[ Upstream commit 31379397dcc364a59ce764fabb131b645c43e340 ]
We can't currently allow to attach functions with variable arguments.
The problem is that we should save all the registers for arguments,
which is probably doable, but if caller uses more than 6 arguments,
we need stack data, which will be wrong, because of the extra stack
frame we do in bpf trampoline, so we could crash.
Also currently there's malformed trampoline code generated for such
functions at the moment as described in:
https://lore.kernel.org/bpf/20210429212834.82621-1-jolsa@kernel.org/
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210505132529.401047-1-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ff40e51043af63715ab413995ff46996ecf9583f ]
Commit 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b4647 to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b4647 where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:
I starting seeing this with F-34. When I run a container that is traced with
BPF to record the syscalls it is doing, auditd is flooded with messages like:
type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality }
for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
tclass=lockdown permissive=0
This seems to be leading to auditd running out of space in the backlog buffer
and eventually OOMs the machine.
[...]
auditd running at 99% CPU presumably processing all the messages, eventually I get:
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
[...]
[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
Serhei Makarov says:
Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
ppc64le. Example stack trace:
[...]
[ 730.868702] stack backtrace:
[ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
[ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[ 730.873278] Call Trace:
[ 730.873770] dump_stack+0x7f/0xa1
[ 730.874433] check_noncircular+0xdf/0x100
[ 730.875232] __lock_acquire+0x1202/0x1e10
[ 730.876031] ? __lock_acquire+0xfc0/0x1e10
[ 730.876844] lock_acquire+0xc2/0x3a0
[ 730.877551] ? __wake_up_common_lock+0x52/0x90
[ 730.878434] ? lock_acquire+0xc2/0x3a0
[ 730.879186] ? lock_is_held_type+0xa7/0x120
[ 730.880044] ? skb_queue_tail+0x1b/0x50
[ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90
[ 730.881656] ? __wake_up_common_lock+0x52/0x90
[ 730.882532] __wake_up_common_lock+0x52/0x90
[ 730.883375] audit_log_end+0x5b/0x100
[ 730.884104] slow_avc_audit+0x69/0x90
[ 730.884836] avc_has_perm+0x8b/0xb0
[ 730.885532] selinux_lockdown+0xa5/0xd0
[ 730.886297] security_locked_down+0x20/0x40
[ 730.887133] bpf_probe_read_compat+0x66/0xd0
[ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820
[ 730.888917] trace_call_bpf+0xe9/0x240
[ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0
[ 730.890579] perf_trace_sched_switch+0x142/0x180
[ 730.891485] ? __schedule+0x6d8/0xb20
[ 730.892209] __schedule+0x6d8/0xb20
[ 730.892899] schedule+0x5b/0xc0
[ 730.893522] exit_to_user_mode_prepare+0x11d/0x240
[ 730.894457] syscall_exit_to_user_mode+0x27/0x70
[ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Fixes: 59438b4647 ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 61ca36c8c4eb3bae35a285b1ae18c514cde65439 ]
!perfmon_capable() is checked before the last switch(func_id) in
bpf_base_func_proto. Thus, the cases BPF_FUNC_trace_printk and
BPF_FUNC_snprintf_btf can be moved to that last switch(func_id) to omit
the inline !perfmon_capable() checks.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210127174615.3038-1-tklauser@distanz.ch
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ceb11679d9fcf3fdb358a310a38760fcbe9b63ed ]
Commit 4976b718c3 ("bpf: Introduce pseudo_btf_id") switched the
order of resolve_pseudo_ldimm(), in which some pseudo instructions
are rewritten. Thus those rewritten instructions cannot be passed
to driver via 'prepare' offload callback.
Reorder the 'prepare' offload callback to fix it.
Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a7036191277f9fa68d92f2071ddc38c09b1e5ee5 upstream.
In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under
speculation") we replaced masking logic with direct loads of immediates
if the register is a known constant. Given in this case we do not apply
any masking, there is also no reason for the operation to be truncated
under the speculative domain.
Therefore, there is also zero reason for the verifier to branch-off and
simulate this case, it only needs to do it for unknown but bounded scalars.
As a side-effect, this also enables few test cases that were previously
rejected due to simulation under zero truncation.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bb01a1bba579b4b1c5566af24d95f1767859771e upstream.
Masking direction as indicated via mask_to_left is considered to be
calculated once and then used to derive pointer limits. Thus, this
needs to be placed into bpf_sanitize_info instead so we can pass it
to sanitize_ptr_alu() call after the pointer move. Piotr noticed a
corner case where the off reg causes masking direction change which
then results in an incorrect final aux->alu_limit.
Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask")
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3d0220f6861d713213b015b582e9f21e5b28d2e0 upstream.
Add a container structure struct bpf_sanitize_info which holds
the current aux info, and update call-sites to sanitize_ptr_alu()
to pass it in. This is needed for passing in additional state
later on.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 04ea3086c4d73da7009de1e84962a904139af219 upstream.
Only the very first page of BPF ringbuf that contains consumer position
counter is supposed to be mapped as writeable by user-space. Producer
position is read-only and can be modified only by the kernel code. BPF ringbuf
data pages are read-only as well and are not meant to be modified by
user-code to maintain integrity of per-record headers.
This patch allows to map only consumer position page as writeable and
everything else is restricted to be read-only. remap_vmalloc_range()
internally adds VM_DONTEXPAND, so all the established memory mappings can't be
extended, which prevents any future violations through mremap()'ing.
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Ryota Shiga (Flatt Security)
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4b81ccebaeee885ab1aa1438133f2991e3a2b6ea upstream.
A BPF program might try to reserve a buffer larger than the ringbuf size.
If the consumer pointer is way ahead of the producer, that would be
successfully reserved, allowing the BPF program to read or write out of
the ringbuf allocated area.
Reported-by: Ryota Shiga (Flatt Security)
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 049c4e13714ecbca567b4d5f6d563f05d431c80e upstream.
Fix a bug in the verifier's scalar32_min_max_*() functions which leads to
incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops.
When both the src & dst subreg is a known constant, then the assumption is
that scalar_min_max_*() will take care to update bounds correctly. However,
this is not the case, for example, consider a register R2 which has a tnum
of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this
case of value 0x00000001. R2 is then and'ed with a register R3 which is a
64 bit known constant, here, 0x100000002.
What can be seen in line '10:' is that 32 bit bounds reach an invalid state
where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*()
delegates 32 bit bounds updates to scalar_min_max_*(), however, that really
only takes place when both the 64 bit src & dst register is a known constant.
Given scalar32_min_max_*() is intended to be designed as closely as possible
to scalar_min_max_*(), update the 32 bit bounds in this situation through
__mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct
constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in
32 bit space). This is possible given var32_off already holds the final value
as dst_reg->var_off is updated before calling scalar32_min_max_*().
Before fix, invalid tracking of R2:
[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]
After fix, correct tracking of R2:
[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Fixes: 2921c90d47 ("bpf: Fix a verifier failure with xor")
Reported-by: Manfred Paul (@_manfp)
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ]
Similarly as b02709587e ("bpf: Fix propagation of 32-bit signed bounds
from 64-bit bounds."), we also need to fix the propagation of 32 bit
unsigned bounds from 64 bit counterparts. That is, really only set the
u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit
space. For example, the register with a umin_value == 1 does /not/ imply
that u32_min_value is also equal to 1, since umax_value could be much
larger than 32 bit subregister can hold, and thus u32_min_value is in
the interval [0,1] instead.
Before fix, invalid tracking result of R2_w=inv1:
[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0
[...]
After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)):
[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0
[...]
Thus, same issue as in b02709587e holds for unsigned subregister tracking.
Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in
b02709587e to make them uniform again.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Manfred Paul (@_manfp)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 801c6058d14a82179a7ee17a4b532cac6fad067f upstream.
The current implemented mechanisms to mitigate data disclosure under
speculation mainly address stack and map value oob access from the
speculative domain. However, Piotr discovered that uninitialized BPF
stack is not protected yet, and thus old data from the kernel stack,
potentially including addresses of kernel structures, could still be
extracted from that 512 bytes large window. The BPF stack is special
compared to map values since it's not zero initialized for every
program invocation, whereas map values /are/ zero initialized upon
their initial allocation and thus cannot leak any prior data in either
domain. In the non-speculative domain, the verifier ensures that every
stack slot read must have a prior stack slot write by the BPF program
to avoid such data leaking issue.
However, this is not enough: for example, when the pointer arithmetic
operation moves the stack pointer from the last valid stack offset to
the first valid offset, the sanitation logic allows for any intermediate
offsets during speculative execution, which could then be used to
extract any restricted stack content via side-channel.
Given for unprivileged stack pointer arithmetic the use of unknown
but bounded scalars is generally forbidden, we can simply turn the
register-based arithmetic operation into an immediate-based arithmetic
operation without the need for masking. This also gives the benefit
of reducing the needed instructions for the operation. Given after
the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic
mask"), the aux->alu_limit already holds the final immediate value for
the offset register with the known scalar. Thus, a simple mov of the
immediate to AX register with using AX as the source for the original
instruction is sufficient and possible now in this case.
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b9b34ddbe2076ade359cd5ce7537d5ed019e9807 upstream.
The negation logic for the case where the off_reg is sitting in the
dst register is not correct given then we cannot just invert the add
to a sub or vice versa. As a fix, perform the final bitwise and-op
unconditionally into AX from the off_reg, then move the pointer from
the src to dst and finally use AX as the source for the original
pointer arithmetic operation such that the inversion yields a correct
result. The single non-AX mov in between is possible given constant
blinding is retaining it as it's not an immediate based operation.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0 ]
This work tightens the offset mask we use for unprivileged pointer arithmetic
in order to mitigate a corner case reported by Piotr and Benedict where in
the speculative domain it is possible to advance, for example, the map value
pointer by up to value_size-1 out-of-bounds in order to leak kernel memory
via side-channel to user space.
Before this change, the computed ptr_limit for retrieve_ptr_limit() helper
represents largest valid distance when moving pointer to the right or left
which is then fed as aux->alu_limit to generate masking instructions against
the offset register. After the change, the derived aux->alu_limit represents
the largest potential value of the offset register which we mask against which
is just a narrower subset of the former limit.
For minimal complexity, we call sanitize_ptr_alu() from 2 observation points
in adjust_ptr_min_max_vals(), that is, before and after the simulated alu
operation. In the first step, we retieve the alu_state and alu_limit before
the operation as well as we branch-off a verifier path and push it to the
verification stack as we did before which checks the dst_reg under truncation,
in other words, when the speculative domain would attempt to move the pointer
out-of-bounds.
In the second step, we retrieve the new alu_limit and calculate the absolute
distance between both. Moreover, we commit the alu_state and final alu_limit
via update_alu_sanitation_state() to the env's instruction aux data, and bail
out from there if there is a mismatch due to coming from different verification
paths with different states.
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 073815b756c51ba9d8384d924c5d1c03ca3d1ae4 ]
Move the bounds check in adjust_ptr_min_max_vals() into a small helper named
sanitize_check_bounds() in order to simplify the former a bit.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 01f810ace9ed37255f27608a0864abebccf0aab3 ]
Before this patch, variable offset access to the stack was dissalowed
for regular instructions, but was allowed for "indirect" accesses (i.e.
helpers). This patch removes the restriction, allowing reading and
writing to the stack through stack pointers with variable offsets. This
makes stack-allocated buffers more usable in programs, and brings stack
pointers closer to other types of pointers.
The motivation is being able to use stack-allocated buffers for data
manipulation. When the stack size limit is sufficient, allocating
buffers on the stack is simpler than per-cpu arrays, or other
alternatives.
In unpriviledged programs, variable-offset reads and writes are
disallowed (they were already disallowed for the indirect access case)
because the speculative execution checking code doesn't support them.
Additionally, when writing through a variable-offset stack pointer, if
any pointers are in the accessible range, there's possilibities of later
leaking pointers because the write cannot be tracked precisely.
Writes with variable offset mark the whole range as initialized, even
though we don't know which stack slots are actually written. This is in
order to not reject future reads to these slots. Note that this doesn't
affect writes done through helpers; like before, helpers need the whole
stack range to be initialized to begin with.
All the stack slots are in range are considered scalars after the write;
variable-offset register spills are not tracked.
For reads, all the stack slots in the variable range needs to be
initialized (but see above about what writes do), otherwise the read is
rejected. All register spilled in stack slots that might be read are
marked as having been read, however reads through such pointers don't do
register filling; the target register will always be either a scalar or
a constant zero.
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f528819334881fd622fdadeddb3f7edaed8b7c9b upstream.
Add a small sanitize_needed() helper function and move sanitize_val_alu()
out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu()
as well out of its opcode switch so this helps to streamline both.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a6aaece00a57fa6f22575364b3903dfbccf5345d upstream.
Consolidate all error handling and provide more user-friendly error messages
from sanitize_ptr_alu() and sanitize_val_alu().
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b658bbb844e28f1862867f37e8ca11a8e2aa94a3 upstream.
Small refactor with no semantic changes in order to consolidate the max
ptr_limit boundary check.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6f55b2f2a1178856c19bbce2f71449926e731914 ]
Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can
use off_reg for generalizing some of the checks for all pointer types.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 24c109bb1537c12c02aeed2d51a347b4d6a9b76e ]
The mixed signed bounds check really belongs into retrieve_ptr_limit()
instead of outside of it in adjust_ptr_min_max_vals(). The reason is
that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer
types that we handle in retrieve_ptr_limit() and given errors from the latter
propagate back to adjust_ptr_min_max_vals() and lead to rejection of the
program, it's a better place to reside to avoid anything slipping through
for future types. The reason why we must reject such off_reg is that we
otherwise would not be able to derive a mask, see details in 9d7eceede7
("bpf: restrict unknown scalars of mixed signed bounds for unprivileged").
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9601148392520e2e134936e76788fc2a6371e7be ]
We forbid adding unknown scalars with mixed signed bounds due to the
spectre v1 masking mitigation. Hence this also needs bypass_spec_v1
flag instead of allow_ptr_leaks.
Fixes: 2c78ee898d ("bpf: Implement CAP_BPF")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 06ab134ce8ecfa5a69e850f88f81c8a4c3fa91df upstream.
On x86 the struct pt_regs * grabbed by task_pt_regs() points to an
offset of task->stack. The pt_regs are later dereferenced in
__bpf_get_stack (e.g. by user_mode() check). This can cause a fault if
the task in question exits while bpf_get_task_stack is executing, as
warned by task_stack_page's comment:
* When accessing the stack of a non-current task that might exit, use
* try_get_task_stack() instead. task_stack_page will return a pointer
* that could get freed out from under you.
Taking the comment's advice and using try_get_task_stack() and
put_task_stack() to hold task->stack refcount, or bail early if it's
already 0. Incrementing stack_refcount will ensure the task's stack
sticks around while we're using its data.
I noticed this bug while testing a bpf task iter similar to
bpf_iter_task_stack in selftests, except mine grabbed user stack, and
getting intermittent crashes, which resulted in dumps like:
BUG: unable to handle page fault for address: 0000000000003fe0
\#PF: supervisor read access in kernel mode
\#PF: error_code(0x0000) - not-present page
RIP: 0010:__bpf_get_stack+0xd0/0x230
<snip...>
Call Trace:
bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec
bpf_iter_run_prog+0x24/0x81
__task_seq_show+0x58/0x80
bpf_seq_read+0xf7/0x3d0
vfs_read+0x91/0x140
ksys_read+0x59/0xd0
do_syscall_64+0x48/0x120
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: fa28dcb82a ("bpf: Introduce helper bpf_get_task_stack()")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210401000747.3648767-1-davemarchevsky@fb.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 25fc94b2f02d832fa8e29419699dcc20b0b05c6a upstream.
Invoking BPF_OBJ_GET on a pinned bpf_link checks the path access
permissions based on file_flags, but the returned fd ignores flags.
This means that any user can acquire a "read-write" fd for a pinned
link with mode 0664 by invoking BPF_OBJ_GET with BPF_F_RDONLY in
file_flags. The fd can be used to invoke BPF_LINK_DETACH, etc.
Fix this by refusing non-O_RDWR flags in BPF_OBJ_GET. This works
because OBJ_GET by default returns a read write mapping and libbpf
doesn't expose a way to override this behaviour for programs
and links.
Fixes: 70ed506c3b ("bpf: Introduce pinnable bpf_link abstraction")
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210326160501.46234-1-lmb@cloudflare.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 12aa8a9467b354ef893ce0fc5719a4de4949a9fb upstream.
With the introduction of the struct_ops program type, it became possible to
implement kernel functionality in BPF, making it viable to use BPF in place
of a regular kernel module for these particular operations.
Thus far, the only user of this mechanism is for implementing TCP
congestion control algorithms. These are clearly marked as GPL-only when
implemented as modules (as seen by the use of EXPORT_SYMBOL_GPL for
tcp_register_congestion_control()), so it seems like an oversight that this
was not carried over to BPF implementations. Since this is the only user
of the struct_ops mechanism, just enforcing GPL-only for the struct_ops
program type seems like the simplest way to fix this.
Fixes: 0baf26b0fc ("bpf: tcp: Support tcp_congestion_ops in bpf")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210326100314.121853-1-toke@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e21aa341785c679dd409c8cb71f864c00fe6c463 ]
The fexit/fmod_ret programs can be attached to kernel functions that can sleep.
The synchronize_rcu_tasks() will not wait for such tasks to complete.
In such case the trampoline image will be freed and when the task
wakes up the return IP will point to freed memory causing the crash.
Solve this by adding percpu_ref_get/put for the duration of trampoline
and separate trampoline vs its image life times.
The "half page" optimization has to be removed, since
first_half->second_half->first_half transition cannot be guaranteed to
complete in deterministic time. Every trampoline update becomes a new image.
The image with fmod_ret or fexit progs will be freed via percpu_ref_kill and
call_rcu_tasks. Together they will wait for the original function and
trampoline asm to complete. The trampoline is patched from nop to jmp to skip
fexit progs. They are freed independently from the trampoline. The image with
fentry progs only will be freed via call_rcu_tasks_trace+call_rcu_tasks which
will wait for both sleepable and non-sleepable progs to complete.
Fixes: fec56f5890 ("bpf: Introduce BPF trampoline")
Reported-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Paul E. McKenney <paulmck@kernel.org> # for RCU
Link: https://lore.kernel.org/bpf/20210316210007.38949-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 769c18b254ca191b45047e1fcb3b2ce56fada0b6 ]
bpf_fd_inode_storage_lookup_elem() returned NULL when getting a bad FD,
which caused -ENOENT in bpf_map_copy_value. -EBADF error is better than
-ENOENT for a bad FD behaviour.
The patch was partially contributed by CyberArk Software, Inc.
Fixes: 8ea636848a ("bpf: Implement bpf_local_storage for inodes")
Signed-off-by: Tal Lossos <tallossos@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210307120948.61414-1-tallossos@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1b1597e64e1a610c7a96710fc4717158e98a08b3 upstream.
Given we know the max possible value of ptr_limit at the time of retrieving
the latter, add basic assertions, so that the verifier can bail out if
anything looks odd and reject the program. Nothing triggered this so far,
but it also does not hurt to have these.
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b5871dca250cd391885218b99cc015aca1a51aea upstream.
Instead of having the mov32 with aux->alu_limit - 1 immediate, move this
operation to retrieve_ptr_limit() instead to simplify the logic and to
allow for subsequent sanity boundary checks inside retrieve_ptr_limit().
This avoids in future that at the time of the verifier masking rewrite
we'd run into an underflow which would not sign extend due to the nature
of mov32 instruction.
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 10d2bb2e6b1d8c4576c56a748f697dbeb8388899 upstream.
retrieve_ptr_limit() computes the ptr_limit for registers with stack and
map_value type. ptr_limit is the size of the memory area that is still
valid / in-bounds from the point of the current position and direction
of the operation (add / sub). This size will later be used for masking
the operation such that attempting out-of-bounds access in the speculative
domain is redirected to remain within the bounds of the current map value.
When masking to the right the size is correct, however, when masking to
the left, the size is off-by-one which would lead to an incorrect mask
and thus incorrect arithmetic operation in the non-speculative domain.
Piotr found that if the resulting alu_limit value is zero, then the
BPF_MOV32_IMM() from the fixup_bpf_calls() rewrite will end up loading
0xffffffff into AX instead of sign-extending to the full 64 bit range,
and as a result, this allows abuse for executing speculatively out-of-
bounds loads against 4GB window of address space and thus extracting the
contents of kernel memory via side-channel.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f232326f6966cf2a1d1db7bc917a4ce5f9f55f76 upstream.
The purpose of this patch is to streamline error propagation and in particular
to propagate retrieve_ptr_limit() errors for pointer types that are not defining
a ptr_limit such that register-based alu ops against these types can be rejected.
The main rationale is that a gap has been identified by Piotr in the existing
protection against speculatively out-of-bounds loads, for example, in case of
ctx pointers, unprivileged programs can still perform pointer arithmetic. This
can be abused to execute speculatively out-of-bounds loads without restrictions
and thus extract contents of kernel memory.
Fix this by rejecting unprivileged programs that attempt any pointer arithmetic
on unprotected pointer types. The two affected ones are pointer to ctx as well
as pointer to map. Field access to a modified ctx' pointer is rejected at a
later point in time in the verifier, and 7c69673262 ("bpf: Permit map_ptr
arithmetic with opcode add and offset 0") only relevant for root-only use cases.
Risk of unprivileged program breakage is considered very low.
Fixes: 7c69673262 ("bpf: Permit map_ptr arithmetic with opcode add and offset 0")
Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 45159b27637b0fef6d5ddb86fc7c46b13c77960f ]
test_global_func4 fails on s390 as reported by Yauheni in [1].
The immediate problem is that the zext code includes the instruction,
whose result needs to be zero-extended, into the zero-extension
patchlet, and if this instruction happens to be a branch, then its
delta is not adjusted. As a result, the verifier rejects the program
later.
However, according to [2], as far as the verifier's algorithm is
concerned and as specified by the insn_no_def() function, branching
insns do not define anything. This includes call insns, even though
one might argue that they define %r0.
This means that the real problem is that zero extension kicks in at
all. This happens because clear_caller_saved_regs() sets BPF_REG_0's
subreg_def after global function calls. This can be fixed in many
ways; this patch mimics what helper function call handling already
does.
[1] https://lore.kernel.org/bpf/20200903140542.156624-1-yauheni.kaliuta@redhat.com/
[2] https://lore.kernel.org/bpf/CAADnVQ+2RPKcftZw8d+B1UwB35cpBhpF5u3OocNh90D9pETPwg@mail.gmail.com/
Fixes: 51c39bb1d5 ("bpf: Introduce function-by-function verification")
Reported-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210212040408.90109-1-iii@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7d4553b69fb335496c597c31590e982485ebe071 ]
The devmap bulk queue is allocated with GFP_ATOMIC and the allocation
may fail if there is no available space in existing percpu pool.
Since commit 75ccae62cb ("xdp: Move devmap bulk queue into struct net_device")
moved the bulk queue allocation to NETDEV_REGISTER callback, whose context
is allowed to sleep, use GFP_KERNEL instead of GFP_ATOMIC to let percpu
allocator extend the pool when needed and avoid possible failure of netdev
registration.
As the required alignment is natural, we can simply use alloc_percpu().
Fixes: 75ccae62cb ("xdp: Move devmap bulk queue into struct net_device")
Signed-off-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210209082451.GA44021@jeru.linux.bs1.fc.nec.co.jp
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 17d8beda277a36203585943e70c7909b60775fd5 ]
Commit 15d83c4d7c ("bpf: Allow loading of a bpf_iter program")
cached btf_id in struct bpf_iter_target_info so later on
if it can be checked cheaply compared to checking registered names.
syzbot found a bug that uninitialized value may occur to
bpf_iter_target_info->btf_id. This is because we allocated
bpf_iter_target_info structure with kmalloc and never initialized
field btf_id afterwards. This uninitialized btf_id is typically
compared to a u32 bpf program func proto btf_id, and the chance
of being equal is extremely slim.
This patch fixed the issue by using kzalloc which will also
prevent future likely instances due to adding new fields.
Fixes: 15d83c4d7c ("bpf: Allow loading of a bpf_iter program")
Reported-by: syzbot+580f4f2a272e452d55cb@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210212005926.2875002-1-yhs@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6df8fb83301d68ea0a0c0e1cbcc790fcc333ed12 ]
For double-checked locking in bpf_common_lru_push_free(), node->type is
read outside the critical section and then re-checked under the lock.
However, concurrent writes to node->type result in data races.
For example, the following concurrent access was observed by KCSAN:
write to 0xffff88801521bc22 of 1 bytes by task 10038 on cpu 1:
__bpf_lru_node_move_in kernel/bpf/bpf_lru_list.c:91
__local_list_flush kernel/bpf/bpf_lru_list.c:298
...
read to 0xffff88801521bc22 of 1 bytes by task 10043 on cpu 0:
bpf_common_lru_push_free kernel/bpf/bpf_lru_list.c:507
bpf_lru_push_free kernel/bpf/bpf_lru_list.c:555
...
Fix the data races where node->type is read outside the critical section
(for double-checked locking) by marking the access with READ_ONCE() as
well as ensuring the variable is only accessed once.
Fixes: 3a08c2fd76 ("bpf: LRU List")
Reported-by: syzbot+3536db46dfa58c573458@syzkaller.appspotmail.com
Reported-by: syzbot+516acdb03d3e27d91bcd@syzkaller.appspotmail.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210209112701.3341724-1-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9b00f1b78809309163dda2d044d9e94a3c0248a3 upstream.
Recently noticed that when mod32 with a known src reg of 0 is performed,
then the dst register is 32-bit truncated in verifier:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b7) r1 = -1
2: R0_w=inv0 R1_w=inv-1 R10=fp0
2: (b4) w2 = -1
3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0
3: (9c) w1 %= w0
4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
4: (b7) r0 = 1
5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
5: (1d) if r1 == r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
6: (b7) r0 = 2
7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
7: (95) exit
7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0
7: (95) exit
However, as a runtime result, we get 2 instead of 1, meaning the dst
register does not contain (u32)-1 in this case. The reason is fairly
straight forward given the 0 test leaves the dst register as-is:
# ./bpftool p d x i 23
0: (b7) r0 = 0
1: (b7) r1 = -1
2: (b4) w2 = -1
3: (16) if w0 == 0x0 goto pc+1
4: (9c) w1 %= w0
5: (b7) r0 = 1
6: (1d) if r1 == r2 goto pc+1
7: (b7) r0 = 2
8: (95) exit
This was originally not an issue given the dst register was marked as
completely unknown (aka 64 bit unknown). However, after 468f6eafa6
("bpf: fix 32-bit ALU op verification") the verifier casts the register
output to 32 bit, and hence it becomes 32 bit unknown. Note that for
the case where the src register is unknown, the dst register is marked
64 bit unknown. After the fix, the register is truncated by the runtime
and the test passes:
# ./bpftool p d x i 23
0: (b7) r0 = 0
1: (b7) r1 = -1
2: (b4) w2 = -1
3: (16) if w0 == 0x0 goto pc+2
4: (9c) w1 %= w0
5: (05) goto pc+1
6: (bc) w1 = w1
7: (b7) r0 = 1
8: (1d) if r1 == r2 goto pc+1
9: (b7) r0 = 2
10: (95) exit
Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div
has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows:
mod32: mod64:
(16) if w0 == 0x0 goto pc+2 (15) if r0 == 0x0 goto pc+1
(9c) w1 %= w0 (9f) r1 %= r0
(05) goto pc+1
(bc) w1 = w1
Fixes: 468f6eafa6 ("bpf: fix 32-bit ALU op verification")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6183f4d3a0a2ad230511987c6c362ca43ec0055f ]
On 32-bit architecture, roundup_pow_of_two() can return 0 when the argument
has upper most bit set due to resulting 1UL << 32. Add a check for this case.
Fixes: d5a3b1f691 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210127063653.3576-1-minhquangbui99@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ee114dd64c0071500345439fc79dd5e0f9d106ed upstream.
Fix incorrect is_branch{32,64}_taken() analysis for the jsgt case. The return
code for both will tell the caller whether a given conditional jump is taken
or not, e.g. 1 means branch will be taken [for the involved registers] and the
goto target will be executed, 0 means branch will not be taken and instead we
fall-through to the next insn, and last but not least a -1 denotes that it is
not known at verification time whether a branch will be taken or not. Now while
the jsgt has the branch-taken case correct with reg->s32_min_value > sval, the
branch-not-taken case is off-by-one when testing for reg->s32_max_value < sval
since the branch will also be taken for reg->s32_max_value == sval. The jgt
branch analysis, for example, gets this right.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Fixes: 4f7b3e8258 ("bpf: improve verifier branch analysis")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e88b2c6e5a4d9ce30d75391e4d950da74bb2bd90 upstream.
While reviewing a different fix, John and I noticed an oddity in one of the
BPF program dumps that stood out, for example:
# bpftool p d x i 13
0: (b7) r0 = 808464450
1: (b4) w4 = 808464432
2: (bc) w0 = w0
3: (15) if r0 == 0x0 goto pc+1
4: (9c) w4 %= w0
[...]
In line 2 we noticed that the mov32 would 32 bit truncate the original src
register for the div/mod operation. While for the two operations the dst
register is typically marked unknown e.g. from adjust_scalar_min_max_vals()
the src register is not, and thus verifier keeps tracking original bounds,
simplified:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = -1
1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b7) r1 = -1
2: R0_w=invP-1 R1_w=invP-1 R10=fp0
2: (3c) w0 /= w1
3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0
3: (77) r1 >>= 32
4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0
4: (bf) r0 = r1
5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0
5: (95) exit
processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0
Runtime result of r0 at exit is 0 instead of expected -1. Remove the
verifier mov32 src rewrite in div/mod and replace it with a jmp32 test
instead. After the fix, we result in the following code generation when
having dividend r1 and divisor r6:
div, 64 bit: div, 32 bit:
0: (b7) r6 = 8 0: (b7) r6 = 8
1: (b7) r1 = 8 1: (b7) r1 = 8
2: (55) if r6 != 0x0 goto pc+2 2: (56) if w6 != 0x0 goto pc+2
3: (ac) w1 ^= w1 3: (ac) w1 ^= w1
4: (05) goto pc+1 4: (05) goto pc+1
5: (3f) r1 /= r6 5: (3c) w1 /= w6
6: (b7) r0 = 0 6: (b7) r0 = 0
7: (95) exit 7: (95) exit
mod, 64 bit: mod, 32 bit:
0: (b7) r6 = 8 0: (b7) r6 = 8
1: (b7) r1 = 8 1: (b7) r1 = 8
2: (15) if r6 == 0x0 goto pc+1 2: (16) if w6 == 0x0 goto pc+1
3: (9f) r1 %= r6 3: (9c) w1 %= w6
4: (b7) r0 = 0 4: (b7) r0 = 0
5: (95) exit 5: (95) exit
x86 in particular can throw a 'divide error' exception for div
instruction not only for divisor being zero, but also for the case
when the quotient is too large for the designated register. For the
edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT
since we always zero edx (rdx). Hence really the only protection
needed is against divisor being zero.
Fixes: 68fda450a7 ("bpf: fix 32-bit divide by zero")
Co-developed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fd675184fc7abfd1e1c52d23e8e900676b5a1c1a upstream.
Anatoly has been fuzzing with kBdysch harness and reported a hang in
one of the outcomes:
func#0 @0
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 808464450
1: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b4) w4 = 808464432
2: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP808464432 R10=fp0
2: (9c) w4 %= w0
3: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0
3: (66) if w4 s> 0x30303030 goto pc+0
R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
4: (7f) r0 >>= r0
5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
5: (9c) w4 %= w0
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
9: (95) exit
propagating r0
from 6 to 7: safe
4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0
4: (7f) r0 >>= r0
5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0
5: (9c) w4 %= w0
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
propagating r0
7: safe
propagating r0
from 6 to 7: safe
processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1
The underlying program was xlated as follows:
# bpftool p d x i 10
0: (b7) r0 = 808464450
1: (b4) w4 = 808464432
2: (bc) w0 = w0
3: (15) if r0 == 0x0 goto pc+1
4: (9c) w4 %= w0
5: (66) if w4 s> 0x30303030 goto pc+0
6: (7f) r0 >>= r0
7: (bc) w0 = w0
8: (15) if r0 == 0x0 goto pc+1
9: (9c) w4 %= w0
10: (66) if w0 s> 0x3030 goto pc+0
11: (d6) if w0 s<= 0x303030 goto pc+1
12: (05) goto pc-1
13: (95) exit
The verifier rewrote original instructions it recognized as dead code with
'goto pc-1', but reality differs from verifier simulation in that we are
actually able to trigger a hang due to hitting the 'goto pc-1' instructions.
Taking a closer look at the verifier analysis, the reason is that it misjudges
its pruning decision at the first 'from 6 to 7: safe' occasion. What happens
is that while both old/cur registers are marked as precise, they get misjudged
for the jmp32 case as range_within() yields true, meaning that the prior
verification path with a wider register bound could be verified successfully
and therefore the current path with a narrower register bound is deemed safe
as well whereas in reality it's not. R0 old/cur path's bounds compare as
follows:
old: smin_value=0x8000000000000000,smax_value=0x7fffffffffffffff,umin_value=0x0,umax_value=0xffffffffffffffff,var_off=(0x0; 0xffffffffffffffff)
cur: smin_value=0x8000000000000000,smax_value=0x7fffffff7fffffff,umin_value=0x0,umax_value=0xffffffff7fffffff,var_off=(0x0; 0xffffffff7fffffff)
old: s32_min_value=0x80000000,s32_max_value=0x00003030,u32_min_value=0x00000000,u32_max_value=0xffffffff
cur: s32_min_value=0x00003031,s32_max_value=0x7fffffff,u32_min_value=0x00003031,u32_max_value=0x7fffffff
The 64 bit bounds generally look okay and while the information that got
propagated from 32 to 64 bit looks correct as well, it's not precise enough
for judging a conditional jmp32. Given the latter only operates on subregisters
we also need to take these into account as well for a range_within() probe
in order to be able to prune paths. Extending the range_within() constraint
to both bounds will be able to tell us that the old signed 32 bit bounds are
not wider than the cur signed 32 bit bounds.
With the fix in place, the program will now verify the 'goto' branch case as
it should have been:
[...]
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
9: (95) exit
7: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=12337,u32_min_value=12337,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
8: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
8: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 11 insns (limit 1000000) max_states_per_insn 1 total_states 1 peak_states 1 mark_read 1
The bug is quite subtle in the sense that when verifier would determine that
a given branch is dead code, it would (here: wrongly) remove these instructions
from the program and hard-wire the taken branch for privileged programs instead
of the 'goto pc-1' rewrites which will cause hard to debug problems.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 150a27328b681425c8cab239894a48f2aeb870e9 ]
Building the kernel with CONFIG_BPF_PRELOAD, and by providing a relative
path for the output directory, may fail with the following error:
$ make O=build bindeb-pkg
...
/.../linux/tools/scripts/Makefile.include:5: *** O=build does not exist. Stop.
make[7]: *** [/.../linux/kernel/bpf/preload/Makefile:9: kernel/bpf/preload/libbpf.a] Error 2
make[6]: *** [/.../linux/scripts/Makefile.build:500: kernel/bpf/preload] Error 2
make[5]: *** [/.../linux/scripts/Makefile.build:500: kernel/bpf] Error 2
make[4]: *** [/.../linux/Makefile:1799: kernel] Error 2
make[4]: *** Waiting for unfinished jobs....
In the case above, for the "bindeb-pkg" target, the error is produced by
the "dummy" check in Makefile.include, called from libbpf's Makefile.
This check changes directory to $(PWD) before checking for the existence
of $(O). But at this step we have $(PWD) pointing to "/.../linux/build",
and $(O) pointing to "build". So the Makefile.include tries in fact to
assert the existence of a directory named "/.../linux/build/build",
which does not exist.
Note that the error does not occur for all make targets and
architectures combinations. This was observed on x86 for "bindeb-pkg",
or for a regular build for UML [0].
Here are some details. The root Makefile recursively calls itself once,
after changing directory to $(O). The content for the variable $(PWD) is
preserved across recursive calls to make, so it is unchanged at this
step. For "bindeb-pkg", $(PWD) is eventually updated because the target
writes a new Makefile (as debian/rules) and calls it indirectly through
dpkg-buildpackage. This script does not preserve $(PWD), which is reset
to the current working directory when the target in debian/rules is
called.
Although not investigated, it seems likely that something similar causes
UML to change its value for $(PWD).
Non-trivial fixes could be to remove the use of $(PWD) from the "dummy"
check, or to make sure that $(PWD) and $(O) are preserved or updated to
always play well and form a valid $(PWD)/$(O) path across the different
targets and architectures. Instead, we take a simpler approach and just
update $(O) when calling libbpf's Makefile, so it points to an absolute
path which should always resolve for the "dummy" check run (through
includes) by that Makefile.
David Gow previously posted a slightly different version of this patch
as a RFC [0], two months ago or so.
[0] https://lore.kernel.org/bpf/20201119085022.3606135-1-davidgow@google.com/t/#u
Fixes: d71fa5c976 ("bpf: Add kernel module with user mode driver that populates bpffs.")
Reported-by: David Gow <davidgow@google.com>
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/bpf/20210126161320.24561-1-quentin@isovalent.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f4a2da755a7e1f5d845c52aee71336cee289935a ]
Since ctx.optlen is signed, a larger value than max_value could be
passed, as it is later on used as unsigned, which causes a WARN_ON_ONCE
in the copy_to_user.
Fixes: 0d01da6afc ("bpf: implement getsockopt and setsockopt hooks")
Signed-off-by: Loris Reiff <loris.reiff@liblor.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20210122164232.61770-2-loris.reiff@liblor.ch
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bb8b81e396f7afbe7c50d789e2107512274d2a35 ]
A toctou issue in `__cgroup_bpf_run_filter_getsockopt` can trigger a
WARN_ON_ONCE in a check of `copy_from_user`.
`*optlen` is checked to be non-negative in the individual getsockopt
functions beforehand. Changing `*optlen` in a race to a negative value
will result in a `copy_from_user(ctx.optval, optval, ctx.optlen)` with
`ctx.optlen` being a negative integer.
Fixes: 0d01da6afc ("bpf: implement getsockopt and setsockopt hooks")
Signed-off-by: Loris Reiff <loris.reiff@liblor.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20210122164232.61770-1-loris.reiff@liblor.ch
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1a9c72ad4c26821e215a396167c14959cf24a7f1 upstream.
The verifier allows ARG_PTR_TO_BTF_ID helper arguments to be NULL, so
helper implementations need to check this before dereferencing them.
This was already fixed for the socket storage helpers but not for task
and inode.
The issue can be reproduced by attaching an LSM program to
inode_rename hook (called when moving files) which tries to get the
inode of the new file without checking for its nullness and then trying
to move an existing file to a new path:
mv existing_file new_file_does_not_exist
The report including the sample program and the steps for reproducing
the bug:
https://lore.kernel.org/bpf/CANaYP3HWkH91SN=wTNO9FL_2ztHfqcXKX38SSE-JJ2voh+vssw@mail.gmail.com
Fixes: 4cf1bc1f1045 ("bpf: Implement task local storage")
Fixes: 8ea636848a ("bpf: Implement bpf_local_storage for inodes")
Reported-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210112075525.256820-3-kpsingh@kernel.org
[ just take 1/2 of this patch for 5.10.y - gregkh ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5541075a348b6ca6ac668653f7d2c423ae8e00b6 ]
The bpf_tracing_prog_attach error path calls bpf_prog_put
on prog, which causes refcount underflow when it's called
from link_create function.
link_create
prog = bpf_prog_get <-- get
...
tracing_bpf_link_attach(prog..
bpf_tracing_prog_attach(prog..
out_put_prog:
bpf_prog_put(prog); <-- put
if (ret < 0)
bpf_prog_put(prog); <-- put
Removing bpf_prog_put call from bpf_tracing_prog_attach
and making sure its callers call it instead.
Fixes: 4a1e7c0c63 ("bpf: Support attaching freplace programs to multiple attach points")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210111191650.1241578-1-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 301a33d51880619d0c5a581b5a48d3a5248fa84b upstream.
I assume this was obtained by copy/paste. Point it to bpf_map_peek_elem()
instead of bpf_map_pop_elem(). In practice it may have been less likely
hit when under JIT given shielded via 84430d4232 ("bpf, verifier: avoid
retpoline for map push/pop/peek operation").
Fixes: f1a2e44a3a ("bpf: add queue and stack maps")
Signed-off-by: Mircea Cirjaliu <mcirjaliu@bitdefender.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Mauricio Vasquez <mauriciovasquezbernal@gmail.com>
Link: https://lore.kernel.org/bpf/AM7PR02MB6082663DFDCCE8DA7A6DD6B1BBA30@AM7PR02MB6082.eurprd02.prod.outlook.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 744ea4e3885eccb6d332a06fae9eb7420a622c0f upstream.
Add support for pointer to mem register spilling, to allow the verifier
to track pointers to valid memory addresses. Such pointers are returned
for example by a successful call of the bpf_ringbuf_reserve helper.
The patch was partially contributed by CyberArk Software, Inc.
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Suggested-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210113053810.13518-1-gilad.reti@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4be34f3d0731b38a1b24566b37fbb39500aaf3a2 upstream.
optlen == 0 indicates that the kernel should ignore BPF buffer
and use the original one from the user. We, however, forget
to free the temporary buffer that we've allocated for BPF.
Fixes: d8fe449a9c ("bpf: Don't return EINVAL from {get,set}sockopt when optlen > PAGE_SIZE")
Reported-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210112162829.775079-1-sdf@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bc895e8b2a64e502fbba72748d59618272052a8b upstream.
Fix incorrect signed_{sub,add32}_overflows() input types (and a related buggy
comment). It looks like this might have slipped in via copy/paste issue, also
given prior to 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
the signature of signed_sub_overflows() had s64 a and s64 b as its input args
whereas now they are truncated to s32. Thus restore proper types. Also, the case
of signed_add32_overflows() is not consistent to signed_sub32_overflows(). Both
have s32 as inputs, therefore align the former.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: De4dCr0w <sa516203@mail.ustc.edu.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 91b2db27d3ff9ad29e8b3108dfbf1e2f49fe9bd3 ]
Simplify task_file_seq_get_next() by removing two in/out arguments: task
and fstruct. Use info->task and info->files instead.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201120002833.2481110-1-songliubraving@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Remove bpf_ prefix, which causes these helpers to be reported in verifier
dump as bpf_bpf_this_cpu_ptr() and bpf_bpf_per_cpu_ptr(), respectively. Lets
fix it as long as it is still possible before UAPI freezes on these helpers.
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 64-bit signed bounds should not affect 32-bit signed bounds unless the
verifier knows that upper 32-bits are either all 1s or all 0s. For example the
register with smin_value==1 doesn't mean that s32_min_value is also equal to 1,
since smax_value could be larger than 32-bit subregister can hold.
The verifier refines the smax/s32_max return value from certain helpers in
do_refine_retval_range(). Teach the verifier to recognize that smin/s32_min
value is also bounded. When both smin and smax bounds fit into 32-bit
subregister the verifier can propagate those bounds.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently verifier enforces return code checks for subprograms in the
same manner as it does for program entry points. This prevents returning
arbitrary scalar values from subprograms. Scalar type of returned values
is checked by btf_prepare_func_args() and hence it should be safe to
allow only scalars for now. Relax return code checks for subprograms and
allow any correct scalar values.
Fixes: 51c39bb1d5 (bpf: Introduce function-by-function verification)
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201113171756.90594-1-me@ubique.spb.ru
The unsigned variable datasec_id is assigned a return value from the call
to check_pseudo_btf_id(), which may return negative error code.
This fixes the following coccicheck warning:
./kernel/bpf/verifier.c:9616:5-15: WARNING: Unsigned expression compared with zero: datasec_id > 0
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Reported-by: Tosk Robot <tencent_os_robot@tencent.com>
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Cc: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/1605071026-25906-1-git-send-email-kaixuxia@tencent.com
The current logic checks if the name of the BTF type passed in
attach_btf_id starts with "bpf_lsm_", this is not sufficient as it also
allows attachment to non-LSM hooks like the very function that performs
this check, i.e. bpf_lsm_verify_prog.
In order to ensure that this verification logic allows attachment to
only LSM hooks, the LSM_HOOK definitions in lsm_hook_defs.h are used to
generate a BTF_ID set. Upon verification, the attach_btf_id of the
program being attached is checked for presence in this set.
Fixes: 9e4e01dfd3 ("bpf: lsm: Implement attach, detach and execution")
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201105230651.2621917-1-kpsingh@chromium.org
Zero-fill element values for all other cpus than current, just as
when not using prealloc. This is the only way the bpf program can
ensure known initial values for all cpus ('onallcpus' cannot be
set when coming from the bpf program).
The scenario is: bpf program inserts some elements in a per-cpu
map, then deletes some (or userspace does). When later adding
new elements using bpf_map_update_elem(), the bpf program can
only set the value of the new elements for the current cpu.
When prealloc is enabled, previously deleted elements are re-used.
Without the fix, values for other cpus remain whatever they were
when the re-used entry was previously freed.
A selftest is added to validate correct operation in above
scenario as well as in case of LRU per-cpu map element re-use.
Fixes: 6c90598174 ("bpf: pre-allocate hash map elements")
Signed-off-by: David Verbeiren <david.verbeiren@tessares.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201104112332.15191-1-david.verbeiren@tessares.net
Fix build error when BPF_SYSCALL is not set/enabled but BPF_PRELOAD is
by making BPF_PRELOAD depend on BPF_SYSCALL.
ERROR: modpost: "bpf_preload_ops" [kernel/bpf/preload/bpf_preload.ko] undefined!
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201105195109.26232-1-rdunlap@infradead.org
Commit 3193c0836 ("bpf: Disable GCC -fgcse optimization for
___bpf_prog_run()") introduced a __no_fgcse macro that expands to a
function scope __attribute__((optimize("-fno-gcse"))), to disable a
GCC specific optimization that was causing trouble on x86 builds, and
was not expected to have any positive effect in the first place.
However, as the GCC manual documents, __attribute__((optimize))
is not for production use, and results in all other optimization
options to be forgotten for the function in question. This can
cause all kinds of trouble, but in one particular reported case,
it causes -fno-asynchronous-unwind-tables to be disregarded,
resulting in .eh_frame info to be emitted for the function.
This reverts commit 3193c0836, and instead, it disables the -fgcse
optimization for the entire source file, but only when building for
X86 using GCC with CONFIG_BPF_JIT_ALWAYS_ON disabled. Note that the
original commit states that CONFIG_RETPOLINE=n triggers the issue,
whereas CONFIG_RETPOLINE=y performs better without the optimization,
so it is kept disabled in both cases.
Fixes: 3193c0836f ("bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/lkml/CAMuHMdUg0WJHEcq6to0-eODpXPOywLot6UD2=GFHpzoj_hCoBQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20201028171506.15682-2-ardb@kernel.org
Cross-tree/merge window issues:
- rtl8150: don't incorrectly assign random MAC addresses; fix late
in the 5.9 cycle started depending on a return code from
a function which changed with the 5.10 PR from the usb subsystem
Current release - regressions:
- Revert "virtio-net: ethtool configurable RXCSUM", it was causing
crashes at probe when control vq was not negotiated/available
Previous releases - regressions:
- ixgbe: fix probing of multi-port 10 Gigabit Intel NICs with an MDIO
bus, only first device would be probed correctly
- nexthop: Fix performance regression in nexthop deletion by
effectively switching from recently added synchronize_rcu()
to synchronize_rcu_expedited()
- netsec: ignore 'phy-mode' device property on ACPI systems;
the property is not populated correctly by the firmware,
but firmware configures the PHY so just keep boot settings
Previous releases - always broken:
- tcp: fix to update snd_wl1 in bulk receiver fast path, addressing
bulk transfers getting "stuck"
- icmp: randomize the global rate limiter to prevent attackers from
getting useful signal
- r8169: fix operation under forced interrupt threading, make the
driver always use hard irqs, even on RT, given the handler is
light and only wants to schedule napi (and do so through
a _irqoff() variant, preferably)
- bpf: Enforce pointer id generation for all may-be-null register
type to avoid pointers erroneously getting marked as null-checked
- tipc: re-configure queue limit for broadcast link
- net/sched: act_tunnel_key: fix OOB write in case of IPv6 ERSPAN
tunnels
- fix various issues in chelsio inline tls driver
Misc:
- bpf: improve just-added bpf_redirect_neigh() helper api to support
supplying nexthop by the caller - in case BPF program has already
done a lookup we can avoid doing another one
- remove unnecessary break statements
- make MCTCP not select IPV6, but rather depend on it
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+R+5UACgkQMUZtbf5S
Irt9KxAAiYme2aSvMOni0NQsOgQ5mVsy7tk0/4dyRqkAx0ggrfGcFuhgZYNm8ZKY
KoQsQyn30Wb/2wAp1vX2I4Fod67rFyBfQg/8iWiEAu47X7Bj1lpPPJexSPKhF9/X
e0TuGxZtoaDuV9C3Su/FOjRmnShGSFQu1SCyJThshwaGsFL3YQ0Ut07VRgRF8x05
A5fy2SVVIw0JOQgV1oH0GP5oEK3c50oGnaXt8emm56PxVIfAYY0oq69hQUzrfMFP
zV9R0XbnbCIibT8R3lEghjtXavtQTzK5rYDKazTeOyDU87M+yuykNYj7MhgDwl9Q
UdJkH2OpMlJylEH3asUjz/+ObMhXfOuj/ZS3INtO5omBJx7x76egDZPMQe4wlpcC
NT5EZMS7kBdQL8xXDob7hXsvFpuEErSUGruYTHp4H52A9ke1dRTH2kQszcKk87V3
s+aVVPtJ5bHzF3oGEvfwP0DFLTF6WvjD0Ts0LmTY2DhpE//tFWV37j60Ni5XU21X
fCPooihQbLOsq9D8zc0ydEvCg2LLWMXM5ovCkqfIAJzbGVYhnxJSryZwpOlKDS0y
LiUmLcTZDoNR/szx0aJhVHdUUVgXDX/GsllHoc1w7ZvDRMJn40K+xnaF3dSMwtIl
imhfc5pPi6fdBgjB0cFYRPfhwiwlPMQ4YFsOq9JvynJzmt6P5FQ=
=ceke
-----END PGP SIGNATURE-----
Merge tag 'net-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Cross-tree/merge window issues:
- rtl8150: don't incorrectly assign random MAC addresses; fix late in
the 5.9 cycle started depending on a return code from a function
which changed with the 5.10 PR from the usb subsystem
Current release regressions:
- Revert "virtio-net: ethtool configurable RXCSUM", it was causing
crashes at probe when control vq was not negotiated/available
Previous release regressions:
- ixgbe: fix probing of multi-port 10 Gigabit Intel NICs with an MDIO
bus, only first device would be probed correctly
- nexthop: Fix performance regression in nexthop deletion by
effectively switching from recently added synchronize_rcu() to
synchronize_rcu_expedited()
- netsec: ignore 'phy-mode' device property on ACPI systems; the
property is not populated correctly by the firmware, but firmware
configures the PHY so just keep boot settings
Previous releases - always broken:
- tcp: fix to update snd_wl1 in bulk receiver fast path, addressing
bulk transfers getting "stuck"
- icmp: randomize the global rate limiter to prevent attackers from
getting useful signal
- r8169: fix operation under forced interrupt threading, make the
driver always use hard irqs, even on RT, given the handler is light
and only wants to schedule napi (and do so through a _irqoff()
variant, preferably)
- bpf: Enforce pointer id generation for all may-be-null register
type to avoid pointers erroneously getting marked as null-checked
- tipc: re-configure queue limit for broadcast link
- net/sched: act_tunnel_key: fix OOB write in case of IPv6 ERSPAN
tunnels
- fix various issues in chelsio inline tls driver
Misc:
- bpf: improve just-added bpf_redirect_neigh() helper api to support
supplying nexthop by the caller - in case BPF program has already
done a lookup we can avoid doing another one
- remove unnecessary break statements
- make MCTCP not select IPV6, but rather depend on it"
* tag 'net-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (62 commits)
tcp: fix to update snd_wl1 in bulk receiver fast path
net: Properly typecast int values to set sk_max_pacing_rate
netfilter: nf_fwd_netdev: clear timestamp in forwarding path
ibmvnic: save changed mac address to adapter->mac_addr
selftests: mptcp: depends on built-in IPv6
Revert "virtio-net: ethtool configurable RXCSUM"
rtnetlink: fix data overflow in rtnl_calcit()
net: ethernet: mtk-star-emac: select REGMAP_MMIO
net: hdlc_raw_eth: Clear the IFF_TX_SKB_SHARING flag after calling ether_setup
net: hdlc: In hdlc_rcv, check to make sure dev is an HDLC device
bpf, libbpf: Guard bpf inline asm from bpf_tail_call_static
bpf, selftests: Extend test_tc_redirect to use modified bpf_redirect_neigh()
bpf: Fix bpf_redirect_neigh helper api to support supplying nexthop
mptcp: depends on IPV6 but not as a module
sfc: move initialisation of efx->filter_sem to efx_init_struct()
mpls: load mpls_gso after mpls_iptunnel
net/sched: act_tunnel_key: fix OOB write in case of IPv6 ERSPAN tunnels
net/sched: act_gate: Unlock ->tcfa_lock in tc_setup_flow_action()
net: dsa: bcm_sf2: make const array static, makes object smaller
mptcp: MPTCP_IPV6 should depend on IPV6 instead of selecting it
...
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
The commit af7ec13833 ("bpf: Add bpf_skc_to_tcp6_sock() helper")
introduces RET_PTR_TO_BTF_ID_OR_NULL and
the commit eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
introduces RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL.
Note that for RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL, the reg0->type
could become PTR_TO_MEM_OR_NULL which is not covered by
BPF_PROBE_MEM.
The BPF_REG_0 will then hold a _OR_NULL pointer type. This _OR_NULL
pointer type requires the bpf program to explicitly do a NULL check first.
After NULL check, the verifier will mark all registers having
the same reg->id as safe to use. However, the reg->id
is not set for those new _OR_NULL return types. One of the ways
that may be wrong is, checking NULL for one btf_id typed pointer will
end up validating all other btf_id typed pointers because
all of them have id == 0. The later tests will exercise
this path.
To fix it and also avoid similar issue in the future, this patch
moves the id generation logic out of each individual RET type
test in check_helper_call(). Instead, it does one
reg_type_may_be_null() test and then do the id generation
if needed.
This patch also adds a WARN_ON_ONCE in mark_ptr_or_null_reg()
to catch future breakage.
The _OR_NULL pointer usage in the bpf_iter_reg.ctx_arg_info is
fine because it just happens that the existing id generation after
check_ctx_access() has covered it. It is also using the
reg_type_may_be_null() to decide if id generation is needed or not.
Fixes: af7ec13833 ("bpf: Add bpf_skc_to_tcp6_sock() helper")
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201019194212.1050855-1-kafai@fb.com
A break is not needed if it is preceded by a return.
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201019173846.1021-1-trix@redhat.com
Add redirect_neigh() BPF packet redirect helper, allowing to limit stack
traversal in common container configs and improving TCP back-pressure.
Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
Expand netlink policy support and improve policy export to user space.
(Ge)netlink core performs request validation according to declared
policies. Expand the expressiveness of those policies (min/max length
and bitmasks). Allow dumping policies for particular commands.
This is used for feature discovery by user space (instead of kernel
version parsing or trial and error).
Support IGMPv3/MLDv2 multicast listener discovery protocols in bridge.
Allow more than 255 IPv4 multicast interfaces.
Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
packets of TCPv6.
In Multi-patch TCP (MPTCP) support concurrent transmission of data
on multiple subflows in a load balancing scenario. Enhance advertising
addresses via the RM_ADDR/ADD_ADDR options.
Support SMC-Dv2 version of SMC, which enables multi-subnet deployments.
Allow more calls to same peer in RxRPC.
Support two new Controller Area Network (CAN) protocols -
CAN-FD and ISO 15765-2:2016.
Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
kernel problem.
Add TC actions for implementing MPLS L2 VPNs.
Improve nexthop code - e.g. handle various corner cases when nexthop
objects are removed from groups better, skip unnecessary notifications
and make it easier to offload nexthops into HW by converting
to a blocking notifier.
Support adding and consuming TCP header options by BPF programs,
opening the doors for easy experimental and deployment-specific
TCP option use.
Reorganize TCP congestion control (CC) initialization to simplify life
of TCP CC implemented in BPF.
Add support for shipping BPF programs with the kernel and loading them
early on boot via the User Mode Driver mechanism, hence reusing all the
user space infra we have.
Support sleepable BPF programs, initially targeting LSM and tracing.
Add bpf_d_path() helper for returning full path for given 'struct path'.
Make bpf_tail_call compatible with bpf-to-bpf calls.
Allow BPF programs to call map_update_elem on sockmaps.
Add BPF Type Format (BTF) support for type and enum discovery, as
well as support for using BTF within the kernel itself (current use
is for pretty printing structures).
Support listing and getting information about bpf_links via the bpf
syscall.
Enhance kernel interfaces around NIC firmware update. Allow specifying
overwrite mask to control if settings etc. are reset during update;
report expected max time operation may take to users; support firmware
activation without machine reboot incl. limits of how much impact
reset may have (e.g. dropping link or not).
Extend ethtool configuration interface to report IEEE-standard
counters, to limit the need for per-vendor logic in user space.
Adopt or extend devlink use for debug, monitoring, fw update
in many drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw,
mv88e6xxx, dpaa2-eth).
In mlxsw expose critical and emergency SFP module temperature alarms.
Refactor port buffer handling to make the defaults more suitable and
support setting these values explicitly via the DCBNL interface.
Add XDP support for Intel's igb driver.
Support offloading TC flower classification and filtering rules to
mscc_ocelot switches.
Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
fixed interval period pulse generator and one-step timestamping in
dpaa-eth.
Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
offload.
Add Lynx PHY/PCS MDIO module, and convert various drivers which have
this HW to use it. Convert mvpp2 to split PCS.
Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
7-port Mediatek MT7531 IP.
Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
and wcn3680 support in wcn36xx.
Improve performance for packets which don't require much offloads
on recent Mellanox NICs by 20% by making multiple packets share
a descriptor entry.
Move chelsio inline crypto drivers (for TLS and IPsec) from the crypto
subtree to drivers/net. Move MDIO drivers out of the phy directory.
Clean up a lot of W=1 warnings, reportedly the actively developed
subsections of networking drivers should now build W=1 warning free.
Make sure drivers don't use in_interrupt() to dynamically adapt their
code. Convert tasklets to use new tasklet_setup API (sadly this
conversion is not yet complete).
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+ItRwACgkQMUZtbf5S
IrtTMg//UxpdR/MirT1DatBU0K/UGAZY82hV7F/UC8tPgjfHZeHvWlDFxfi3YP81
PtPKbhRZ7DhwBXefUp6nY3UdvjftrJK2lJm8prJUPSsZRye8Wlcb7y65q7/P2y2U
Efucyopg6RUrmrM0DUsIGYGJgylQLHnMYUl/keCsD4t5Bp4ksyi9R2t5eitGoWzh
r3QGdbSa0AuWx4iu0i+tqp6Tj0ekMBMXLVb35dtU1t0joj2KTNEnSgABN3prOa8E
iWYf2erOau68Ogp3yU3miCy0ZU4p/7qGHTtzbcp677692P/ekak6+zmfHLT9/Pjy
2Stq2z6GoKuVxdktr91D9pA3jxG4LxSJmr0TImcGnXbvkMP3Ez3g9RrpV5fn8j6F
mZCH8TKZAoD5aJrAJAMkhZmLYE1pvDa7KolSk8WogXrbCnTEb5Nv8FHTS1Qnk3yl
wSKXuvutFVNLMEHCnWQLtODbTST9DI/aOi6EctPpuOA/ZyL1v3pl+gfp37S+LUTe
owMnT/7TdvKaTD0+gIyU53M6rAWTtr5YyRQorX9awIu/4Ha0F0gYD7BJZQUGtegp
HzKt59NiSrFdbSH7UdyemdBF4LuCgIhS7rgfeoUXMXmuPHq7eHXyHZt5dzPPa/xP
81P0MAvdpFVwg8ij2yp2sHS7sISIRKq17fd1tIewUabxQbjXqPc=
=bc1U
-----END PGP SIGNATURE-----
Merge tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
- Add redirect_neigh() BPF packet redirect helper, allowing to limit
stack traversal in common container configs and improving TCP
back-pressure.
Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
- Expand netlink policy support and improve policy export to user
space. (Ge)netlink core performs request validation according to
declared policies. Expand the expressiveness of those policies
(min/max length and bitmasks). Allow dumping policies for particular
commands. This is used for feature discovery by user space (instead
of kernel version parsing or trial and error).
- Support IGMPv3/MLDv2 multicast listener discovery protocols in
bridge.
- Allow more than 255 IPv4 multicast interfaces.
- Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
packets of TCPv6.
- In Multi-patch TCP (MPTCP) support concurrent transmission of data on
multiple subflows in a load balancing scenario. Enhance advertising
addresses via the RM_ADDR/ADD_ADDR options.
- Support SMC-Dv2 version of SMC, which enables multi-subnet
deployments.
- Allow more calls to same peer in RxRPC.
- Support two new Controller Area Network (CAN) protocols - CAN-FD and
ISO 15765-2:2016.
- Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
kernel problem.
- Add TC actions for implementing MPLS L2 VPNs.
- Improve nexthop code - e.g. handle various corner cases when nexthop
objects are removed from groups better, skip unnecessary
notifications and make it easier to offload nexthops into HW by
converting to a blocking notifier.
- Support adding and consuming TCP header options by BPF programs,
opening the doors for easy experimental and deployment-specific TCP
option use.
- Reorganize TCP congestion control (CC) initialization to simplify
life of TCP CC implemented in BPF.
- Add support for shipping BPF programs with the kernel and loading
them early on boot via the User Mode Driver mechanism, hence reusing
all the user space infra we have.
- Support sleepable BPF programs, initially targeting LSM and tracing.
- Add bpf_d_path() helper for returning full path for given 'struct
path'.
- Make bpf_tail_call compatible with bpf-to-bpf calls.
- Allow BPF programs to call map_update_elem on sockmaps.
- Add BPF Type Format (BTF) support for type and enum discovery, as
well as support for using BTF within the kernel itself (current use
is for pretty printing structures).
- Support listing and getting information about bpf_links via the bpf
syscall.
- Enhance kernel interfaces around NIC firmware update. Allow
specifying overwrite mask to control if settings etc. are reset
during update; report expected max time operation may take to users;
support firmware activation without machine reboot incl. limits of
how much impact reset may have (e.g. dropping link or not).
- Extend ethtool configuration interface to report IEEE-standard
counters, to limit the need for per-vendor logic in user space.
- Adopt or extend devlink use for debug, monitoring, fw update in many
drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx,
dpaa2-eth).
- In mlxsw expose critical and emergency SFP module temperature alarms.
Refactor port buffer handling to make the defaults more suitable and
support setting these values explicitly via the DCBNL interface.
- Add XDP support for Intel's igb driver.
- Support offloading TC flower classification and filtering rules to
mscc_ocelot switches.
- Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
fixed interval period pulse generator and one-step timestamping in
dpaa-eth.
- Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
offload.
- Add Lynx PHY/PCS MDIO module, and convert various drivers which have
this HW to use it. Convert mvpp2 to split PCS.
- Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
7-port Mediatek MT7531 IP.
- Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
and wcn3680 support in wcn36xx.
- Improve performance for packets which don't require much offloads on
recent Mellanox NICs by 20% by making multiple packets share a
descriptor entry.
- Move chelsio inline crypto drivers (for TLS and IPsec) from the
crypto subtree to drivers/net. Move MDIO drivers out of the phy
directory.
- Clean up a lot of W=1 warnings, reportedly the actively developed
subsections of networking drivers should now build W=1 warning free.
- Make sure drivers don't use in_interrupt() to dynamically adapt their
code. Convert tasklets to use new tasklet_setup API (sadly this
conversion is not yet complete).
* tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits)
Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH"
net, sockmap: Don't call bpf_prog_put() on NULL pointer
bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo
bpf, sockmap: Add locking annotations to iterator
netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements
net: fix pos incrementment in ipv6_route_seq_next
net/smc: fix invalid return code in smcd_new_buf_create()
net/smc: fix valid DMBE buffer sizes
net/smc: fix use-after-free of delayed events
bpfilter: Fix build error with CONFIG_BPFILTER_UMH
cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr
net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info
bpf: Fix register equivalence tracking.
rxrpc: Fix loss of final ack on shutdown
rxrpc: Fix bundle counting for exclusive connections
netfilter: restore NF_INET_NUMHOOKS
ibmveth: Identify ingress large send packets.
ibmveth: Switch order of ibmveth_helper calls.
cxgb4: handle 4-tuple PEDIT to NAT mode translation
selftests: Add VRF route leaking tests
...
The 64-bit JEQ/JNE handling in reg_set_min_max() was clearing reg->id in either
true or false branch. In the case 'if (reg->id)' check was done on the other
branch the counter part register would have reg->id == 0 when called into
find_equal_scalars(). In such case the helper would incorrectly identify other
registers with id == 0 as equivalent and propagate the state incorrectly.
Fix it by preserving ID across reg_set_min_max().
In other words any kind of comparison operator on the scalar register
should preserve its ID to recognize:
r1 = r2
if (r1 == 20) {
#1 here both r1 and r2 == 20
} else if (r2 < 20) {
#2 here both r1 and r2 < 20
}
The patch is addressing #1 case. The #2 was working correctly already.
Fixes: 75748837b7 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201014175608.1416-1-alexei.starovoitov@gmail.com
- Most of the changes are cleanups and reorganization to make the objtool code
more arch-agnostic. This is in preparation for non-x86 support.
Fixes:
- KASAN fixes.
- Handle unreachable trap after call to noreturn functions better.
- Ignore unreachable fake jumps.
- Misc smaller fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+FgwIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1juGw/6A6goA5/HHapM965yG1eY/rTLp3eIbcma
1ZbkUsP0YfT6wVUzw/sOeZzKNOwOq1FuMfkjuH2KcnlxlcMekIaKvLk8uauW4igM
hbFGuuZfZ0An5ka9iQ1W6HGdsuD3vVlN1w/kxdWk0c3lJCVQSTxdCfzF8fuF3gxX
lF3Bc1D/ZFcHIHT/hu/jeIUCgCYpD3qZDjQJBScSwVthZC+Fw6weLLGp2rKDaCao
HhSQft6MUfDrUKfH3LBIUNPRPCOrHo5+AX6BXxLXJVxqlwO/YU3e0GMwSLedMtBy
TASWo7/9GAp+wNNZe8EliyTKrfC3sLxN1QImfjuojxbBVXx/YQ/ToTt9fVGpF4Y+
XhhRFv9520v1tS2wPHIgQGwbh7EWG6mdrmo10RAs/31ViONPrbEZ4WmcA08b/5FY
KEkOVb18yfmDVzVZPpSc+HpIFkppEBOf7wPg27Bj3RTZmzIl/y+rKSnxROpsJsWb
R6iov7SFVET14lHl1G7tPNXfqRaS7HaOQIj3rSUyAP0ZfX+yIupVJp32dc6Ofg8b
SddUCwdIHoFdUNz4Y9csUCrewtCVJbxhV4MIdv0GpWbrgSw96RFZgetaH+6mGRpj
0Kh6M1eC3irDbhBuarWUBAr2doPAq4iOUeQU36Q6YSAbCs83Ws2uKOWOHoFBVwCH
uSKT0wqqG+E=
=KX5o
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2020-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
"Most of the changes are cleanups and reorganization to make the
objtool code more arch-agnostic. This is in preparation for non-x86
support.
Other changes:
- KASAN fixes
- Handle unreachable trap after call to noreturn functions better
- Ignore unreachable fake jumps
- Misc smaller fixes & cleanups"
* tag 'objtool-core-2020-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
perf build: Allow nested externs to enable BUILD_BUG() usage
objtool: Allow nested externs to enable BUILD_BUG()
objtool: Permit __kasan_check_{read,write} under UACCESS
objtool: Ignore unreachable trap after call to noreturn functions
objtool: Handle calling non-function symbols in other sections
objtool: Ignore unreachable fake jumps
objtool: Remove useless tests before save_reg()
objtool: Decode unwind hint register depending on architecture
objtool: Make unwind hint definitions available to other architectures
objtool: Only include valid definitions depending on source file type
objtool: Rename frame.h -> objtool.h
objtool: Refactor jump table code to support other architectures
objtool: Make relocation in alternative handling arch dependent
objtool: Abstract alternative special case handling
objtool: Move macros describing structures to arch-dependent code
objtool: Make sync-check consider the target architecture
objtool: Group headers to check in a single list
objtool: Define 'struct orc_entry' only when needed
objtool: Skip ORC entry creation for non-text sections
objtool: Move ORC logic out of check()
...
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-10-12
The main changes are:
1) The BPF verifier improvements to track register allocation pattern, from Alexei and Yonghong.
2) libbpf relocation support for different size load/store, from Andrii.
3) bpf_redirect_peer() helper and support for inner map array with different max_entries, from Daniel.
4) BPF support for per-cpu variables, form Hao.
5) sockmap improvements, from John.
====================
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Recent work in f4d0525921 ("bpf: Add map_meta_equal map ops") and 134fede4ee
("bpf: Relax max_entries check for most of the inner map types") added support
for dynamic inner max elements for most map-in-map types. Exceptions were maps
like array or prog array where the map_gen_lookup() callback uses the maps'
max_entries field as a constant when emitting instructions.
We recently implemented Maglev consistent hashing into Cilium's load balancer
which uses map-in-map with an outer map being hash and inner being array holding
the Maglev backend table for each service. This has been designed this way in
order to reduce overall memory consumption given the outer hash map allows to
avoid preallocating a large, flat memory area for all services. Also, the
number of service mappings is not always known a-priori.
The use case for dynamic inner array map entries is to further reduce memory
overhead, for example, some services might just have a small number of back
ends while others could have a large number. Right now the Maglev backend table
for small and large number of backends would need to have the same inner array
map entries which adds a lot of unneeded overhead.
Dynamic inner array map entries can be realized by avoiding the inlined code
generation for their lookup. The lookup will still be efficient since it will
be calling into array_map_lookup_elem() directly and thus avoiding retpoline.
The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips
inline code generation and relaxes array_map_meta_equal() check to ignore both
maps' max_entries. This also still allows to have faster lookups for map-in-map
when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed.
Example code generation where inner map is dynamic sized array:
# bpftool p d x i 125
int handle__sys_enter(void * ctx):
; int handle__sys_enter(void *ctx)
0: (b4) w1 = 0
; int key = 0;
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
;
3: (07) r2 += -4
; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key);
4: (18) r1 = map[id:468]
6: (07) r1 += 272
7: (61) r0 = *(u32 *)(r2 +0)
8: (35) if r0 >= 0x3 goto pc+5
9: (67) r0 <<= 3
10: (0f) r0 += r1
11: (79) r0 = *(u64 *)(r0 +0)
12: (15) if r0 == 0x0 goto pc+1
13: (05) goto pc+1
14: (b7) r0 = 0
15: (b4) w6 = -1
; if (!inner_map)
16: (15) if r0 == 0x0 goto pc+6
17: (bf) r2 = r10
;
18: (07) r2 += -4
; val = bpf_map_lookup_elem(inner_map, &key);
19: (bf) r1 = r0 | No inlining but instead
20: (85) call array_map_lookup_elem#149280 | call to array_map_lookup_elem()
; return val ? *val : -1; | for inner array lookup.
21: (15) if r0 == 0x0 goto pc+1
; return val ? *val : -1;
22: (61) r6 = *(u32 *)(r0 +0)
; }
23: (bc) w0 = w6
24: (95) exit
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
Under register pressure the llvm may spill registers with bounds into the stack.
The verifier has to track them through spill/fill otherwise many kinds of bound
errors will be seen. The spill/fill of induction variables was already
happening. This patch extends this logic from tracking spill/fill of a constant
into any bounded register. There is no need to track spill/fill of unbounded,
since no new information will be retrieved from the stack during register fill.
Though extra stack difference could cause state pruning to be less effective, no
adverse affects were seen from this patch on selftests and on cilium programs.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201009011240.48506-3-alexei.starovoitov@gmail.com
The llvm register allocator may use two different registers representing the
same virtual register. In such case the following pattern can be observed:
1047: (bf) r9 = r6
1048: (a5) if r6 < 0x1000 goto pc+1
1050: ...
1051: (a5) if r9 < 0x2 goto pc+66
1052: ...
1053: (bf) r2 = r9 /* r2 needs to have upper and lower bounds */
This is normal behavior of greedy register allocator.
The slides 137+ explain why regalloc introduces such register copy:
http://llvm.org/devmtg/2018-04/slides/Yatsina-LLVM%20Greedy%20Register%20Allocator.pdf
There is no way to tell llvm 'not to do this'.
Hence the verifier has to recognize such patterns.
In order to track this information without backtracking allocate ID
for scalars in a similar way as it's done for find_good_pkt_pointers().
When the verifier encounters r9 = r6 assignment it will assign the same ID
to both registers. Later if either register range is narrowed via conditional
jump propagate the register state into the other register.
Clear register ID in adjust_reg_min_max_vals() for any alu instruction. The
register ID is ignored for scalars in regsafe() and doesn't affect state
pruning. mark_reg_unknown() clears the ID. It's used to process call, endian
and other instructions. Hence ID is explicitly cleared only in
adjust_reg_min_max_vals() and in 32-bit mov.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201009011240.48506-2-alexei.starovoitov@gmail.com
Small conflict around locking in rxrpc_process_event() -
channel_lock moved to bundle in next, while state lock
needs _bh() from net.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Simon reported an issue with the current scalar32_min_max_or() implementation.
That is, compared to the other 32 bit subreg tracking functions, the code in
scalar32_min_max_or() stands out that it's using the 64 bit registers instead
of 32 bit ones. This leads to bounds tracking issues, for example:
[...]
8: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
8: (79) r1 = *(u64 *)(r0 +0)
R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
9: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
9: (b7) r0 = 1
10: R0_w=inv1 R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
10: (18) r2 = 0x600000002
12: R0_w=inv1 R1_w=inv(id=0) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
12: (ad) if r1 < r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: (95) exit
14: R0_w=inv1 R1_w=inv(id=0,umax_value=25769803777,var_off=(0x0; 0x7ffffffff)) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
14: (25) if r1 > 0x0 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: (95) exit
16: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=25769803777,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
16: (47) r1 |= 0
17: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=32212254719,var_off=(0x1; 0x700000000),s32_max_value=1,u32_max_value=1) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
[...]
The bound tests on the map value force the upper unsigned bound to be 25769803777
in 64 bit (0b11000000000000000000000000000000001) and then lower one to be 1. By
using OR they are truncated and thus result in the range [1,1] for the 32 bit reg
tracker. This is incorrect given the only thing we know is that the value must be
positive and thus 2147483647 (0b1111111111111111111111111111111) at max for the
subregs. Fix it by using the {u,s}32_{min,max}_value vars instead. This also makes
sense, for example, for the case where we update dst_reg->s32_{min,max}_value in
the else branch we need to use the newly computed dst_reg->u32_{min,max}_value as
we know that these are positive. Previously, in the else branch the 64 bit values
of umin_value=1 and umax_value=32212254719 were used and latter got truncated to
be 1 as upper bound there. After the fix the subreg range is now correct:
[...]
8: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
8: (79) r1 = *(u64 *)(r0 +0)
R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
9: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
9: (b7) r0 = 1
10: R0_w=inv1 R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
10: (18) r2 = 0x600000002
12: R0_w=inv1 R1_w=inv(id=0) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
12: (ad) if r1 < r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: (95) exit
14: R0_w=inv1 R1_w=inv(id=0,umax_value=25769803777,var_off=(0x0; 0x7ffffffff)) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
14: (25) if r1 > 0x0 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: (95) exit
16: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=25769803777,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
16: (47) r1 |= 0
17: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=32212254719,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
[...]
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Simon Scannell <scannell.smn@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Fix build errors in kernel/bpf/verifier.c when CONFIG_NET is
not enabled.
../kernel/bpf/verifier.c:3995:13: error: ‘btf_sock_ids’ undeclared here (not in a function); did you mean ‘bpf_sock_ops’?
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
../kernel/bpf/verifier.c:3995:26: error: ‘BTF_SOCK_TYPE_SOCK_COMMON’ undeclared here (not in a function); did you mean ‘PTR_TO_SOCK_COMMON’?
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
Fixes: 1df8f55a37 ("bpf: Enable bpf_skc_to_* sock casting helper to networking prog type")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201007021613.13646-1-rdunlap@infradead.org
Rejecting non-native endian BTF overlapped with the addition
of support for it.
The rest were more simple overlapping changes, except the
renesas ravb binding update, which had to follow a file
move as well as a YAML conversion.
Signed-off-by: David S. Miller <davem@davemloft.net>
Recent improvements in LOCKDEP highlighted a potential A-A deadlock with
pcpu_freelist in NMI:
./tools/testing/selftests/bpf/test_progs -t stacktrace_build_id_nmi
[ 18.984807] ================================
[ 18.984807] WARNING: inconsistent lock state
[ 18.984808] 5.9.0-rc6-01771-g1466de1330e1 #2967 Not tainted
[ 18.984809] --------------------------------
[ 18.984809] inconsistent {INITIAL USE} -> {IN-NMI} usage.
[ 18.984810] test_progs/1990 [HC2[2]:SC0[0]:HE0:SE1] takes:
[ 18.984810] ffffe8ffffc219c0 (&head->lock){....}-{2:2}, at: __pcpu_freelist_pop+0xe3/0x180
[ 18.984813] {INITIAL USE} state was registered at:
[ 18.984814] lock_acquire+0x175/0x7c0
[ 18.984814] _raw_spin_lock+0x2c/0x40
[ 18.984815] __pcpu_freelist_pop+0xe3/0x180
[ 18.984815] pcpu_freelist_pop+0x31/0x40
[ 18.984816] htab_map_alloc+0xbbf/0xf40
[ 18.984816] __do_sys_bpf+0x5aa/0x3ed0
[ 18.984817] do_syscall_64+0x2d/0x40
[ 18.984818] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 18.984818] irq event stamp: 12
[...]
[ 18.984822] other info that might help us debug this:
[ 18.984823] Possible unsafe locking scenario:
[ 18.984823]
[ 18.984824] CPU0
[ 18.984824] ----
[ 18.984824] lock(&head->lock);
[ 18.984826] <Interrupt>
[ 18.984826] lock(&head->lock);
[ 18.984827]
[ 18.984828] *** DEADLOCK ***
[ 18.984828]
[ 18.984829] 2 locks held by test_progs/1990:
[...]
[ 18.984838] <NMI>
[ 18.984838] dump_stack+0x9a/0xd0
[ 18.984839] lock_acquire+0x5c9/0x7c0
[ 18.984839] ? lock_release+0x6f0/0x6f0
[ 18.984840] ? __pcpu_freelist_pop+0xe3/0x180
[ 18.984840] _raw_spin_lock+0x2c/0x40
[ 18.984841] ? __pcpu_freelist_pop+0xe3/0x180
[ 18.984841] __pcpu_freelist_pop+0xe3/0x180
[ 18.984842] pcpu_freelist_pop+0x17/0x40
[ 18.984842] ? lock_release+0x6f0/0x6f0
[ 18.984843] __bpf_get_stackid+0x534/0xaf0
[ 18.984843] bpf_prog_1fd9e30e1438d3c5_oncpu+0x73/0x350
[ 18.984844] bpf_overflow_handler+0x12f/0x3f0
This is because pcpu_freelist_head.lock is accessed in both NMI and
non-NMI context. Fix this issue by using raw_spin_trylock() in NMI.
Since NMI interrupts non-NMI context, when NMI context tries to lock the
raw_spinlock, non-NMI context of the same CPU may already have locked a
lock and is blocked from unlocking the lock. For a system with N CPUs,
there could be N NMIs at the same time, and they may block N non-NMI
raw_spinlocks. This is tricky for pcpu_freelist_push(), where unlike
_pop(), failing _push() means leaking memory. This issue is more likely to
trigger in non-SMP system.
Fix this issue with an extra list, pcpu_freelist.extralist. The extralist
is primarily used to take _push() when raw_spin_trylock() failed on all
the per CPU lists. It should be empty most of the time. The following
table summarizes the behavior of pcpu_freelist in NMI and non-NMI:
non-NMI pop(): use _lock(); check per CPU lists first;
if all per CPU lists are empty, check extralist;
if extralist is empty, return NULL.
non-NMI push(): use _lock(); only push to per CPU lists.
NMI pop(): use _trylock(); check per CPU lists first;
if all per CPU lists are locked or empty, check extralist;
if extralist is locked or empty, return NULL.
NMI push(): use _trylock(); check per CPU lists first;
if all per CPU lists are locked; try push to extralist;
if extralist is also locked, keep trying on per CPU lists.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201005165838.3735218-1-songliubraving@fb.com
We are missing a deref for the case when we are doing BPF_PROG_BIND_MAP
on a map that's being already held by the program.
There is 'if (ret) bpf_map_put(map)' below which doesn't trigger
because we don't consider this an error.
Let's add missing bpf_map_put() for this specific condition.
Fixes: ef15314aa5 ("bpf: Add BPF_PROG_BIND_MAP syscall")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20201003002544.3601440-1-sdf@google.com
Add bpf_this_cpu_ptr() to help access percpu var on this cpu. This
helper always returns a valid pointer, therefore no need to check
returned value for NULL. Also note that all programs run with
preemption disabled, which means that the returned pointer is stable
during all the execution of the program.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-6-haoluo@google.com
Add bpf_per_cpu_ptr() to help bpf programs access percpu vars.
bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel
except that it may return NULL. This happens when the cpu parameter is
out of range. So the caller must check the returned value.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-5-haoluo@google.com
Pseudo_btf_id is a type of ld_imm insn that associates a btf_id to a
ksym so that further dereferences on the ksym can use the BTF info
to validate accesses. Internally, when seeing a pseudo_btf_id ld insn,
the verifier reads the btf_id stored in the insn[0]'s imm field and
marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND,
which is encoded in btf_vminux by pahole. If the VAR is not of a struct
type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID
and the mem_size is resolved to the size of the VAR's type.
>From the VAR btf_id, the verifier can also read the address of the
ksym's corresponding kernel var from kallsyms and use that to fill
dst_reg.
Therefore, the proper functionality of pseudo_btf_id depends on (1)
kallsyms and (2) the encoding of kernel global VARs in pahole, which
should be available since pahole v1.18.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-2-haoluo@google.com
Currently, perf event in perf event array is removed from the array when
the map fd used to add the event is closed. This behavior makes it
difficult to the share perf events with perf event array.
Introduce perf event map that keeps the perf event open with a new flag
BPF_F_PRESERVE_ELEMS. With this flag set, perf events in the array are not
removed when the original map fd is closed. Instead, the perf event will
stay in the map until 1) it is explicitly removed from the array; or 2)
the array is freed.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200930224927.1936644-2-songliubraving@fb.com
With its use in BPF, the cookie generator can be called very frequently
in particular when used out of cgroup v2 hooks (e.g. connect / sendmsg)
and attached to the root cgroup, for example, when used in v1/v2 mixed
environments. In particular, when there's a high churn on sockets in the
system there can be many parallel requests to the bpf_get_socket_cookie()
and bpf_get_netns_cookie() helpers which then cause contention on the
atomic counter.
As similarly done in f991bd2e14 ("fs: introduce a per-cpu last_ino
allocator"), add a small helper library that both can use for the 64 bit
counters. Given this can be called from different contexts, we also need
to deal with potential nested calls even though in practice they are
considered extremely rare. One idea as suggested by Eric Dumazet was
to use a reverse counter for this situation since we don't expect 64 bit
overflows anyways; that way, we can avoid bigger gaps in the 64 bit
counter space compared to just batch-wise increase. Even on machines
with small number of cores (e.g. 4) the cookie generation shrinks from
min/max/med/avg (ns) of 22/50/40/38.9 down to 10/35/14/17.3 when run
in parallel from multiple CPUs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Link: https://lore.kernel.org/bpf/8a80b8d27d3c49f9a14e1d5213c19d8be87d1dc8.1601477936.git.daniel@iogearbox.net
Eelco reported we can't properly access arguments if the tracing
program is attached to extension program.
Having following program:
SEC("classifier/test_pkt_md_access")
int test_pkt_md_access(struct __sk_buff *skb)
with its extension:
SEC("freplace/test_pkt_md_access")
int test_pkt_md_access_new(struct __sk_buff *skb)
and tracing that extension with:
SEC("fentry/test_pkt_md_access_new")
int BPF_PROG(fentry, struct sk_buff *skb)
It's not possible to access skb argument in the fentry program,
with following error from verifier:
; int BPF_PROG(fentry, struct sk_buff *skb)
0: (79) r1 = *(u64 *)(r1 +0)
invalid bpf_context access off=0 size=8
The problem is that btf_ctx_access gets the context type for the
traced program, which is in this case the extension.
But when we trace extension program, we want to get the context
type of the program that the extension is attached to, so we can
access the argument properly in the trace program.
This version of the patch is tweaked slightly from Jiri's original one,
since the refactoring in the previous patches means we have to get the
target prog type from the new variable in prog->aux instead of directly
from the target prog.
Reported-by: Eelco Chaudron <echaudro@redhat.com>
Suggested-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355278.48470.17057040257274725638.stgit@toke.dk
This enables support for attaching freplace programs to multiple attach
points. It does this by amending the UAPI for bpf_link_Create with a target
btf ID that can be used to supply the new attachment point along with the
target program fd. The target must be compatible with the target that was
supplied at program load time.
The implementation reuses the checks that were factored out of
check_attach_btf_id() to ensure compatibility between the BTF types of the
old and new attachment. If these match, a new bpf_tracing_link will be
created for the new attach target, allowing multiple attachments to
co-exist simultaneously.
The code could theoretically support multiple-attach of other types of
tracing programs as well, but since I don't have a use case for any of
those, there is no API support for doing so.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355169.48470.17165680973640685368.stgit@toke.dk
In preparation for allowing multiple attachments of freplace programs, move
the references to the target program and trampoline into the
bpf_tracing_link structure when that is created. To do this atomically,
introduce a new mutex in prog->aux to protect writing to the two pointers
to target prog and trampoline, and rename the members to make it clear that
they are related.
With this change, it is no longer possible to attach the same tracing
program multiple times (detaching in-between), since the reference from the
tracing program to the target disappears on the first attach. However,
since the next patch will let the caller supply an attach target, that will
also make it possible to attach to the same place multiple times.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355059.48470.2503076992210324984.stgit@toke.dk
The Makefile in bpf/preload builds a local copy of libbpf, but does not
properly clean up after itself. This can lead to subsequent compilation
failures, since the feature detection cache is kept around which can lead
subsequent detection to fail.
Fix this by properly setting clean-files, and while we're at it, also add a
.gitignore for the directory to ignore the build artifacts.
Fixes: d71fa5c976 ("bpf: Add kernel module with user mode driver that populates bpffs.")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200927193005.8459-1-toke@redhat.com
A helper is added to allow seq file writing of kernel data
structures using vmlinux BTF. Its signature is
long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr,
u32 btf_ptr_size, u64 flags);
Flags and struct btf_ptr definitions/use are identical to the
bpf_snprintf_btf helper, and the helper returns 0 on success
or a negative error value.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-8-git-send-email-alan.maguire@oracle.com
BPF iter size is limited to PAGE_SIZE; if we wish to display BTF-based
representations of larger kernel data structures such as task_struct,
this will be insufficient.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-6-git-send-email-alan.maguire@oracle.com
A helper is added to support tracing kernel type information in BPF
using the BPF Type Format (BTF). Its signature is
long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr,
u32 btf_ptr_size, u64 flags);
struct btf_ptr * specifies
- a pointer to the data to be traced
- the BTF id of the type of data pointed to
- a flags field is provided for future use; these flags
are not to be confused with the BTF_F_* flags
below that control how the btf_ptr is displayed; the
flags member of the struct btf_ptr may be used to
disambiguate types in kernel versus module BTF, etc;
the main distinction is the flags relate to the type
and information needed in identifying it; not how it
is displayed.
For example a BPF program with a struct sk_buff *skb
could do the following:
static struct btf_ptr b = { };
b.ptr = skb;
b.type_id = __builtin_btf_type_id(struct sk_buff, 1);
bpf_snprintf_btf(str, sizeof(str), &b, sizeof(b), 0, 0);
Default output looks like this:
(struct sk_buff){
.transport_header = (__u16)65535,
.mac_header = (__u16)65535,
.end = (sk_buff_data_t)192,
.head = (unsigned char *)0x000000007524fd8b,
.data = (unsigned char *)0x000000007524fd8b,
.truesize = (unsigned int)768,
.users = (refcount_t){
.refs = (atomic_t){
.counter = (int)1,
},
},
}
Flags modifying display are as follows:
- BTF_F_COMPACT: no formatting around type information
- BTF_F_NONAME: no struct/union member names/types
- BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
equivalent to %px.
- BTF_F_ZERO: show zero-valued struct/union members;
they are not displayed by default
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-4-git-send-email-alan.maguire@oracle.com
generalize the "seq_show" seq file support in btf.c to support
a generic show callback of which we support two instances; the
current seq file show, and a show with snprintf() behaviour which
instead writes the type data to a supplied string.
Both classes of show function call btf_type_show() with different
targets; the seq file or the string to be written. In the string
case we need to track additional data - length left in string to write
and length to return that we would have written (a la snprintf).
By default show will display type information, field members and
their types and values etc, and the information is indented
based upon structure depth. Zeroed fields are omitted.
Show however supports flags which modify its behaviour:
BTF_SHOW_COMPACT - suppress newline/indent.
BTF_SHOW_NONAME - suppress show of type and member names.
BTF_SHOW_PTR_RAW - do not obfuscate pointer values.
BTF_SHOW_UNSAFE - do not copy data to safe buffer before display.
BTF_SHOW_ZERO - show zeroed values (by default they are not shown).
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-3-git-send-email-alan.maguire@oracle.com
The check_attach_btf_id() function really does three things:
1. It performs a bunch of checks on the program to ensure that the
attachment is valid.
2. It stores a bunch of state about the attachment being requested in
the verifier environment and struct bpf_prog objects.
3. It allocates a trampoline for the attachment.
This patch splits out (1.) and (3.) into separate functions which will
perform the checks, but return the computed values instead of directly
modifying the environment. This is done in preparation for reusing the
checks when the actual attachment is happening, which will allow tracing
programs to have multiple (compatible) attachments.
This also fixes a bug where a bunch of checks were skipped if a trampoline
already existed for the tracing target.
Fixes: 6ba43b761c ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Fixes: 1e6c62a882 ("bpf: Introduce sleepable BPF programs")
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation for moving code around, change a bunch of references to
env->log (and the verbose() logging helper) to use bpf_log() and a direct
pointer to struct bpf_verifier_log. While we're touching the function
signature, mark the 'prog' argument to bpf_check_type_match() as const.
Also enhance the bpf_verifier_log_needed() check to handle NULL pointers
for the log struct so we can re-use the code with logging disabled.
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
From the checks and commit messages for modify_return, it seems it was
never the intention that it should be possible to attach a tracing program
with expected_attach_type == BPF_MODIFY_RETURN to another BPF program.
However, check_attach_modify_return() will only look at the function name,
so if the target function starts with "security_", the attach will be
allowed even for bpf2bpf attachment.
Fix this oversight by also blocking the modification if a target program is
supplied.
Fixes: 18644cec71 ("bpf: Fix use-after-free in fmod_ret check")
Fixes: 6ba43b761c ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow passing a pointer to a BTF struct sock_common* when updating
a sockmap or sockhash. Since BTF pointers can fault and therefore be
NULL at runtime we need to add an additional !sk check to
sock_map_update_elem. Since we may be passed a request or timewait
socket we also need to check sk_fullsock. Doing this allows calling
map_update_elem on sockmap from bpf_iter context, which uses
BTF pointers.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200928090805.23343-2-lmb@cloudflare.com
Add .test_run for raw_tracepoint. Also, introduce a new feature that runs
the target program on a specific CPU. This is achieved by a new flag in
bpf_attr.test, BPF_F_TEST_RUN_ON_CPU. When this flag is set, the program
is triggered on cpu with id bpf_attr.test.cpu. This feature is needed for
BPF programs that handle perf_event and other percpu resources, as the
program can access these resource locally.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200925205432.1777-2-songliubraving@fb.com