[ Upstream commit 60490e7966659b26d74bf1fa4aa8693d9a94ca88 ]
This problem can be reproduced with CONFIG_PERF_USE_VMALLOC enabled on
both x86_64 and aarch64 arch when using sysdig -B(using ebpf)[1].
sysdig -B works fine after rebuilding the kernel with
CONFIG_PERF_USE_VMALLOC disabled.
I tracked it down to the if condition event->rb->nr_pages != nr_pages
in perf_mmap is true when CONFIG_PERF_USE_VMALLOC is enabled where
event->rb->nr_pages = 1 and nr_pages = 2048 resulting perf_mmap to
return -EINVAL. This is because when CONFIG_PERF_USE_VMALLOC is
enabled, rb->nr_pages is always equal to 1.
Arch with CONFIG_PERF_USE_VMALLOC enabled by default:
arc/arm/csky/mips/sh/sparc/xtensa
Arch with CONFIG_PERF_USE_VMALLOC disabled by default:
x86_64/aarch64/...
Fix this problem by using data_page_nr()
[1] https://github.com/draios/sysdig
Fixes: 906010b213 ("perf_event: Provide vmalloc() based mmap() backing")
Signed-off-by: Zhipeng Xie <xiezhipeng1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220209145417.6495-1-xiezhipeng1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d680ff24e9e14444c63945b43a37ede7cd6958f9 ]
Reset appropriate variables in the parser loop between parsing separate
filters, so that they do not interfere with parsing the next filter.
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220131072453.2839535-4-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5f4e5ce638e6a490b976ade4a40017b40abb2da0 upstream.
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration.
Fixes: 058fe1c044 ("perf/core: Make cgroup switch visit only cpuctxs with cgroup events")
Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220204004057.2961252-1-song@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 961c39121759ad09a89598ec4ccdd34ae0468a19 ]
When using per-process mode and event inheritance is set to true,
forked processes will create a new perf events via inherit_event() ->
perf_event_alloc(). But these events will not have ring buffers
assigned to them. Any call to wakeup will be dropped if it's called on
an event with no ring buffer assigned because that's the object that
holds the wakeup list.
If the child event is disabled due to a call to
perf_aux_output_begin() or perf_aux_output_end(), the wakeup is
dropped leaving userspace hanging forever on the poll.
Normally the event is explicitly re-enabled by userspace after it
wakes up to read the aux data, but in this case it does not get woken
up so the event remains disabled.
This can be reproduced when using Arm SPE and 'stress' which forks once
before running the workload. By looking at the list of aux buffers read,
it's apparent that they stop after the fork:
perf record -e arm_spe// -vvv -- stress -c 1
With this patch applied they continue to be printed. This behaviour
doesn't happen when using systemwide or per-cpu mode.
Reported-by: Ruben Ayrapetyan <Ruben.Ayrapetyan@arm.com>
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211206113840.130802-2-james.clark@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 09f5e7dc7ad705289e1b1ec065439aa3c42951c4 ]
Time readers that cannot take locks (due to NMI etc..) currently make
use of perf_event::shadow_ctx_time, which, for that event gives:
time' = now + (time - timestamp)
or, alternatively arranged:
time' = time + (now - timestamp)
IOW, the progression of time since the last time the shadow_ctx_time
was updated.
There's problems with this:
A) the shadow_ctx_time is per-event, even though the ctx_time it
reflects is obviously per context. The direct concequence of this
is that the context needs to iterate all events all the time to
keep the shadow_ctx_time in sync.
B) even with the prior point, the context itself might not be active
meaning its time should not advance to begin with.
C) shadow_ctx_time isn't consistently updated when ctx_time is
There are 3 users of this stuff, that suffer differently from this:
- calc_timer_values()
- perf_output_read()
- perf_event_update_userpage() /* A */
- perf_event_read_local() /* A,B */
In particular, perf_output_read() doesn't suffer at all, because it's
sample driven and hence only relevant when the event is actually
running.
This same was supposed to be true for perf_event_update_userpage(),
after all self-monitoring implies the context is active *HOWEVER*, as
per commit f79256532682 ("perf/core: fix userpage->time_enabled of
inactive events") this goes wrong when combined with counter
overcommit, in that case those events that do not get scheduled when
the context becomes active (task events typically) miss out on the
EVENT_TIME update and ENABLED time is inflated (for a little while)
with the time the context was inactive. Once the event gets rotated
in, this gets corrected, leading to a non-monotonic timeflow.
perf_event_read_local() made things even worse, it can request time at
any point, suffering all the problems perf_event_update_userpage()
does and more. Because while perf_event_update_userpage() is limited
by the context being active, perf_event_read_local() users have no
such constraint.
Therefore, completely overhaul things and do away with
perf_event::shadow_ctx_time. Instead have regular context time updates
keep track of this offset directly and provide perf_event_time_now()
to complement perf_event_time().
perf_event_time_now() will, in adition to being context wide, also
take into account if the context is active. For inactive context, it
will not advance time.
This latter property means the cgroup perf_cgroup_info context needs
to grow addition state to track this.
Additionally, since all this is strictly per-cpu, we can use barrier()
to order context activity vs context time.
Fixes: 7d9285e82d ("perf/bpf: Extend the perf_event_read_local() interface, a.k.a. "bpf: perf event change needed for subsequent bpf helpers"")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Song Liu <song@kernel.org>
Tested-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/r/YcB06DasOBtU0b00@hirez.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c034f48e99907d5be147ac8f0f3e630a9307c2be ]
Drop repeated words in kernel/events/.
{if, the, that, with, time}
Drop repeated words in kernel/locking/.
{it, no, the}
Drop repeated words in kernel/sched/.
{in, not}
Link: https://lkml.kernel.org/r/20210127023412.26292-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Will Deacon <will@kernel.org> [kernel/locking/]
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ff083a2d972f56bebfd82409ca62e5dfce950961 upstream.
Protect perf_guest_cbs with RCU to fix multiple possible errors. Luckily,
all paths that read perf_guest_cbs already require RCU protection, e.g. to
protect the callback chains, so only the direct perf_guest_cbs touchpoints
need to be modified.
Bug #1 is a simple lack of WRITE_ONCE/READ_ONCE behavior to ensure
perf_guest_cbs isn't reloaded between a !NULL check and a dereference.
Fixed via the READ_ONCE() in rcu_dereference().
Bug #2 is that on weakly-ordered architectures, updates to the callbacks
themselves are not guaranteed to be visible before the pointer is made
visible to readers. Fixed by the smp_store_release() in
rcu_assign_pointer() when the new pointer is non-NULL.
Bug #3 is that, because the callbacks are global, it's possible for
readers to run in parallel with an unregisters, and thus a module
implementing the callbacks can be unloaded while readers are in flight,
resulting in a use-after-free. Fixed by a synchronize_rcu() call when
unregistering callbacks.
Bug #1 escaped notice because it's extremely unlikely a compiler will
reload perf_guest_cbs in this sequence. perf_guest_cbs does get reloaded
for future derefs, e.g. for ->is_user_mode(), but the ->is_in_guest()
guard all but guarantees the consumer will win the race, e.g. to nullify
perf_guest_cbs, KVM has to completely exit the guest and teardown down
all VMs before KVM start its module unload / unregister sequence. This
also makes it all but impossible to encounter bug #3.
Bug #2 has not been a problem because all architectures that register
callbacks are strongly ordered and/or have a static set of callbacks.
But with help, unloading kvm_intel can trigger bug #1 e.g. wrapping
perf_guest_cbs with READ_ONCE in perf_misc_flags() while spamming
kvm_intel module load/unload leads to:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 6 PID: 1825 Comm: stress Not tainted 5.14.0-rc2+ #459
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:perf_misc_flags+0x1c/0x70
Call Trace:
perf_prepare_sample+0x53/0x6b0
perf_event_output_forward+0x67/0x160
__perf_event_overflow+0x52/0xf0
handle_pmi_common+0x207/0x300
intel_pmu_handle_irq+0xcf/0x410
perf_event_nmi_handler+0x28/0x50
nmi_handle+0xc7/0x260
default_do_nmi+0x6b/0x170
exc_nmi+0x103/0x130
asm_exc_nmi+0x76/0xbf
Fixes: 39447b386c ("perf: Enhance perf to allow for guest statistic collection from host")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 94902ee299 which is
upstream commit ef54c1a476aef7eef26fe13ea10dc090952c00f8.
Reverting for now due to issues that need to get fixed upstream.
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4716023a8f6a0f4a28047f14dd7ebdc319606b84 upstream.
PEBS PERF_SAMPLE_PHYS_ADDR events use perf_virt_to_phys() to convert PMU
sampled virtual addresses to physical using get_user_page_fast_only()
and page_to_phys().
Some get_user_page_fast_only() error cases return false, indicating no
page reference, but still initialize the output page pointer with an
unreferenced page. In these error cases perf_virt_to_phys() calls
put_page(). This causes page reference count underflow, which can lead
to unintentional page sharing.
Fix perf_virt_to_phys() to only put_page() if get_user_page_fast_only()
returns a referenced page.
Fixes: fc7ce9c74c ("perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR")
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211111021814.757086-1-gthelen@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f792565326825ed806626da50c6f9a928f1079c1 ]
Users of rdpmc rely on the mmapped user page to calculate accurate
time_enabled. Currently, userpage->time_enabled is only updated when the
event is added to the pmu. As a result, inactive event (due to counter
multiplexing) does not have accurate userpage->time_enabled. This can
be reproduced with something like:
/* open 20 task perf_event "cycles", to create multiplexing */
fd = perf_event_open(); /* open task perf_event "cycles" */
userpage = mmap(fd); /* use mmap and rdmpc */
while (true) {
time_enabled_mmap = xxx; /* use logic in perf_event_mmap_page */
time_enabled_read = read(fd).time_enabled;
if (time_enabled_mmap > time_enabled_read)
BUG();
}
Fix this by updating userpage for inactive events in merge_sched_in.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-and-tested-by: Lucian Grijincu <lucian@fb.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210929194313.2398474-1-songliubraving@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit b89a05b21f46150ac10a962aa50109250b56b03b upstream.
In perf_event_addr_filters_apply, the task associated with
the event (event->ctx->task) is read using READ_ONCE at the beginning
of the function, checked, and then re-read from event->ctx->task,
voiding all guarantees of the checks. Reuse the value that was read by
READ_ONCE to ensure the consistency of the task struct throughout the
function.
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Signed-off-by: Baptiste Lepers <baptiste.lepers@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210906015310.12802-1-baptiste.lepers@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c605f8371159432ec61cbb1488dcf7ad24ad19a upstream.
KCSAN reports a data race between increment and decrement of pin_count:
write to 0xffff888237c2d4e0 of 4 bytes by task 15740 on cpu 1:
find_get_context kernel/events/core.c:4617
__do_sys_perf_event_open kernel/events/core.c:12097 [inline]
__se_sys_perf_event_open kernel/events/core.c:11933
...
read to 0xffff888237c2d4e0 of 4 bytes by task 15743 on cpu 0:
perf_unpin_context kernel/events/core.c:1525 [inline]
__do_sys_perf_event_open kernel/events/core.c:12328 [inline]
__se_sys_perf_event_open kernel/events/core.c:11933
...
Because neither read-modify-write here is atomic, this can lead to one
of the operations being lost, resulting in an inconsistent pin_count.
Fix it by adding the missing locking in the CPU-event case.
Fixes: fe4b04fa31 ("perf: Cure task_oncpu_function_call() races")
Reported-by: syzbot+142c9018f5962db69c7e@syzkaller.appspotmail.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210527104711.2671610-1-elver@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ef54c1a476aef7eef26fe13ea10dc090952c00f8 ]
Make perf_event_exit_event() more robust, such that we can use it from
other contexts. Specifically the up and coming remove_on_exec.
For this to work we need to address a few issues. Remove_on_exec will
not destroy the entire context, so we cannot rely on TASK_TOMBSTONE to
disable event_function_call() and we thus have to use
perf_remove_from_context().
When using perf_remove_from_context(), there's two races to consider.
The first is against close(), where we can have concurrent tear-down
of the event. The second is against child_list iteration, which should
not find a half baked event.
To address this, teach perf_remove_from_context() to special case
!ctx->is_active and about DETACH_CHILD.
[ elver@google.com: fix racing parent/child exit in sync_child_event(). ]
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210408103605.1676875-2-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 08ef1af4de5fe7de9c6d69f1e22e51b66e385d9b upstream.
Currently, the lockdown state is queried unconditionally, even though
its result is used only if the PERF_SAMPLE_REGS_INTR bit is set in
attr.sample_type. While that doesn't matter in case of the Lockdown LSM,
it causes trouble with the SELinux's lockdown hook implementation.
SELinux implements the locked_down hook with a check whether the current
task's type has the corresponding "lockdown" class permission
("integrity" or "confidentiality") allowed in the policy. This means
that calling the hook when the access control decision would be ignored
generates a bogus permission check and audit record.
Fix this by checking sample_type first and only calling the hook when
its result would be honored.
Fixes: b0c8fdc7fd ("lockdown: Lock down perf when in confidentiality mode")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Link: https://lkml.kernel.org/r/20210224215628.192519-1-omosnace@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a5398bffc01fe044848c5024e5e867e407f239b8 ]
Sometimes the PMU internal buffers have to be flushed for per-CPU events
during a context switch, e.g., large PEBS. Otherwise, the perf tool may
report samples in locations that do not belong to the process where the
samples are processed in, because PEBS does not tag samples with PID/TID.
The current code only flush the buffers for a per-task event. It doesn't
check a per-CPU event.
Add a new event state flag, PERF_ATTACH_SCHED_CB, to indicate that the
PMU internal buffers have to be flushed for this event during a context
switch.
Add sched_cb_entry and perf_sched_cb_usages back to track the PMU/cpuctx
which is required to be flushed.
Only need to invoke the sched_task() for per-CPU events in this patch.
The per-task events have been handled in perf_event_context_sched_in/out
already.
Fixes: 9c964efa43 ("perf/x86/intel: Drain the PEBS buffer during context switches")
Reported-by: Gabriel Marin <gmx@google.com>
Originally-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201130193842.10569-1-kan.liang@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f7cfd871ae0c5008d94b6f66834e7845caa93c15 ]
Recently syzbot reported[0] that there is a deadlock amongst the users
of exec_update_mutex. The problematic lock ordering found by lockdep
was:
perf_event_open (exec_update_mutex -> ovl_i_mutex)
chown (ovl_i_mutex -> sb_writes)
sendfile (sb_writes -> p->lock)
by reading from a proc file and writing to overlayfs
proc_pid_syscall (p->lock -> exec_update_mutex)
While looking at possible solutions it occured to me that all of the
users and possible users involved only wanted to state of the given
process to remain the same. They are all readers. The only writer is
exec.
There is no reason for readers to block on each other. So fix
this deadlock by transforming exec_update_mutex into a rw_semaphore
named exec_update_lock that only exec takes for writing.
Cc: Jann Horn <jannh@google.com>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christopher Yeoh <cyeoh@au1.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Fixes: eea9673250 ("exec: Add exec_update_mutex to replace cred_guard_mutex")
[0] https://lkml.kernel.org/r/00000000000063640c05ade8e3de@google.com
Reported-by: syzbot+db9cdf3dd1f64252c6ef@syzkaller.appspotmail.com
Link: https://lkml.kernel.org/r/87ft4mbqen.fsf@x220.int.ebiederm.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 78af4dc949daaa37b3fcd5f348f373085b4e858f ]
Syzbot reported a lock inversion involving perf. The sore point being
perf holding exec_update_mutex() for a very long time, specifically
across a whole bunch of filesystem ops in pmu::event_init() (uprobes)
and anon_inode_getfile().
This then inverts against procfs code trying to take
exec_update_mutex.
Move the permission checks later, such that we need to hold the mutex
over less code.
Reported-by: syzbot+db9cdf3dd1f64252c6ef@syzkaller.appspotmail.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Currently perf_event_attr::exclusive can be used to ensure an
event(group) is the sole group scheduled on the PMU. One consequence
is that when you have a pinned event (say the watchdog) you can no
longer have regular exclusive event(group)s.
Inspired by the fact that !pinned events are considered less strict,
allow !pinned,exclusive events to share the PMU with pinned,!exclusive
events.
Pinned,exclusive is still fully exclusive.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201029162902.105962225@infradead.org
Commit 9e6302056f ("perf: Use hrtimers for event multiplexing")
placed the hrtimer (re)start call in the wrong place. Instead of
capturing all scheduling failures, it only considered the PMU failure.
The result is that groups using perf_event_attr::exclusive are no
longer rotated.
Fixes: 9e6302056f ("perf: Use hrtimers for event multiplexing")
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201029162902.038667689@infradead.org
Since event_sched_out() clears cpuctx->exclusive upon removal of an
exclusive event (and only group leaders can be exclusive), there is no
point in group_sched_out() trying to do it too. It is impossible for
cpuctx->exclusive to still be set here.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201029162901.904060564@infradead.org
struct perf_sample_data lives on-stack, we should be careful about it's
size. Furthermore, the pt_regs copy in there is only because x86_64 is a
trainwreck, solve it differently.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201030151955.258178461@infradead.org
__perf_output_begin() has an on-stack struct perf_sample_data in the
unlikely case it needs to generate a LOST record. However, every call
to perf_output_begin() must already have a perf_sample_data on-stack.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
As shown through runtime testing, the "filename" allocation is not
always freed in perf_event_parse_addr_filter().
There are three possible ways that this could happen:
- It could be allocated twice on subsequent iterations through the loop,
- or leaked on the success path,
- or on the failure path.
Clean up the code flow to make it obvious that 'filename' is always
freed in the reallocation path and in the two return paths as well.
We rely on the fact that kfree(NULL) is NOP and filename is initialized
with NULL.
This fixes the leak. No other side effects expected.
[ Dan Carpenter: cleaned up the code flow & added a changelog. ]
[ Ingo Molnar: updated the changelog some more. ]
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Signed-off-by: "kiyin(尹亮)" <kiyin@tencent.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "Srivatsa S. Bhat" <srivatsa@csail.mit.edu>
Cc: Anthony Liguori <aliguori@amazon.com>
--
kernel/events/core.c | 12 +++++-------
1 file changed, 5 insertions(+), 7 deletions(-)
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.
Clean this up properly, and define a proper enum for the notification
mode. Now we have:
- TWA_NONE. This is 0, same as before the original change, meaning no
notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
notification.
Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.
Fixes: e91b481623 ("task_work: teach task_work_add() to do signal_wake_up()")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU
to count all CPU threads.
- Fix setting the proper count when sampling Large Increment
per Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample
periods are specified.
- Extends Family 17h RAPL support to also work on compatible
F19h machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Ef40RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h7NQ//ZdQ26Yg79ZaxBX1QSINJ9AgXDi6rXs75
qU9qNwr/6EF+633RZoPQGAE0Iy5v6h7iLFokcJzM9+kK/rE3ax44tSnPlcMa0+6N
SHXKCa5iL+hH7o2Spo2MZwCYseH79rloX3TSH7ajnN3X8PvwgWshF0lUE3WEWtCs
eHSojdCk43IuL9TpusuNOBM2FvgnheFYWiMbFHd0MTBUMxul30sLVCG8IIWCPA+q
TwG4RJS3X42VbL3SuAGFmOv4OmqNsfkvHvjpDs4NF07tRB9zjXzGrxmGhgSw0NAN
2KK25qbmrpKATIb4Eqsgk/yikX/SCrDEXrjhg3r8FnyPvRfctq1crZjjf672PI2E
bDda76dH6Lq9jv5fsyJjas5OsYdMKBCnA+tGQxXPGbmTXeEcYMRbDnwhYnevI/Q/
8pP+xstF0pmBA3tvpDPrQnYH72Qt7CLJSdcTB15NqZftU2tJxaAyJGx4gJy33jxQ
wu6BIEGHQ7onQYiIyTwsBHyz6xNsF/CRHwAPcGdYrRRbXB5K5nxHiXNb4awciTMx
2HF31/S4OqURNpfcpxOQo+1fb/cLqj3loGqE4jCTwkbS3lrHcAcfxyv9QNn77l1f
hdQ0jworbUNVLUYEUQz1bkZ06GD3LSSas2ZlY1NNdHo62mjyXMQmgirNcZmrFgWl
tl2gNFAU9x4=
=2fuY
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported
systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU to count
all CPU threads.
- Fix setting the proper count when sampling Large Increment per
Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample periods
are specified.
- Extends Family 17h RAPL support to also work on compatible F19h
machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates"
* tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
perf/core: Fix race in the perf_mmap_close() function
perf/x86: Fix n_metric for cancelled txn
perf/x86: Fix n_pair for cancelled txn
x86/events/amd/iommu: Fix sizeof mismatch
perf/x86/intel: Check perf metrics feature for each CPU
perf/x86/intel: Fix Ice Lake event constraint table
perf/x86/intel/uncore: Fix the scale of the IMC free-running events
perf/x86/intel/uncore: Fix for iio mapping on Skylake Server
perf/x86/msr: Add Jasper Lake support
perf/x86/intel: Add Jasper Lake support
perf/x86/intel/uncore: Reduce the number of CBOX counters
perf/x86/intel/uncore: Update Ice Lake uncore units
perf/x86/intel/uncore: Split the Ice Lake and Tiger Lake MSR uncore support
perf/x86/intel/uncore: Support PCIe3 unit on Snow Ridge
perf/x86/intel/uncore: Generic support for the PCI sub driver
perf/x86/intel/uncore: Factor out uncore_pci_pmu_unregister()
perf/x86/intel/uncore: Factor out uncore_pci_pmu_register()
perf/x86/intel/uncore: Factor out uncore_pci_find_dev_pmu()
perf/x86/intel/uncore: Factor out uncore_pci_get_dev_die_info()
perf/amd/uncore: Inform the user how many counters each uncore PMU has
...
There's a possible race in perf_mmap_close() when checking ring buffer's
mmap_count refcount value. The problem is that the mmap_count check is
not atomic because we call atomic_dec() and atomic_read() separately.
perf_mmap_close:
...
atomic_dec(&rb->mmap_count);
...
if (atomic_read(&rb->mmap_count))
goto out_put;
<ring buffer detach>
free_uid
out_put:
ring_buffer_put(rb); /* could be last */
The race can happen when we have two (or more) events sharing same ring
buffer and they go through atomic_dec() and then they both see 0 as refcount
value later in atomic_read(). Then both will go on and execute code which
is meant to be run just once.
The code that detaches ring buffer is probably fine to be executed more
than once, but the problem is in calling free_uid(), which will later on
demonstrate in related crashes and refcount warnings, like:
refcount_t: addition on 0; use-after-free.
...
RIP: 0010:refcount_warn_saturate+0x6d/0xf
...
Call Trace:
prepare_creds+0x190/0x1e0
copy_creds+0x35/0x172
copy_process+0x471/0x1a80
_do_fork+0x83/0x3a0
__do_sys_wait4+0x83/0x90
__do_sys_clone+0x85/0xa0
do_syscall_64+0x5b/0x1e0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Using atomic decrease and check instead of separated calls.
Tested-by: Michael Petlan <mpetlan@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Wade Mealing <wmealing@redhat.com>
Fixes: 9bb5d40cd9 ("perf: Fix mmap() accounting hole");
Link: https://lore.kernel.org/r/20200916115311.GE2301783@krava
The error handling introduced by commit:
2ed6edd33a ("perf: Add cond_resched() to task_function_call()")
looses any return value from smp_call_function_single() that is not
{0, -EINVAL}. This is a problem because it will return -EXNIO when the
target CPU is offline. Worse, in that case it'll turn into an infinite
loop.
Fixes: 2ed6edd33a ("perf: Add cond_resched() to task_function_call()")
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20200827064732.20860-1-kjain@linux.ibm.com
The pmu::sched_task() is a context switch callback. It passes the
cpuctx->task_ctx as a parameter to the lower code. To find the
cpuctx->task_ctx, the current code iterates a cpuctx list.
The same context will iterated in perf_event_context_sched_out() soon.
Share the cpuctx->task_ctx can avoid the unnecessary iteration of the
cpuctx list.
The pmu::sched_task() is also required for the optimization case for
equivalent contexts.
The task_ctx_sched_out() will eventually disable and reenable the PMU
when schedule out events. Add perf_pmu_disable() and perf_pmu_enable()
around task_ctx_sched_out() don't break anything.
Drop the cpuctx->ctx.lock for the pmu::sched_task(). The lock is for
per-CPU context, which is not necessary for the per-task context
schedule.
No one uses sched_cb_entry, perf_sched_cb_usages, sched_cb_list, and
perf_pmu_sched_task() any more.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200821195754.20159-2-kan.liang@linux.intel.com
The pmu::sched_task() is a context switch callback. It passes the
cpuctx->task_ctx as a parameter to the lower code. To find the
cpuctx->task_ctx, the current code iterates a cpuctx list.
The same context was just iterated in perf_event_context_sched_in(),
which is invoked right before the pmu::sched_task().
Reuse the cpuctx->task_ctx from perf_event_context_sched_in() can avoid
the unnecessary iteration of the cpuctx list.
Both pmu::sched_task and perf_event_context_sched_in() have to disable
PMU. Pull the pmu::sched_task into perf_event_context_sched_in() can
also save the overhead from the PMU disable and reenable.
The new and old tasks may have equivalent contexts. The current code
optimize this case by swapping the context, which avoids the scheduling.
For this case, pmu::sched_task() is still required, e.g., restore the
LBR content.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200821195754.20159-1-kan.liang@linux.intel.com
syzbot crashed on the VM_BUG_ON_PAGE(PageTail) in munlock_vma_page(), when
called from uprobes __replace_page(). Which of many ways to fix it?
Settled on not calling when PageCompound (since Head and Tail are equals
in this context, PageCompound the usual check in uprobes.c, and the prior
use of FOLL_SPLIT_PMD will have cleared PageMlocked already).
Fixes: 5a52c9df62 ("uprobe: use FOLL_SPLIT_PMD instead of FOLL_SPLIT")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008161338360.20413@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current perf assumes that events in a group are independent. Close an
event doesn't impact the value of the other events in the same group.
If the closed event is a member, after the event closure, other events
are still running like a group. If the closed event is a leader, other
events are running as singleton events.
Add PERF_EV_CAP_SIBLING to allow events to indicate they require being
part of a group, and when the leader dies they cannot exist
independently.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-8-kan.liang@linux.intel.com
plus a RAPL HW-enablement for Intel SPR platforms.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl83xBQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gb9RAArM0jJemRPHv1a/xLhrRo/cKURrOWpNl0
OQtgppEv9axkavYL34eyoax4LTDCFXxE+NDClSC16abFEVPNriGODNE+CMbFgMbW
AyDfP+AsDdNExwl+JWR+J37KIpEIzWLqtjzEjVxZqsuov3C+EaLU4gv947UFohxM
QE93d8q3znBSdMjeC/aZyL8iX4aCB0oMjrP7BMXo9a61/oseKLnvE8Zu/ESFDe1S
TYZ+VlCxyaZOUBkEyd8+h/CBL8kOvQ2ObBEBxmyQQdGuRZ20BcJRodk3g+mOdnHJ
zeohRcXvIHskHTEVeQv+Eh4EitFT3bEFrbk0LwMhKubIhFTKIB42sAzyeC6iUGc/
O5+Qe+bn3kYMynMHNo1yfh0s0S3cU3cfBnC1I2A/NyAn49H0UPr+rjynuKHtCA1+
S36Q9BydZegU/jyhbbDs+h/cdOiKY2F3MPEAZg3u/7EM+NIrmvuQoA7+C33fmLA+
tZzpeDpqNKz65JgYDQ2sZdghyVp41KTogeTm6Xu5O3sLhCnATiyqL2z2LCoWj+yZ
KuZ+zHtV8ajRwt1bhq7qFUIyQLsHHUlz5z7TiUC7qqB48LpxO7LiTZ7CxUDY432N
Xz8QPD/D71HAWmbkAXUih+JXG0nQSdlF6Xpwquczqc/8odJ46xdQ+i5wIgBOcudP
A+kEXRqz5rA=
=NsxB
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Misc fixes, an expansion of perf syscall access to CAP_PERFMON
privileged tools, plus a RAPL HW-enablement for Intel SPR platforms"
* tag 'perf-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/rapl: Add support for Intel SPR platform
perf/x86/rapl: Support multiple RAPL unit quirks
perf/x86/rapl: Fix missing psys sysfs attributes
hw_breakpoint: Remove unused __register_perf_hw_breakpoint() declaration
kprobes: Remove show_registers() function prototype
perf/core: Take over CAP_SYS_PTRACE creds to CAP_PERFMON capability
After the cleanup of page fault accounting, gup does not need to pass
task_struct around any more. Remove that parameter in the whole gup
stack.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Link: http://lkml.kernel.org/r/20200707225021.200906-26-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add helpers to wrap the get_fs/set_fs magic for undoing any damange done
by set_fs(KERNEL_DS). There is no real functional benefit, but this
documents the intent of these calls better, and will allow stubbing the
functions out easily for kernels builds that do not allow address space
overrides in the future.
[hch@lst.de: drop two incorrect hunks, fix a commit log typo]
Link: http://lkml.kernel.org/r/20200714105505.935079-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Link: http://lkml.kernel.org/r/20200710135706.537715-6-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current implementation, newly created or swap-in anonymous page is
started on active list. Growing active list results in rebalancing
active/inactive list so old pages on active list are demoted to inactive
list. Hence, the page on active list isn't protected at all.
Following is an example of this situation.
Assume that 50 hot pages on active list. Numbers denote the number of
pages on active/inactive list (active | inactive).
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(uo) | 50(h)
3. workload: another 50 newly created (used-once) pages
50(uo) | 50(uo), swap-out 50(h)
This patch tries to fix this issue. Like as file LRU, newly created or
swap-in anonymous pages will be inserted to the inactive list. They are
promoted to active list if enough reference happens. This simple
modification changes the above example as following.
1. 50 hot pages on active list
50(h) | 0
2. workload: 50 newly created (used-once) pages
50(h) | 50(uo)
3. workload: another 50 newly created (used-once) pages
50(h) | 50(uo), swap-out 50(uo)
As you can see, hot pages on active list would be protected.
Note that, this implementation has a drawback that the page cannot be
promoted and will be swapped-out if re-access interval is greater than the
size of inactive list but less than the size of total(active+inactive).
To solve this potential issue, following patch will apply workingset
detection similar to the one that's already applied to file LRU.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) Support 6Ghz band in ath11k driver, from Rajkumar Manoharan.
2) Support UDP segmentation in code TSO code, from Eric Dumazet.
3) Allow flashing different flash images in cxgb4 driver, from Vishal
Kulkarni.
4) Add drop frames counter and flow status to tc flower offloading,
from Po Liu.
5) Support n-tuple filters in cxgb4, from Vishal Kulkarni.
6) Various new indirect call avoidance, from Eric Dumazet and Brian
Vazquez.
7) Fix BPF verifier failures on 32-bit pointer arithmetic, from
Yonghong Song.
8) Support querying and setting hardware address of a port function via
devlink, use this in mlx5, from Parav Pandit.
9) Support hw ipsec offload on bonding slaves, from Jarod Wilson.
10) Switch qca8k driver over to phylink, from Jonathan McDowell.
11) In bpftool, show list of processes holding BPF FD references to
maps, programs, links, and btf objects. From Andrii Nakryiko.
12) Several conversions over to generic power management, from Vaibhav
Gupta.
13) Add support for SO_KEEPALIVE et al. to bpf_setsockopt(), from Dmitry
Yakunin.
14) Various https url conversions, from Alexander A. Klimov.
15) Timestamping and PHC support for mscc PHY driver, from Antoine
Tenart.
16) Support bpf iterating over tcp and udp sockets, from Yonghong Song.
17) Support 5GBASE-T i40e NICs, from Aleksandr Loktionov.
18) Add kTLS RX HW offload support to mlx5e, from Tariq Toukan.
19) Fix the ->ndo_start_xmit() return type to be netdev_tx_t in several
drivers. From Luc Van Oostenryck.
20) XDP support for xen-netfront, from Denis Kirjanov.
21) Support receive buffer autotuning in MPTCP, from Florian Westphal.
22) Support EF100 chip in sfc driver, from Edward Cree.
23) Add XDP support to mvpp2 driver, from Matteo Croce.
24) Support MPTCP in sock_diag, from Paolo Abeni.
25) Commonize UDP tunnel offloading code by creating udp_tunnel_nic
infrastructure, from Jakub Kicinski.
26) Several pci_ --> dma_ API conversions, from Christophe JAILLET.
27) Add FLOW_ACTION_POLICE support to mlxsw, from Ido Schimmel.
28) Add SK_LOOKUP bpf program type, from Jakub Sitnicki.
29) Refactor a lot of networking socket option handling code in order to
avoid set_fs() calls, from Christoph Hellwig.
30) Add rfc4884 support to icmp code, from Willem de Bruijn.
31) Support TBF offload in dpaa2-eth driver, from Ioana Ciornei.
32) Support XDP_REDIRECT in qede driver, from Alexander Lobakin.
33) Support PCI relaxed ordering in mlx5 driver, from Aya Levin.
34) Support TCP syncookies in MPTCP, from Flowian Westphal.
35) Fix several tricky cases of PMTU handling wrt. briding, from Stefano
Brivio.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2056 commits)
net: thunderx: initialize VF's mailbox mutex before first usage
usb: hso: remove bogus check for EINPROGRESS
usb: hso: no complaint about kmalloc failure
hso: fix bailout in error case of probe
ip_tunnel_core: Fix build for archs without _HAVE_ARCH_IPV6_CSUM
selftests/net: relax cpu affinity requirement in msg_zerocopy test
mptcp: be careful on subflow creation
selftests: rtnetlink: make kci_test_encap() return sub-test result
selftests: rtnetlink: correct the final return value for the test
net: dsa: sja1105: use detected device id instead of DT one on mismatch
tipc: set ub->ifindex for local ipv6 address
ipv6: add ipv6_dev_find()
net: openvswitch: silence suspicious RCU usage warning
Revert "vxlan: fix tos value before xmit"
ptp: only allow phase values lower than 1 period
farsync: switch from 'pci_' to 'dma_' API
wan: wanxl: switch from 'pci_' to 'dma_' API
hv_netvsc: do not use VF device if link is down
dpaa2-eth: Fix passing zero to 'PTR_ERR' warning
net: macb: Properly handle phylink on at91sam9x
...
bpf_get_[stack|stackid] on perf_events with precise_ip uses callchain
attached to perf_sample_data. If this callchain is not presented, do not
allow attaching BPF program that calls bpf_get_[stack|stackid] to this
event.
In the error case, -EPROTO is returned so that libbpf can identify this
error and print proper hint message.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723180648.1429892-3-songliubraving@fb.com
The UDP reuseport conflict was a little bit tricky.
The net-next code, via bpf-next, extracted the reuseport handling
into a helper so that the BPF sk lookup code could invoke it.
At the same time, the logic for reuseport handling of unconnected
sockets changed via commit efc6b6f6c3
which changed the logic to carry on the reuseport result into the
rest of the lookup loop if we do not return immediately.
This requires moving the reuseport_has_conns() logic into the callers.
While we are here, get rid of inline directives as they do not belong
in foo.c files.
The other changes were cases of more straightforward overlapping
modifications.
Signed-off-by: David S. Miller <davem@davemloft.net>
If a tracee is uprobed and it hits int3 inserted by debugger, handle_swbp()
does send_sig(SIGTRAP, current, 0) which means si_code == SI_USER. This used
to work when this code was written, but then GDB started to validate si_code
and now it simply can't use breakpoints if the tracee has an active uprobe:
# cat test.c
void unused_func(void)
{
}
int main(void)
{
return 0;
}
# gcc -g test.c -o test
# perf probe -x ./test -a unused_func
# perf record -e probe_test:unused_func gdb ./test -ex run
GNU gdb (GDB) 10.0.50.20200714-git
...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x00007ffff7ddf909 in dl_main () from /lib64/ld-linux-x86-64.so.2
(gdb)
The tracee hits the internal breakpoint inserted by GDB to monitor shared
library events but GDB misinterprets this SIGTRAP and reports a signal.
Change handle_swbp() to use force_sig(SIGTRAP), this matches do_int3_user()
and fixes the problem.
This is the minimal fix for -stable, arch/x86/kernel/uprobes.c is equally
wrong; it should use send_sigtrap(TRAP_TRACE) instead of send_sig(SIGTRAP),
but this doesn't confuse GDB and needs another x86-specific patch.
Reported-by: Aaron Merey <amerey@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200723154420.GA32043@redhat.com
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.
In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:
git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
xargs perl -pi -e \
's/\buninitialized_var\(([^\)]+)\)/\1/g;
s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'
drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.
No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.
[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/
Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
Currently, the PMU specific data task_ctx_data is allocated by the
function kzalloc() in the perf generic code. When there is no specific
alignment requirement for the task_ctx_data, the method works well for
now. However, there will be a problem once a specific alignment
requirement is introduced in future features, e.g., the Architecture LBR
XSAVE feature requires 64-byte alignment. If the specific alignment
requirement is not fulfilled, the XSAVE family of instructions will fail
to save/restore the xstate to/from the task_ctx_data.
The function kzalloc() itself only guarantees a natural alignment. A
new method to allocate the task_ctx_data has to be introduced, which
has to meet the requirements as below:
- must be a generic method can be used by different architectures,
because the allocation of the task_ctx_data is implemented in the
perf generic code;
- must be an alignment-guarantee method (The alignment requirement is
not changed after the boot);
- must be able to allocate/free a buffer (smaller than a page size)
dynamically;
- should not cause extra CPU overhead or space overhead.
Several options were considered as below:
- One option is to allocate a larger buffer for task_ctx_data. E.g.,
ptr = kmalloc(size + alignment, GFP_KERNEL);
ptr &= ~(alignment - 1);
This option causes space overhead.
- Another option is to allocate the task_ctx_data in the PMU specific
code. To do so, several function pointers have to be added. As a
result, both the generic structure and the PMU specific structure
will become bigger. Besides, extra function calls are added when
allocating/freeing the buffer. This option will increase both the
space overhead and CPU overhead.
- The third option is to use a kmem_cache to allocate a buffer for the
task_ctx_data. The kmem_cache can be created with a specific alignment
requirement by the PMU at boot time. A new pointer for kmem_cache has
to be added in the generic struct pmu, which would be used to
dynamically allocate a buffer for the task_ctx_data at run time.
Although the new pointer is added to the struct pmu, the existing
variable task_ctx_size is not required anymore. The size of the
generic structure is kept the same.
The third option which meets all the aforementioned requirements is used
to replace kzalloc() for the PMU specific data allocation. A later patch
will remove the kzalloc() method and the related variables.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-17-git-send-email-kan.liang@linux.intel.com
The method to allocate/free the task_ctx_data is going to be changed in
the following patch. Currently, the task_ctx_data is allocated/freed in
several different places. To avoid repeatedly modifying the same codes
in several different places, alloc_task_ctx_data() and
free_task_ctx_data() are factored out to allocate/free the
task_ctx_data. The modification only needs to be applied once.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-16-git-send-email-kan.liang@linux.intel.com