forked from luck/tmp_suning_uos_patched
31c9c5fb14
658 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Daniel Borkmann
|
e917be1f83 |
bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals
commit 3844d153a41adea718202c10ae91dc96b37453b5 upstream.
Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.
This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().
Before:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.
Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.
After:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
Fixes:
|
||
Daniel Borkmann
|
9adec73349 |
bpf: Fix incorrect verifier simulation around jmp32's jeq/jne
commit a12ca6277eca6aeeccf66e840c23a2b520e24c8f upstream.
Kuee reported a quirk in the jmp32's jeq/jne simulation, namely that the
register value does not match expectations for the fall-through path. For
example:
Before fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P571 <--- [*]
6: (95) exit
R0 !read_ok
After fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P8 <--- [*]
6: (95) exit
R0 !read_ok
As can be seen on line 5 for the branch fall-through path in R2 [*] is that
given condition w2 != 0x8 is false, verifier should conclude that r2 = 8 as
upper 32 bit are known to be zero. However, verifier incorrectly concludes
that r2 = 571 which is far off.
The problem is it only marks false{true}_reg as known in the switch for JE/NE
case, but at the end of the function, it uses {false,true}_{64,32}off to
update {false,true}_reg->var_off and they still hold the prior value of
{false,true}_reg->var_off before it got marked as known. The subsequent
__reg_combine_32_into_64() then propagates this old var_off and derives new
bounds. The information between min/max bounds on {false,true}_reg from
setting the register to known const combined with the {false,true}_reg->var_off
based on the old information then derives wrong register data.
Fix it by detangling the BPF_JEQ/BPF_JNE cases and updating relevant
{false,true}_{64,32}off tnums along with the register marking to known
constant.
Fixes:
|
||
Daniel Borkmann
|
342332fb0b |
bpf: Don't promote bogus looking registers after null check.
[ Upstream commit e60b0d12a95dcf16a63225cead4541567f5cb517 ]
If we ever get to a point again where we convert a bogus looking <ptr>_or_null
typed register containing a non-zero fixed or variable offset, then lets not
reset these bounds to zero since they are not and also don't promote the register
to a <ptr> type, but instead leave it as <ptr>_or_null. Converting to a unknown
register could be an avenue as well, but then if we run into this case it would
allow to leak a kernel pointer this way.
Fixes:
|
||
Hou Tao
|
924886fa22 |
bpf: Disallow BPF_LOG_KERNEL log level for bpf(BPF_BTF_LOAD)
[ Upstream commit 866de407444398bc8140ea70de1dba5f91cc34ac ]
BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load()
to set log level as BPF_LOG_KERNEL. The same checking has already
been done in bpf_check(), so factor out a helper to check the
validity of log attributes and use it in both places.
Fixes:
|
||
Daniel Borkmann
|
35ab8c9085 |
bpf: Fix out of bounds access from invalid *_or_null type verification
[ no upstream commit given implicitly fixed through the larger refactoring in c25b2ae136039ffa820c26138ed4a5e5f3ab3841 ] While auditing some other code, I noticed missing checks inside the pointer arithmetic simulation, more specifically, adjust_ptr_min_max_vals(). Several *_OR_NULL types are not rejected whereas they are _required_ to be rejected given the expectation is that they get promoted into a 'real' pointer type for the success case, that is, after an explicit != NULL check. One case which stands out and is accessible from unprivileged (iff enabled given disabled by default) is BPF ring buffer. From crafting a PoC, the NULL check can be bypassed through an offset, and its id marking will then lead to promotion of mem_or_null to a mem type. bpf_ringbuf_reserve() helper can trigger this case through passing of reserved flags, for example. func#0 @0 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (7a) *(u64 *)(r10 -8) = 0 1: R1=ctx(id=0,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm 1: (18) r1 = 0x0 3: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm 3: (b7) r2 = 8 4: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R10=fp0 fp-8_w=mmmmmmmm 4: (b7) r3 = 0 5: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R3_w=invP0 R10=fp0 fp-8_w=mmmmmmmm 5: (85) call bpf_ringbuf_reserve#131 6: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 6: (bf) r6 = r0 7: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 7: (07) r0 += 1 8: R0_w=mem_or_null(id=2,ref_obj_id=2,off=1,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 8: (15) if r0 == 0x0 goto pc+4 R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 9: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 9: (62) *(u32 *)(r6 +0) = 0 R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 10: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 10: (bf) r1 = r6 11: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 11: (b7) r2 = 0 12: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R2_w=invP0 R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 12: (85) call bpf_ringbuf_submit#132 13: R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm 13: (b7) r0 = 0 14: R0_w=invP0 R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm 14: (95) exit from 8 to 13: safe processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 0 OK All three commits, that is |
||
Daniel Borkmann
|
279e0bf80d |
bpf: Make 32->64 bounds propagation slightly more robust
commit e572ff80f05c33cd0cb4860f864f5c9c044280b6 upstream. Make the bounds propagation in __reg_assign_32_into_64() slightly more robust and readable by aligning it similarly as we did back in the __reg_combine_64_into_32() counterpart. Meaning, only propagate or pessimize them as a smin/smax pair. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
e2aad0b5f2 |
bpf: Fix signed bounds propagation after mov32
commit 3cf2b61eb06765e27fec6799292d9fb46d0b7e60 upstream.
For the case where both s32_{min,max}_value bounds are positive, the
__reg_assign_32_into_64() directly propagates them to their 64 bit
counterparts, otherwise it pessimises them into [0,u32_max] universe and
tries to refine them later on by learning through the tnum as per comment
in mentioned function. However, that does not always happen, for example,
in mov32 operation we call zext_32_to_64(dst_reg) which invokes the
__reg_assign_32_into_64() as is without subsequent bounds update as
elsewhere thus no refinement based on tnum takes place.
Thus, not calling into the __update_reg_bounds() / __reg_deduce_bounds() /
__reg_bound_offset() triplet as we do, for example, in case of ALU ops via
adjust_scalar_min_max_vals(), will lead to more pessimistic bounds when
dumping the full register state:
Before fix:
0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=0,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
Technically, the smin_value=0 and smax_value=4294967295 bounds are not
incorrect, but given the register is still a constant, they break assumptions
about const scalars that smin_value == smax_value and umin_value == umax_value.
After fix:
0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)
Without the smin_value == smax_value and umin_value == umax_value invariant
being intact for const scalars, it is possible to leak out kernel pointers
from unprivileged user space if the latter is enabled. For example, when such
registers are involved in pointer arithmtics, then adjust_ptr_min_max_vals()
will taint the destination register into an unknown scalar, and the latter
can be exported and stored e.g. into a BPF map value.
Fixes:
|
||
Maxim Mikityanskiy
|
349e83c0cf |
bpf: Fix the off-by-two error in range markings
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream. The first commit cited below attempts to fix the off-by-one error that appeared in some comparisons with an open range. Due to this error, arithmetically equivalent pieces of code could get different verdicts from the verifier, for example (pseudocode): // 1. Passes the verifier: if (data + 8 > data_end) return early read *(u64 *)data, i.e. [data; data+7] // 2. Rejected by the verifier (should still pass): if (data + 7 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The attempted fix, however, shifts the range by one in a wrong direction, so the bug not only remains, but also such piece of code starts failing in the verifier: // 3. Rejected by the verifier, but the check is stricter than in #1. if (data + 8 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The change performed by that fix converted an off-by-one bug into off-by-two. The second commit cited below added the BPF selftests written to ensure than code chunks like #3 are rejected, however, they should be accepted. This commit fixes the off-by-two error by adjusting new_range in the right direction and fixes the tests by changing the range into the one that should actually fail. Fixes: |
||
Daniel Borkmann
|
33fe044f6a |
bpf: Fix toctou on read-only map's constant scalar tracking
commit 353050be4c19e102178ccc05988101887c25ae53 upstream. Commit |
||
Alexei Starovoitov
|
4a50bc0084 |
bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.
[ Upstream commit 388e2c0b978339dee9b0a81a2e546f8979e021e2 ]
Similar to unsigned bounds propagation fix signed bounds.
The 'Fixes' tag is a hint. There is no security bug here.
The verifier was too conservative.
Fixes:
|
||
Alexei Starovoitov
|
84dde8c8c9 |
bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.
[ Upstream commit b9979db8340154526d9ab38a1883d6f6ba9b6d47 ] Before this fix: 166: (b5) if r2 <= 0x1 goto pc+22 from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff)) After this fix: 166: (b5) if r2 <= 0x1 goto pc+22 from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1)) While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1 and call __reg_combine_64_into_32(true_reg). Without the fix it would not pass the condition: if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) since umin_value == 0 at this point. Before commit 10bf4e83167c the umin was incorrectly ingored. The commit 10bf4e83167c fixed the correctness issue, but pessimized propagation of 64-bit min max into 32-bit min max and corresponding var_off. Fixes: 10bf4e83167c ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Bixuan Cui
|
6345a0bee8 |
bpf: Add oversize check before call kvcalloc()
[ Upstream commit 0e6491b559704da720f6da09dd0a52c4df44c514 ] Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the oversize check. When the allocation is larger than what kmalloc() supports, the following warning triggered: WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597 Modules linked in: CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597 Call Trace: kvmalloc include/linux/mm.h:806 [inline] kvmalloc_array include/linux/mm.h:824 [inline] kvcalloc include/linux/mm.h:829 [inline] check_btf_line kernel/bpf/verifier.c:9925 [inline] check_btf_info kernel/bpf/verifier.c:10049 [inline] bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759 bpf_prog_load kernel/bpf/syscall.c:2301 [inline] __sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline] __se_sys_bpf kernel/bpf/syscall.c:4689 [inline] __x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com Signed-off-by: Bixuan Cui <cuibixuan@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Andrey Ignatov
|
b0491ab7d4 |
bpf: Fix possible out of bound write in narrow load handling
[ Upstream commit d7af7e497f0308bc97809cc48b58e8e0f13887e1 ]
Fix a verifier bug found by smatch static checker in [0].
This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.
When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that
cnt >= ARRAY_SIZE(insn_buf)
And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.
Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.
The full report [0] is below:
kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c
12282
12283 insn->off = off & ~(size_default - 1);
12284 insn->code = BPF_LDX | BPF_MEM | size_code;
12285 }
12286
12287 target_size = 0;
12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12289 &target_size);
12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.
12291 (ctx_field_size && !target_size)) {
12292 verbose(env, "bpf verifier is misconfigured\n");
12293 return -EINVAL;
12294 }
12295
12296 if (is_narrower_load && size < target_size) {
12297 u8 shift = bpf_ctx_narrow_access_offset(
12298 off, size, size_default) * 8;
12299 if (ctx_field_size <= 4) {
12300 if (shift)
12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
^^^^^
increment beyond end of array
12302 insn->dst_reg,
12303 shift);
--> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
^^^^^
out of bounds write
12305 (1 << size * 8) - 1);
12306 } else {
12307 if (shift)
12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12309 insn->dst_reg,
12310 shift);
12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
^^^^^^^^^^^^^^^
Same.
12312 (1ULL << size * 8) - 1);
12313 }
12314 }
12315
12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12317 if (!new_prog)
12318 return -ENOMEM;
12319
12320 delta += cnt - 1;
12321
12322 /* keep walking new program and skip insns we just inserted */
12323 env->prog = new_prog;
12324 insn = new_prog->insnsi + i + delta;
12325 }
12326
12327 return 0;
12328 }
[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/
v1->v2:
- clarify that problem was only seen by static checker but not in prod;
Fixes:
|
||
He Fengqing
|
389dfd1147 |
bpf: Fix potential memleak and UAF in the verifier.
[ Upstream commit 75f0fc7b48ad45a2e5736bcf8de26c8872fe8695 ]
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.
There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().
So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.
Fixes:
|
||
Daniel Borkmann
|
9dd6f6d896 |
bpf: Fix ringbuf helper function compatibility
commit 5b029a32cfe4600f5e10e36b41778506b90fd4de upstream. Commit |
||
Ilya Leoshkevich
|
585ff7344e |
bpf: Clear zext_dst of dead insns
[ Upstream commit 45c709f8c71b525b51988e782febe84ce933e7e0 ] "access skb fields ok" verifier test fails on s390 with the "verifier bug. zext_dst is set, but no reg is defined" message. The first insns of the test prog are ... 0: 61 01 00 00 00 00 00 00 ldxw %r0,[%r1+0] 8: 35 00 00 01 00 00 00 00 jge %r0,0,1 10: 61 01 00 08 00 00 00 00 ldxw %r0,[%r1+8] ... and the 3rd one is dead (this does not look intentional to me, but this is a separate topic). sanitize_dead_code() converts dead insns into "ja -1", but keeps zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such an insn, it sees this discrepancy and bails. This problem can be seen only with JITs whose bpf_jit_needs_zext() returns true. Fix by clearning dead insns' zext_dst. The commits that contributed to this problem are: 1. |
||
Daniel Borkmann
|
be561c0154 |
bpf: Fix pointer arithmetic mask tightening under state pruning
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Lorenz Bauer
|
ffb9d5c48b |
bpf: verifier: Allocate idmap scratch in verifier env
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
a11ca29c65 |
bpf: Remove superfluous aux sanitation on subprog rejection
commit 59089a189e3adde4cf85f2ce479738d1ae4c514d upstream. Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
0e9280654a |
bpf: Fix leakage due to insufficient speculative store bypass mitigation
[ Upstream commit 2039f26f3aca5b0e419b98f65dd36481337b86ee ] Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. |
||
Daniel Borkmann
|
39f1735c81 |
bpf: Fix tail_call_reachable rejection for interpreter when jit failed
[ Upstream commit 5dd0a6b8582ffbfa88351949d50eccd5b6694ade ] During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from |
||
John Fastabend
|
a9f36bf361 |
bpf: Track subprog poke descriptors correctly and fix use-after-free
commit f263a81451c12da5a342d90572e317e611846f2c upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, |
||
John Fastabend
|
f97b9c4c07 |
bpf: Fix null ptr deref with mixed tail calls and subprogs
[ Upstream commit 7506d211b932870155bcb39e3dd9e39fab45a7c7 ]
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.
However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?
Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.
In verifier code,
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.
Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.
The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.
[ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[ 82.623001] loop10: detected capacity change from 0 to 8
[ 88.487424] ==================================================================
[ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386
[ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[ 88.487490] Call Trace:
[ 88.487498] dump_stack+0x93/0xc2
[ 88.487515] kasan_report.cold+0x5f/0xd8
[ 88.487530] ? do_jit+0x184a/0x3290
[ 88.487542] do_jit+0x184a/0x3290
...
[ 88.487709] bpf_int_jit_compile+0x248/0x810
...
[ 88.487765] bpf_check+0x3718/0x5140
...
[ 88.487920] bpf_prog_load+0xa22/0xf10
Fixes:
|
||
Daniel Borkmann
|
8c82c52d1d |
bpf: Do not mark insn as seen under speculative path verification
[ Upstream commit fe9a5ca7e370e613a9a75a13008a3845ea759d6e ] ... in such circumstances, we do not want to mark the instruction as seen given the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable from the non-speculative path verification. We do however want to verify it for safety regardless. With the patch as-is all the insns that have been marked as seen before the patch will also be marked as seen after the patch (just with a potentially different non-zero count). An upcoming patch will also verify paths that are unreachable in the non-speculative domain, hence this extension is needed. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
e9d271731d |
bpf: Inherit expanded/patched seen count from old aux data
[ Upstream commit d203b0fd863a2261e5d00b97f3d060c4c2a6db71 ] Instead of relying on current env->pass_cnt, use the seen count from the old aux data in adjust_insn_aux_data(), and expand it to the new range of patched instructions. This change is valid given we always expand 1:n with n>=1, so what applies to the old/original instruction needs to apply for the replacement as well. Not relying on env->pass_cnt is a prerequisite for a later change where we want to avoid marking an instruction seen when verified under speculative execution path. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
5fc6ed1831 |
bpf: Fix leakage under speculation on mispredicted branches
[ Upstream commit 9183671af6dbf60a1219371d4ed73e23f43b49db ]
The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.
For example, a type confusion has been demonstrated with the following
crafted program:
// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker
1: r0 = *(u64 *)(r0) // cache miss
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9
Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...
r6 = r9
r9 = *(u8 *)(r6)
// leak r9
... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...
A: if r0 != 0x0 goto line C
B: ...
C: if r0 != 0x0 goto line D
D: ...
... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.
Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:
// r0 = pointer to a [control] map array entry
// r7 = *(u64 *)(r0 + 0), training/attack phase
// r8 = *(u64 *)(r0 + 8), oob address
// [...]
// r0 = pointer to a [data] map array entry
1: if r7 == 0x3 goto line 3
2: r8 = r0
// crafted sequence of conditional jumps to separate the conditional
// branch in line 193 from the current execution flow
3: if r0 != 0x0 goto line 5
4: if r0 == 0x0 goto exit
5: if r0 != 0x0 goto line 7
6: if r0 == 0x0 goto exit
[...]
187: if r0 != 0x0 goto line 189
188: if r0 == 0x0 goto exit
// load any slowly-loaded value (due to cache miss in phase 3) ...
189: r3 = *(u64 *)(r0 + 0x1200)
// ... and turn it into known zero for verifier, while preserving slowly-
// loaded dependency when executing:
190: r3 &= 1
191: r3 &= 2
// speculatively bypassed phase dependency
192: r7 += r3
193: if r7 == 0x3 goto exit
194: r4 = *(u8 *)(r8 + 0)
// leak r4
As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.
One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.
The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.
An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.
The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.
Fixes:
|
||
Yinjun Zhang
|
24cb8bb7f6 |
bpf, offload: Reorder offload callback 'prepare' in verifier
[ Upstream commit ceb11679d9fcf3fdb358a310a38760fcbe9b63ed ] Commit |
||
Daniel Borkmann
|
27acfd11ba |
bpf: No need to simulate speculative domain for immediates
commit a7036191277f9fa68d92f2071ddc38c09b1e5ee5 upstream. In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under speculation") we replaced masking logic with direct loads of immediates if the register is a known constant. Given in this case we do not apply any masking, there is also no reason for the operation to be truncated under the speculative domain. Therefore, there is also zero reason for the verifier to branch-off and simulate this case, it only needs to do it for unknown but bounded scalars. As a side-effect, this also enables few test cases that were previously rejected due to simulation under zero truncation. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
c87ef240a8 |
bpf: Fix mask direction swap upon off reg sign change
commit bb01a1bba579b4b1c5566af24d95f1767859771e upstream. Masking direction as indicated via mask_to_left is considered to be calculated once and then used to derive pointer limits. Thus, this needs to be placed into bpf_sanitize_info instead so we can pass it to sanitize_ptr_alu() call after the pointer move. Piotr noticed a corner case where the off reg causes masking direction change which then results in an incorrect final aux->alu_limit. Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
4e2c7b2974 |
bpf: Wrap aux data inside bpf_sanitize_info container
commit 3d0220f6861d713213b015b582e9f21e5b28d2e0 upstream. Add a container structure struct bpf_sanitize_info which holds the current aux info, and update call-sites to sanitize_ptr_alu() to pass it in. This is needed for passing in additional state later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
282bfc8848 |
bpf: Fix alu32 const subreg bound tracking on bitwise operations
commit 049c4e13714ecbca567b4d5f6d563f05d431c80e upstream. Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: |
||
Daniel Borkmann
|
4394be0a18 |
bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ] Similarly as |
||
Daniel Borkmann
|
2fa15d61e4 |
bpf: Fix leakage of uninitialized bpf stack under speculation
commit 801c6058d14a82179a7ee17a4b532cac6fad067f upstream. The current implemented mechanisms to mitigate data disclosure under speculation mainly address stack and map value oob access from the speculative domain. However, Piotr discovered that uninitialized BPF stack is not protected yet, and thus old data from the kernel stack, potentially including addresses of kernel structures, could still be extracted from that 512 bytes large window. The BPF stack is special compared to map values since it's not zero initialized for every program invocation, whereas map values /are/ zero initialized upon their initial allocation and thus cannot leak any prior data in either domain. In the non-speculative domain, the verifier ensures that every stack slot read must have a prior stack slot write by the BPF program to avoid such data leaking issue. However, this is not enough: for example, when the pointer arithmetic operation moves the stack pointer from the last valid stack offset to the first valid offset, the sanitation logic allows for any intermediate offsets during speculative execution, which could then be used to extract any restricted stack content via side-channel. Given for unprivileged stack pointer arithmetic the use of unknown but bounded scalars is generally forbidden, we can simply turn the register-based arithmetic operation into an immediate-based arithmetic operation without the need for masking. This also gives the benefit of reducing the needed instructions for the operation. Given after the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask"), the aux->alu_limit already holds the final immediate value for the offset register with the known scalar. Thus, a simple mov of the immediate to AX register with using AX as the source for the original instruction is sufficient and possible now in this case. Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
2cfa537674 |
bpf: Fix masking negation logic upon negative dst register
commit b9b34ddbe2076ade359cd5ce7537d5ed019e9807 upstream.
The negation logic for the case where the off_reg is sitting in the
dst register is not correct given then we cannot just invert the add
to a sub or vice versa. As a fix, perform the final bitwise and-op
unconditionally into AX from the off_reg, then move the pointer from
the src to dst and finally use AX as the source for the original
pointer arithmetic operation such that the inversion yields a correct
result. The single non-AX mov in between is possible given constant
blinding is retaining it as it's not an immediate based operation.
Fixes:
|
||
Daniel Borkmann
|
b642e493a9 |
bpf: Tighten speculative pointer arithmetic mask
[ Upstream commit 7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0 ] This work tightens the offset mask we use for unprivileged pointer arithmetic in order to mitigate a corner case reported by Piotr and Benedict where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of-bounds in order to leak kernel memory via side-channel to user space. Before this change, the computed ptr_limit for retrieve_ptr_limit() helper represents largest valid distance when moving pointer to the right or left which is then fed as aux->alu_limit to generate masking instructions against the offset register. After the change, the derived aux->alu_limit represents the largest potential value of the offset register which we mask against which is just a narrower subset of the former limit. For minimal complexity, we call sanitize_ptr_alu() from 2 observation points in adjust_ptr_min_max_vals(), that is, before and after the simulated alu operation. In the first step, we retieve the alu_state and alu_limit before the operation as well as we branch-off a verifier path and push it to the verification stack as we did before which checks the dst_reg under truncation, in other words, when the speculative domain would attempt to move the pointer out-of-bounds. In the second step, we retrieve the new alu_limit and calculate the absolute distance between both. Moreover, we commit the alu_state and final alu_limit via update_alu_sanitation_state() to the env's instruction aux data, and bail out from there if there is a mismatch due to coming from different verification paths with different states. Reported-by: Piotr Krysiuk <piotras@gmail.com> Reported-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
2982ea926b |
bpf: Refactor and streamline bounds check into helper
[ Upstream commit 073815b756c51ba9d8384d924c5d1c03ca3d1ae4 ] Move the bounds check in adjust_ptr_min_max_vals() into a small helper named sanitize_check_bounds() in order to simplify the former a bit. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Andrei Matei
|
f3c4b01689 |
bpf: Allow variable-offset stack access
[ Upstream commit 01f810ace9ed37255f27608a0864abebccf0aab3 ] Before this patch, variable offset access to the stack was dissalowed for regular instructions, but was allowed for "indirect" accesses (i.e. helpers). This patch removes the restriction, allowing reading and writing to the stack through stack pointers with variable offsets. This makes stack-allocated buffers more usable in programs, and brings stack pointers closer to other types of pointers. The motivation is being able to use stack-allocated buffers for data manipulation. When the stack size limit is sufficient, allocating buffers on the stack is simpler than per-cpu arrays, or other alternatives. In unpriviledged programs, variable-offset reads and writes are disallowed (they were already disallowed for the indirect access case) because the speculative execution checking code doesn't support them. Additionally, when writing through a variable-offset stack pointer, if any pointers are in the accessible range, there's possilibities of later leaking pointers because the write cannot be tracked precisely. Writes with variable offset mark the whole range as initialized, even though we don't know which stack slots are actually written. This is in order to not reject future reads to these slots. Note that this doesn't affect writes done through helpers; like before, helpers need the whole stack range to be initialized to begin with. All the stack slots are in range are considered scalars after the write; variable-offset register spills are not tracked. For reads, all the stack slots in the variable range needs to be initialized (but see above about what writes do), otherwise the read is rejected. All register spilled in stack slots that might be read are marked as having been read, however reads through such pointers don't do register filling; the target register will always be either a scalar or a constant zero. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Yonghong Song
|
f79efcb007 |
bpf: Permits pointers on stack for helper calls
[ Upstream commit cd17d38f8b28f808c368121041c0a4fa91757e0d ] Currently, when checking stack memory accessed by helper calls, for spills, only PTR_TO_BTF_ID and SCALAR_VALUE are allowed. Song discovered an issue where the below bpf program int dump_task(struct bpf_iter__task *ctx) { struct seq_file *seq = ctx->meta->seq; static char[] info = "abc"; BPF_SEQ_PRINTF(seq, "%s\n", info); return 0; } may cause a verifier failure. The verifier output looks like: ; struct seq_file *seq = ctx->meta->seq; 1: (79) r1 = *(u64 *)(r1 +0) ; BPF_SEQ_PRINTF(seq, "%s\n", info); 2: (18) r2 = 0xffff9054400f6000 4: (7b) *(u64 *)(r10 -8) = r2 5: (bf) r4 = r10 ; 6: (07) r4 += -8 ; BPF_SEQ_PRINTF(seq, "%s\n", info); 7: (18) r2 = 0xffff9054400fe000 9: (b4) w3 = 4 10: (b4) w5 = 8 11: (85) call bpf_seq_printf#126 R1_w=ptr_seq_file(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=4,imm=0) R3_w=inv4 R4_w=fp-8 R5_w=inv8 R10=fp0 fp-8_w=map_value last_idx 11 first_idx 0 regs=8 stack=0 before 10: (b4) w5 = 8 regs=8 stack=0 before 9: (b4) w3 = 4 invalid indirect read from stack off -8+0 size 8 Basically, the verifier complains the map_value pointer at "fp-8" location. To fix the issue, if env->allow_ptr_leaks is true, let us also permit pointers on the stack to be accessible by the helper. Reported-by: Song Liu <songliubraving@fb.com> Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20201210013349.943719-1-yhs@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
fbe6603e7c |
bpf: Move sanitize_val_alu out of op switch
commit f528819334881fd622fdadeddb3f7edaed8b7c9b upstream. Add a small sanitize_needed() helper function and move sanitize_val_alu() out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu() as well out of its opcode switch so this helps to streamline both. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
7723d32438 |
bpf: Improve verifier error messages for users
commit a6aaece00a57fa6f22575364b3903dfbccf5345d upstream. Consolidate all error handling and provide more user-friendly error messages from sanitize_ptr_alu() and sanitize_val_alu(). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
55565c3079 |
bpf: Rework ptr_limit into alu_limit and add common error path
commit b658bbb844e28f1862867f37e8ca11a8e2aa94a3 upstream. Small refactor with no semantic changes in order to consolidate the max ptr_limit boundary check. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
480d875f12 |
bpf: Move off_reg into sanitize_ptr_alu
[ Upstream commit 6f55b2f2a1178856c19bbce2f71449926e731914 ] Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can use off_reg for generalizing some of the checks for all pointer types. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
589fd9684d |
bpf: Ensure off_reg has no mixed signed bounds for all types
[ Upstream commit 24c109bb1537c12c02aeed2d51a347b4d6a9b76e ]
The mixed signed bounds check really belongs into retrieve_ptr_limit()
instead of outside of it in adjust_ptr_min_max_vals(). The reason is
that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer
types that we handle in retrieve_ptr_limit() and given errors from the latter
propagate back to adjust_ptr_min_max_vals() and lead to rejection of the
program, it's a better place to reside to avoid anything slipping through
for future types. The reason why we must reject such off_reg is that we
otherwise would not be able to derive a mask, see details in
|
||
Daniel Borkmann
|
4f3ff11204 |
bpf: Use correct permission flag for mixed signed bounds arithmetic
[ Upstream commit 9601148392520e2e134936e76788fc2a6371e7be ]
We forbid adding unknown scalars with mixed signed bounds due to the
spectre v1 masking mitigation. Hence this also needs bypass_spec_v1
flag instead of allow_ptr_leaks.
Fixes:
|
||
Toke Høiland-Jørgensen
|
b7004ecafa |
bpf: Enforce that struct_ops programs be GPL-only
commit 12aa8a9467b354ef893ce0fc5719a4de4949a9fb upstream.
With the introduction of the struct_ops program type, it became possible to
implement kernel functionality in BPF, making it viable to use BPF in place
of a regular kernel module for these particular operations.
Thus far, the only user of this mechanism is for implementing TCP
congestion control algorithms. These are clearly marked as GPL-only when
implemented as modules (as seen by the use of EXPORT_SYMBOL_GPL for
tcp_register_congestion_control()), so it seems like an oversight that this
was not carried over to BPF implementations. Since this is the only user
of the struct_ops mechanism, just enforcing GPL-only for the struct_ops
program type seems like the simplest way to fix this.
Fixes:
|
||
Piotr Krysiuk
|
1010f17aaa |
bpf: Add sanity check for upper ptr_limit
commit 1b1597e64e1a610c7a96710fc4717158e98a08b3 upstream. Given we know the max possible value of ptr_limit at the time of retrieving the latter, add basic assertions, so that the verifier can bail out if anything looks odd and reject the program. Nothing triggered this so far, but it also does not hurt to have these. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Piotr Krysiuk
|
6a3504bf40 |
bpf: Simplify alu_limit masking for pointer arithmetic
commit b5871dca250cd391885218b99cc015aca1a51aea upstream. Instead of having the mov32 with aux->alu_limit - 1 immediate, move this operation to retrieve_ptr_limit() instead to simplify the logic and to allow for subsequent sanity boundary checks inside retrieve_ptr_limit(). This avoids in future that at the time of the verifier masking rewrite we'd run into an underflow which would not sign extend due to the nature of mov32 instruction. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Piotr Krysiuk
|
ac1b87a18c |
bpf: Fix off-by-one for area size in creating mask to left
commit 10d2bb2e6b1d8c4576c56a748f697dbeb8388899 upstream.
retrieve_ptr_limit() computes the ptr_limit for registers with stack and
map_value type. ptr_limit is the size of the memory area that is still
valid / in-bounds from the point of the current position and direction
of the operation (add / sub). This size will later be used for masking
the operation such that attempting out-of-bounds access in the speculative
domain is redirected to remain within the bounds of the current map value.
When masking to the right the size is correct, however, when masking to
the left, the size is off-by-one which would lead to an incorrect mask
and thus incorrect arithmetic operation in the non-speculative domain.
Piotr found that if the resulting alu_limit value is zero, then the
BPF_MOV32_IMM() from the fixup_bpf_calls() rewrite will end up loading
0xffffffff into AX instead of sign-extending to the full 64 bit range,
and as a result, this allows abuse for executing speculatively out-of-
bounds loads against 4GB window of address space and thus extracting the
contents of kernel memory via side-channel.
Fixes:
|
||
Piotr Krysiuk
|
c4d37eea1c |
bpf: Prohibit alu ops for pointer types not defining ptr_limit
commit f232326f6966cf2a1d1db7bc917a4ce5f9f55f76 upstream. The purpose of this patch is to streamline error propagation and in particular to propagate retrieve_ptr_limit() errors for pointer types that are not defining a ptr_limit such that register-based alu ops against these types can be rejected. The main rationale is that a gap has been identified by Piotr in the existing protection against speculatively out-of-bounds loads, for example, in case of ctx pointers, unprivileged programs can still perform pointer arithmetic. This can be abused to execute speculatively out-of-bounds loads without restrictions and thus extract contents of kernel memory. Fix this by rejecting unprivileged programs that attempt any pointer arithmetic on unprotected pointer types. The two affected ones are pointer to ctx as well as pointer to map. Field access to a modified ctx' pointer is rejected at a later point in time in the verifier, and |
||
Ilya Leoshkevich
|
f4a5c7ff2a |
bpf: Clear subreg_def for global function return values
[ Upstream commit 45159b27637b0fef6d5ddb86fc7c46b13c77960f ]
test_global_func4 fails on s390 as reported by Yauheni in [1].
The immediate problem is that the zext code includes the instruction,
whose result needs to be zero-extended, into the zero-extension
patchlet, and if this instruction happens to be a branch, then its
delta is not adjusted. As a result, the verifier rejects the program
later.
However, according to [2], as far as the verifier's algorithm is
concerned and as specified by the insn_no_def() function, branching
insns do not define anything. This includes call insns, even though
one might argue that they define %r0.
This means that the real problem is that zero extension kicks in at
all. This happens because clear_caller_saved_regs() sets BPF_REG_0's
subreg_def after global function calls. This can be fixed in many
ways; this patch mimics what helper function call handling already
does.
[1] https://lore.kernel.org/bpf/20200903140542.156624-1-yauheni.kaliuta@redhat.com/
[2] https://lore.kernel.org/bpf/CAADnVQ+2RPKcftZw8d+B1UwB35cpBhpF5u3OocNh90D9pETPwg@mail.gmail.com/
Fixes:
|