenovo x230
unreliable, so revert it.
We will revisit the issue the commit in question was supposed to fix
in the future.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=96111
Reported-by: rhn <kebuac.rhn@porcupinefactory.org>
Cc: 3.17+ <stable@vger.kernel.org> # 3.17+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Occasionally, the system can't come back up after suspend/resume
due to problems of device suspending phase. This patch make
PM_TRACE infrastructure cover device suspending phase of
suspend/resume process, and the information in RTC can tell
developers which device suspending function make system hang.
Signed-off-by: Zhonghui Fu <zhonghui.fu@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When CONFIG_PM_DEBUG=y, we provide a sysfs file (/sys/power/pm_test) for
selecting one of a few suspend test modes, where rather than entering a
full suspend state, the kernel will perform some subset of suspend
steps, wait 5 seconds, and then resume back to normal operation.
This mode is useful for (among other things) observing the state of the
system just before entering a sleep mode, for debugging or analysis
purposes. However, a constant 5 second wait is not sufficient for some
sorts of analysis; for example, on an SoC, one might want to use
external tools to probe the power states of various on-chip controllers
or clocks.
This patch turns this 5 second delay into a configurable module
parameter, so users can determine how long to wait in this
pseudo-suspend state before resuming the system.
Example (wait 30 seconds);
# echo 30 > /sys/module/suspend/parameters/pm_test_delay
# echo core > /sys/power/pm_test
# time echo mem > /sys/power/state
...
[ 17.583625] suspend debug: Waiting for 30 second(s).
...
real 0m30.381s
user 0m0.017s
sys 0m0.080s
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Kevin Cernekee <cernekee@chromium.org>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In preparation for adding support for quiescing timers in the final
stage of suspend-to-idle transitions, rework the freeze_enter()
function making the system wait on a wakeup event, the freeze_wake()
function terminating the suspend-to-idle loop and the mechanism by
which deep idle states are entered during suspend-to-idle.
First of all, introduce a simple state machine for suspend-to-idle
and make the code in question use it.
Second, prevent freeze_enter() from losing wakeup events due to race
conditions and ensure that the number of online CPUs won't change
while it is being executed. In addition to that, make it force
all of the CPUs re-enter the idle loop in case they are in idle
states already (so they can enter deeper idle states if possible).
Next, drop cpuidle_use_deepest_state() and replace use_deepest_state
checks in cpuidle_select() and cpuidle_reflect() with a single
suspend-to-idle state check in cpuidle_idle_call().
Finally, introduce cpuidle_enter_freeze() that will simply find the
deepest idle state available to the given CPU and enter it using
cpuidle_enter().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter. The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.
Tejun wasn't happy about this partial solution though and insisted on a
full solution. That requires the full OOM and freezer's task freezing
exclusion, though. This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.
oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.
oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations. Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.
The page fault path is covered now as well although it was assumed to be
safe before. As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here. Same applies
to the memcg OOM killer.
out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation. The page allocation
path simply fails the allocation same as before. The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.
Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because
- the victim cannot loop in the page fault handler (it would die
on the way out from the exception)
- it cannot loop in the page allocator because all the further
allocation would fail and __GFP_NOFAIL allocations are not
acceptable at this stage
- it shouldn't be blocked on any locks held by frozen tasks
(try_to_freeze expects lockless context) and kernel threads and
work queues are not frozen yet
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While touching this area let's convert printk to pr_*. This also makes
the printing of continuation lines done properly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Rework of the core ACPI resources parsing code to fix issues
in it and make using resource offsets more convenient and
consolidation of some resource-handing code in a couple of places
that have grown analagous data structures and code to cover the
the same gap in the core (Jiang Liu, Thomas Gleixner, Lv Zheng).
- ACPI-based IOAPIC hotplug support on top of the resources handling
rework (Jiang Liu, Yinghai Lu).
- ACPICA update to upstream release 20150204 including an interrupt
handling rework that allows drivers to install raw handlers for
ACPI GPEs which then become entirely responsible for the given GPE
and the ACPICA core code won't touch it (Lv Zheng, David E Box,
Octavian Purdila).
- ACPI EC driver rework to fix several concurrency issues and other
problems related to events handling on top of the ACPICA's new
support for raw GPE handlers (Lv Zheng).
- New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power
Subsystem) driver for Intel chips (Ken Xue).
- Two minor fixes of the ACPI LPSS driver (Heikki Krogerus,
Jarkko Nikula).
- Two new blacklist entries for machines (Samsung 730U3E/740U3E and
510R) where the native backlight interface doesn't work correctly
while the ACPI one does (Hans de Goede).
- Rework of the ACPI processor driver's handling of idle states
to make the code more straightforward and less bloated overall
(Rafael J Wysocki).
- Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht,
Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki,
Yaowei Bai).
- PCI core power management modification to avoid resuming (some)
runtime-suspended devices during system suspend if they are in
the right states already (Rafael J Wysocki).
- New SFI-based cpufreq driver for Intel platforms using SFI
(Srinidhi Kasagar).
- cpufreq core fixes, cleanups and simplifications (Viresh Kumar,
Doug Anderson, Wolfram Sang).
- SkyLake CPU support and other updates for the intel_pstate driver
(Kristen Carlson Accardi, Srinivas Pandruvada).
- cpufreq-dt driver cleanup (Markus Elfring).
- Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla).
- Generic power domains core code fixes and cleanups (Ulf Hansson).
- Operating Performance Points (OPP) core code cleanups and kernel
documentation update (Nishanth Menon).
- New dabugfs interface to make the list of PM QoS constraints
available to user space (Nishanth Menon).
- New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso).
- New devfreq class (devfreq_event) to provide raw utilization data
to devfreq governors (Chanwoo Choi).
- Assorted minor fixes and cleanups related to power management
(Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist,
Pavel Machek, Todd E Brandt, Wonhong Kwon).
- turbostat updates (Len Brown) and cpupower Makefile improvement
(Sriram Raghunathan).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJU2neOAAoJEILEb/54YlRx51QP/jrv1Wb5eMaemzMksPIWI5Zn
I8IbxzToxu7wDDsrTBRv+LuyllMPrnppFOHHvB35gUYu7Y6I066s3ErwuqeFlbmy
+VicmyGMahv3yN74qg49MXzWtaJZa8hrFXn8ItujiUIcs08yELi0vBQFlZImIbTB
PdQngO88VfiOVjDvmKkYUU//9Sc9LCU0ZcdUQXSnA1oNOxuUHjiARz98R03hhSqu
BWR+7M0uaFbu6XeK+BExMXJTpKicIBZ1GAF6hWrS8V4aYg+hH1cwjf2neDAzZkcU
UkXieJlLJrCq+ZBNcy7WEhkWQkqJNWei5WYiy6eoQeQpNoliY2V+2OtSMJaKqDye
PIiMwXstyDc5rgyULN0d1UUzY6mbcUt2rOL0VN2bsFVIJ1HWCq8mr8qq689pQUYv
tcH18VQ2/6r2zW28sTO/ByWLYomklD/Y6bw2onMhGx3Knl0D8xYJKapVnTGhr5eY
d4k41ybHSWNKfXsZxdJc+RxndhPwj9rFLfvY/CZEhLcW+2pAiMarRDOPXDoUI7/l
aJpmPzy/6mPXGBnTfr6jKDSY3gXNazRIvfPbAdiGayKcHcdRM4glbSbNH0/h1Iq6
HKa8v9Fx87k1X5r4ZbhiPdABWlxuKDiM7725rfGpvjlWC3GNFOq7YTVMOuuBA225
Mu9PRZbOsZsnyNkixBpX
=zZER
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"We have a few new features this time, including a new SFI-based
cpufreq driver, a new devfreq driver for Tegra Activity Monitor, a new
devfreq class for providing its governors with raw utilization data
and a new ACPI driver for AMD SoCs.
Still, the majority of changes here are reworks of existing code to
make it more straightforward or to prepare it for implementing new
features on top of it. The primary example is the rework of ACPI
resources handling from Jiang Liu, Thomas Gleixner and Lv Zheng with
support for IOAPIC hotplug implemented on top of it, but there is
quite a number of changes of this kind in the cpufreq core, ACPICA,
ACPI EC driver, ACPI processor driver and the generic power domains
core code too.
The most active developer is Viresh Kumar with his cpufreq changes.
Specifics:
- Rework of the core ACPI resources parsing code to fix issues in it
and make using resource offsets more convenient and consolidation
of some resource-handing code in a couple of places that have grown
analagous data structures and code to cover the the same gap in the
core (Jiang Liu, Thomas Gleixner, Lv Zheng).
- ACPI-based IOAPIC hotplug support on top of the resources handling
rework (Jiang Liu, Yinghai Lu).
- ACPICA update to upstream release 20150204 including an interrupt
handling rework that allows drivers to install raw handlers for
ACPI GPEs which then become entirely responsible for the given GPE
and the ACPICA core code won't touch it (Lv Zheng, David E Box,
Octavian Purdila).
- ACPI EC driver rework to fix several concurrency issues and other
problems related to events handling on top of the ACPICA's new
support for raw GPE handlers (Lv Zheng).
- New ACPI driver for AMD SoCs analogous to the LPSS (Low-Power
Subsystem) driver for Intel chips (Ken Xue).
- Two minor fixes of the ACPI LPSS driver (Heikki Krogerus, Jarkko
Nikula).
- Two new blacklist entries for machines (Samsung 730U3E/740U3E and
510R) where the native backlight interface doesn't work correctly
while the ACPI one does (Hans de Goede).
- Rework of the ACPI processor driver's handling of idle states to
make the code more straightforward and less bloated overall (Rafael
J Wysocki).
- Assorted minor fixes related to ACPI and SFI (Andreas Ruprecht,
Andy Shevchenko, Hanjun Guo, Jan Beulich, Rafael J Wysocki, Yaowei
Bai).
- PCI core power management modification to avoid resuming (some)
runtime-suspended devices during system suspend if they are in the
right states already (Rafael J Wysocki).
- New SFI-based cpufreq driver for Intel platforms using SFI
(Srinidhi Kasagar).
- cpufreq core fixes, cleanups and simplifications (Viresh Kumar,
Doug Anderson, Wolfram Sang).
- SkyLake CPU support and other updates for the intel_pstate driver
(Kristen Carlson Accardi, Srinivas Pandruvada).
- cpufreq-dt driver cleanup (Markus Elfring).
- Init fix for the ARM big.LITTLE cpuidle driver (Sudeep Holla).
- Generic power domains core code fixes and cleanups (Ulf Hansson).
- Operating Performance Points (OPP) core code cleanups and kernel
documentation update (Nishanth Menon).
- New dabugfs interface to make the list of PM QoS constraints
available to user space (Nishanth Menon).
- New devfreq driver for Tegra Activity Monitor (Tomeu Vizoso).
- New devfreq class (devfreq_event) to provide raw utilization data
to devfreq governors (Chanwoo Choi).
- Assorted minor fixes and cleanups related to power management
(Andreas Ruprecht, Krzysztof Kozlowski, Rickard Strandqvist, Pavel
Machek, Todd E Brandt, Wonhong Kwon).
- turbostat updates (Len Brown) and cpupower Makefile improvement
(Sriram Raghunathan)"
* tag 'pm+acpi-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (151 commits)
tools/power turbostat: relax dependency on APERF_MSR
tools/power turbostat: relax dependency on invariant TSC
Merge branch 'pci/host-generic' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci into acpi-resources
tools/power turbostat: decode MSR_*_PERF_LIMIT_REASONS
tools/power turbostat: relax dependency on root permission
ACPI / video: Add disable_native_backlight quirk for Samsung 510R
ACPI / PM: Remove unneeded nested #ifdef
USB / PM: Remove unneeded #ifdef and associated dead code
intel_pstate: provide option to only use intel_pstate with HWP
ACPI / EC: Add GPE reference counting debugging messages
ACPI / EC: Add query flushing support
ACPI / EC: Refine command storm prevention support
ACPI / EC: Add command flushing support.
ACPI / EC: Introduce STARTED/STOPPED flags to replace BLOCKED flag
ACPI: add AMD ACPI2Platform device support for x86 system
ACPI / table: remove duplicate NULL check for the handler of acpi_table_parse()
ACPI / EC: Update revision due to raw handler mode.
ACPI / EC: Reduce ec_poll() by referencing the last register access timestamp.
ACPI / EC: Fix several GPE handling issues by deploying ACPI_GPE_DISPATCH_RAW_HANDLER mode.
ACPICA: Events: Enable APIs to allow interrupt/polling adaptive request based GPE handling model
...
hibernate_preallocate_memory() prints out that how many pages are
allocated, but it doesn't take into consideration the pages freed by
free_unnecessary_pages(). Therefore, it always shows the count more
than actually allocated.
Signed-off-by: Wonhong Kwon <wonhong.kwon@lge.com>
[ rjw: Subject ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove the function get_safe_write_buffer() that is not used anywhere.
This was partially found by using a static code analysis program called cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
PM QoS requests are notoriously hard to debug and made even
more so due to their highly dynamic nature. Having visibility
into the internal data representation per constraint allows
us to have much better appreciation of potential issues or
bad usage by drivers in the system.
So introduce for all classes of PM QoS, an entry in
/sys/kernel/debug/pm_qos that shall show all the current
requests as well as the snapshot of the value these requests
boil down to. For example:
==> /sys/kernel/debug/pm_qos/cpu_dma_latency <==
1: 4444: Active
2: 2000000000: Default
3: 2000000000: Default
4: 2000000000: Default
Type=Minimum, Value=4444, Requests: active=1 / total=4
==> /sys/kernel/debug/pm_qos/memory_bandwidth <==
Empty!
...
The actual value listed will have their meaning based
on the QoS it is on, the 'Type' indicates what logic
it would use to collate the information - Minimum,
Maximum, or Sum. Value is the collation of all requests.
This interface also compares the values with the defaults
for the QoS class and marks the ones that are
currently active.
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Acked-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>