Commit Graph

674 Commits

Author SHA1 Message Date
Vladimir Davydov
7c094fd698 memcg: fix mutex not unlocked on memcg_create_kmem_cache fail path
Commit 842e287369 ("memcg: get rid of kmem_cache_dup()") introduced a
mutex for memcg_create_kmem_cache() to protect the tmp_name buffer that
holds the memcg name.  It failed to unlock the mutex if this buffer
could not be allocated.

This patch fixes the issue by appropriately unlocking the mutex if the
allocation fails.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30 16:56:56 -08:00
Vladimir Davydov
0d8a4a3799 memcg: remove unused code from kmem_cache_destroy_work_func
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Michal Hocko
0eef615665 memcg: fix css reference leak and endless loop in mem_cgroup_iter
Commit 19f3940286 ("memcg: simplify mem_cgroup_iter") has reorganized
mem_cgroup_iter code in order to simplify it.  A part of that change was
dropping an optimization which didn't call css_tryget on the root of the
walked tree.  The patch however didn't change the css_put part in
mem_cgroup_iter which excludes root.

This wasn't an issue at the time because __mem_cgroup_iter_next bailed
out for root early without taking a reference as cgroup iterators
(css_next_descendant_pre) didn't visit root themselves.

Nevertheless cgroup iterators have been reworked to visit root by commit
bd8815a6d8 ("cgroup: make css_for_each_descendant() and friends
include the origin css in the iteration") when the root bypass have been
dropped in __mem_cgroup_iter_next.  This means that css_put is not
called for root and so css along with mem_cgroup and other cgroup
internal object tied by css lifetime are never freed.

Fix the issue by reintroducing root check in __mem_cgroup_iter_next and
do not take css reference for it.

This reference counting magic protects us also from another issue, an
endless loop reported by Hugh Dickins when reclaim races with root
removal and css_tryget called by iterator internally would fail.  There
would be no other nodes to visit so __mem_cgroup_iter_next would return
NULL and mem_cgroup_iter would interpret it as "start looping from root
again" and so mem_cgroup_iter would loop forever internally.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Michal Hocko
ecc736fc3c memcg: fix endless loop caused by mem_cgroup_iter
Hugh has reported an endless loop when the hardlimit reclaim sees the
same group all the time.  This might happen when the reclaim races with
the memcg removal.

shrink_zone
                                                [rmdir root]
  mem_cgroup_iter(root, NULL, reclaim)
    // prev = NULL
    rcu_read_lock()
    mem_cgroup_iter_load
      last_visited = iter->last_visited   // gets root || NULL
      css_tryget(last_visited)            // failed
      last_visited = NULL                 [1]
    memcg = root = __mem_cgroup_iter_next(root, NULL)
    mem_cgroup_iter_update
      iter->last_visited = root;
    reclaim->generation = iter->generation

 mem_cgroup_iter(root, root, reclaim)
   // prev = root
   rcu_read_lock
    mem_cgroup_iter_load
      last_visited = iter->last_visited   // gets root
      css_tryget(last_visited)            // failed
    [1]

The issue seemed to be introduced by commit 5f57816197 ("memcg: relax
memcg iter caching") which has replaced unconditional css_get/css_put by
css_tryget/css_put for the cached iterator.

This patch fixes the issue by skipping css_tryget on the root of the
tree walk in mem_cgroup_iter_load and symmetrically doesn't release it
in mem_cgroup_iter_update.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>	[3.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
David Rientjes
d49ad93554 mm, oom: prefer thread group leaders for display purposes
When two threads have the same badness score, it's preferable to kill
the thread group leader so that the actual process name is printed to
the kernel log rather than the thread group name which may be shared
amongst several processes.

This was the behavior when select_bad_process() used to do
for_each_process(), but it now iterates threads instead and leads to
ambiguity.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Hugh Dickins
d8ad305597 mm/memcg: iteration skip memcgs not yet fully initialized
It is surprising that the mem_cgroup iterator can return memcgs which
have not yet been fully initialized.  By accident (or trial and error?)
this appears not to present an actual problem; but it may be better to
prevent such surprises, by skipping memcgs not yet online.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Hugh Dickins
d2ab70aaae mm/memcg: fix last_dead_count memory wastage
Shorten mem_cgroup_reclaim_iter.last_dead_count from unsigned long to
int: it's assigned from an int and compared with an int, and adjacent to
an unsigned int: so there's no point to it being unsigned long, which
wasted 104 bytes in every mem_cgroup_per_zone.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Vladimir Davydov
d644163770 memcg: rework memcg_update_kmem_limit synchronization
Currently we take both the memcg_create_mutex and the set_limit_mutex
when we enable kmem accounting for a memory cgroup, which makes kmem
activation events serialize with both memcg creations and other memcg
limit updates (memory.limit, memory.memsw.limit).  However, there is no
point in such strict synchronization rules there.

First, the set_limit_mutex was introduced to keep the memory.limit and
memory.memsw.limit values in sync.  Since memory.kmem.limit can be set
independently of them, it is better to introduce a separate mutex to
synchronize against concurrent kmem limit updates.

Second, we take the memcg_create_mutex in order to make sure all
children of this memcg will be kmem-active as well.  For achieving that,
it is enough to hold this mutex only while checking if
memcg_has_children() though.  This guarantees that if a child is added
after we checked that the memcg has no children, the newly added cgroup
will see its parent kmem-active (of course if the latter succeeded), and
call kmem activation for itself.

This patch simplifies the locking rules of memcg_update_kmem_limit()
according to these considerations.

[vdavydov@parallels.com: fix unintialized var warning]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
6de64beb34 memcg: remove KMEM_ACCOUNTED_ACTIVATED flag
Currently we have two state bits in mem_cgroup::kmem_account_flags
regarding kmem accounting activation, ACTIVATED and ACTIVE.  We start
kmem accounting only if both flags are set (memcg_can_account_kmem()),
plus throughout the code there are several places where we check only
the ACTIVE flag, but we never check the ACTIVATED flag alone.  These
flags are both set from memcg_update_kmem_limit() under the
set_limit_mutex, the ACTIVE flag always being set after ACTIVATED, and
they never get cleared.  That said checking if both flags are set is
equivalent to checking only for the ACTIVE flag, and since there is no
ACTIVATED flag checks, we can safely remove the ACTIVATED flag, and
nothing will change.

Let's try to understand what was the reason for introducing these flags.
The purpose of the ACTIVE flag is clear - it states that kmem should be
accounting to the cgroup.  The only requirement for it is that it should
be set after we have fully initialized kmem accounting bits for the
cgroup and patched all static branches relating to kmem accounting.
Since we always check if static branch is enabled before actually
considering if we should account (otherwise we wouldn't benefit from
static branching), this guarantees us that we won't skip a commit or
uncharge after a charge due to an unpatched static branch.

Now let's move on to the ACTIVATED bit.  As I proved in the beginning of
this message, it is absolutely useless, and removing it will change
nothing.  So what was the reason introducing it?

The ACTIVATED flag was introduced by commit a8964b9b84 ("memcg: use
static branches when code not in use") in order to guarantee that
static_key_slow_inc(&memcg_kmem_enabled_key) would be called only once
for each memory cgroup when its kmem accounting was activated.  The
point was that at that time the memcg_update_kmem_limit() function's
work-flow looked like this:

        bool must_inc_static_branch = false;

        cgroup_lock();
        mutex_lock(&set_limit_mutex);
        if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
                /* The kmem limit is set for the first time */
                ret = res_counter_set_limit(&memcg->kmem, val);

                memcg_kmem_set_activated(memcg);
                must_inc_static_branch = true;
        } else
                ret = res_counter_set_limit(&memcg->kmem, val);
        mutex_unlock(&set_limit_mutex);
        cgroup_unlock();

        if (must_inc_static_branch) {
                /* We can't do this under cgroup_lock */
                static_key_slow_inc(&memcg_kmem_enabled_key);
                memcg_kmem_set_active(memcg);
        }

So that without the ACTIVATED flag we could race with other threads
trying to set the limit and increment the static branching ref-counter
more than once.  Today we call the whole memcg_update_kmem_limit()
function under the set_limit_mutex and this race is impossible.

As now we understand why the ACTIVATED bit was introduced and why we
don't need it now, and know that removing it will change nothing anyway,
let's get rid of it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
f8570263ee memcg, slab: RCU protect memcg_params for root caches
We relocate root cache's memcg_params whenever we need to grow the
memcg_caches array to accommodate all kmem-active memory cgroups.
Currently on relocation we free the old version immediately, which can
lead to use-after-free, because the memcg_caches array is accessed
lock-free (see cache_from_memcg_idx()).  This patch fixes this by making
memcg_params RCU-protected for root caches.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
842e287369 memcg: get rid of kmem_cache_dup()
kmem_cache_dup() is only called from memcg_create_kmem_cache().  The
latter, in fact, does nothing besides this, so let's fold
kmem_cache_dup() into memcg_create_kmem_cache().

This patch also makes the memcg_cache_mutex private to
memcg_create_kmem_cache(), because it is not used anywhere else.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
2edefe1155 memcg, slab: fix races in per-memcg cache creation/destruction
We obtain a per-memcg cache from a root kmem_cache by dereferencing an
entry of the root cache's memcg_params::memcg_caches array.  If we find
no cache for a memcg there on allocation, we initiate the memcg cache
creation (see memcg_kmem_get_cache()).  The cache creation proceeds
asynchronously in memcg_create_kmem_cache() in order to avoid lock
clashes, so there can be several threads trying to create the same
kmem_cache concurrently, but only one of them may succeed.  However, due
to a race in the code, it is not always true.  The point is that the
memcg_caches array can be relocated when we activate kmem accounting for
a memcg (see memcg_update_all_caches(), memcg_update_cache_size()).  If
memcg_update_cache_size() and memcg_create_kmem_cache() proceed
concurrently as described below, we can leak a kmem_cache.

Asume two threads schedule creation of the same kmem_cache.  One of them
successfully creates it.  Another one should fail then, but if
memcg_create_kmem_cache() interleaves with memcg_update_cache_size() as
follows, it won't:

  memcg_create_kmem_cache()             memcg_update_cache_size()
  (called w/o mutexes held)             (called with slab_mutex,
                                         set_limit_mutex held)
  -------------------------             -------------------------

  mutex_lock(&memcg_cache_mutex)

                                        s->memcg_params=kzalloc(...)

  new_cachep=cache_from_memcg_idx(cachep,idx)
  // new_cachep==NULL => proceed to creation

                                        s->memcg_params->memcg_caches[i]
                                            =cur_params->memcg_caches[i]

  // kmem_cache_create_memcg takes slab_mutex
  // so we will hang around until
  // memcg_update_cache_size finishes, but
  // nothing will prevent it from succeeding so
  // memcg_caches[idx] will be overwritten in
  // memcg_register_cache!

  new_cachep = kmem_cache_create_memcg(...)
  mutex_unlock(&memcg_cache_mutex)

Let's fix this by moving the check for existence of the memcg cache to
kmem_cache_create_memcg() to be called under the slab_mutex and make it
return NULL if so.

A similar race is possible when destroying a memcg cache (see
kmem_cache_destroy()).  Since memcg_unregister_cache(), which clears the
pointer in the memcg_caches array, is called w/o protection, we can race
with memcg_update_cache_size() and omit clearing the pointer.  Therefore
memcg_unregister_cache() should be moved before we release the
slab_mutex.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
96403da244 memcg: fix possible NULL deref while traversing memcg_slab_caches list
All caches of the same memory cgroup are linked in the memcg_slab_caches
list via kmem_cache::memcg_params::list.  This list is traversed, for
example, when we read memory.kmem.slabinfo.

Since the list actually consists of memcg_cache_params objects, we have
to convert an element of the list to a kmem_cache object using
memcg_params_to_cache(), which obtains the pointer to the cache from the
memcg_params::memcg_caches array of the corresponding root cache.  That
said the pointer to a kmem_cache in its parent's memcg_params must be
initialized before adding the cache to the list, and cleared only after
it has been unlinked.  Currently it is vice-versa, which can result in a
NULL ptr dereference while traversing the memcg_slab_caches list.  This
patch restores the correct order.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
959c8963fc memcg, slab: fix barrier usage when accessing memcg_caches
Each root kmem_cache has pointers to per-memcg caches stored in its
memcg_params::memcg_caches array.  Whenever we want to allocate a slab
for a memcg, we access this array to get per-memcg cache to allocate
from (see memcg_kmem_get_cache()).  The access must be lock-free for
performance reasons, so we should use barriers to assert the kmem_cache
is up-to-date.

First, we should place a write barrier immediately before setting the
pointer to it in the memcg_caches array in order to make sure nobody
will see a partially initialized object.  Second, we should issue a read
barrier before dereferencing the pointer to conform to the write
barrier.

However, currently the barrier usage looks rather strange.  We have a
write barrier *after* setting the pointer and a read barrier *before*
reading the pointer, which is incorrect.  This patch fixes this.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
1aa1325425 memcg, slab: clean up memcg cache initialization/destruction
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.

Per-memcg caches are created in memcg_create_kmem_cache().  This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.

During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:

 - memcg_alloc_cache_params(), to initialize memcg_params of the newly
   created cache;
 - memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
   list.

On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.

Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.

This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
363a044f73 memcg, slab: kmem_cache_create_memcg(): fix memleak on fail path
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.

Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Sasha Levin
309381feae mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page.  Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.

I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.

This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.

[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Vladimir Davydov
8ff69e2c85 memcg: do not use vmalloc for mem_cgroup allocations
The vmalloc was introduced by 3332794878 ("memcgroup: use vmalloc for
mem_cgroup allocation"), because at that time MAX_NUMNODES was used for
defining the per-node array in the mem_cgroup structure so that the
structure could be huge even if the system had the only NUMA node.

The situation was significantly improved by commit 45cf7ebd5a ("memcg:
reduce the size of struct memcg 244-fold"), which made the size of the
mem_cgroup structure calculated dynamically depending on the real number
of NUMA nodes installed on the system (nr_node_ids), so now there is no
point in using vmalloc here: the structure is allocated rarely and on
most systems its size is about 1K.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Linus Torvalds
df32e43a54 Merge branch 'akpm' (incoming from Andrew)
Merge first patch-bomb from Andrew Morton:

 - a couple of misc things

 - inotify/fsnotify work from Jan

 - ocfs2 updates (partial)

 - about half of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (117 commits)
  mm/migrate: remove unused function, fail_migrate_page()
  mm/migrate: remove putback_lru_pages, fix comment on putback_movable_pages
  mm/migrate: correct failure handling if !hugepage_migration_support()
  mm/migrate: add comment about permanent failure path
  mm, page_alloc: warn for non-blockable __GFP_NOFAIL allocation failure
  mm: compaction: reset scanner positions immediately when they meet
  mm: compaction: do not mark unmovable pageblocks as skipped in async compaction
  mm: compaction: detect when scanners meet in isolate_freepages
  mm: compaction: reset cached scanner pfn's before reading them
  mm: compaction: encapsulate defer reset logic
  mm: compaction: trace compaction begin and end
  memcg, oom: lock mem_cgroup_print_oom_info
  sched: add tracepoints related to NUMA task migration
  mm: numa: do not automatically migrate KSM pages
  mm: numa: trace tasks that fail migration due to rate limiting
  mm: numa: limit scope of lock for NUMA migrate rate limiting
  mm: numa: make NUMA-migrate related functions static
  lib/show_mem.c: show num_poisoned_pages when oom
  mm/hwpoison: add '#' to hwpoison_inject
  mm/memblock: use WARN_ONCE when MAX_NUMNODES passed as input parameter
  ...
2014-01-21 19:05:45 -08:00
Linus Torvalds
f075e0f699 Merge branch 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "The bulk of changes are cleanups and preparations for the upcoming
  kernfs conversion.

   - cgroup_event mechanism which is and will be used only by memcg is
     moved to memcg.

   - pidlist handling is updated so that it can be served by seq_file.

     Also, the list is not sorted if sane_behavior.  cgroup
     documentation explicitly states that the file is not sorted but it
     has been for quite some time.

   - All cgroup file handling now happens on top of seq_file.  This is
     to prepare for kernfs conversion.  In addition, all operations are
     restructured so that they map 1-1 to kernfs operations.

   - Other cleanups and low-pri fixes"

* 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (40 commits)
  cgroup: trivial style updates
  cgroup: remove stray references to css_id
  doc: cgroups: Fix typo in doc/cgroups
  cgroup: fix fail path in cgroup_load_subsys()
  cgroup: fix missing unlock on error in cgroup_load_subsys()
  cgroup: remove for_each_root_subsys()
  cgroup: implement for_each_css()
  cgroup: factor out cgroup_subsys_state creation into create_css()
  cgroup: combine css handling loops in cgroup_create()
  cgroup: reorder operations in cgroup_create()
  cgroup: make for_each_subsys() useable under cgroup_root_mutex
  cgroup: css iterations and css_from_dir() are safe under cgroup_mutex
  cgroup: unify pidlist and other file handling
  cgroup: replace cftype->read_seq_string() with cftype->seq_show()
  cgroup: attach cgroup_open_file to all cgroup files
  cgroup: generalize cgroup_pidlist_open_file
  cgroup: unify read path so that seq_file is always used
  cgroup: unify cgroup_write_X64() and cgroup_write_string()
  cgroup: remove cftype->read(), ->read_map() and ->write()
  hugetlb_cgroup: convert away from cftype->read()
  ...
2014-01-21 17:51:34 -08:00
Michal Hocko
947b3dd1a8 memcg, oom: lock mem_cgroup_print_oom_info
mem_cgroup_print_oom_info uses a static buffer (memcg_name) to store the
name of the cgroup.  This is not safe as pointed out by David Rientjes
because memcg oom is locked only for its hierarchy and nothing prevents
another parallel hierarchy to trigger oom as well and overwrite the
already in-use buffer.

This patch introduces oom_info_lock hidden inside
mem_cgroup_print_oom_info which is held throughout the function.  It
makes access to memcg_name safe and as a bonus it also prevents parallel
memcg ooms to interleave their statistics which would make the printed
data hard to analyze otherwise.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vladimir Davydov
2753b35bcd memcg: make memcg_update_cache_sizes() static
This function is not used outside of memcontrol.c so make it static.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Vladimir Davydov
1c98dd905d memcg: fix kmem_account_flags check in memcg_can_account_kmem()
We should start kmem accounting for a memory cgroup only after both its
kmem limit is set (KMEM_ACCOUNTED_ACTIVE) and related call sites are
patched (KMEM_ACCOUNTED_ACTIVATED).  Currently memcg_can_account_kmem()
allows kmem accounting even if only one of the conditions is true.  Fix
it.

This means that a page might get charged by memcg_kmem_newpage_charge
which would see its static key patched already but
memcg_kmem_commit_charge would still see it unpatched and so the charge
won't be committed.  The result would be charge inconsistency
(page_cgroup not marked as PageCgroupUsed) and the charge would leak
because __memcg_kmem_uncharge_pages would ignore it.

[mhocko@suse.cz: augment changelog]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Vladimir Davydov
695c608307 memcg: fix memcg_size() calculation
The mem_cgroup structure contains nr_node_ids pointers to
mem_cgroup_per_node objects, not the objects themselves.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02 14:40:30 -08:00
Johannes Weiner
1f14c1ac19 mm: memcg: do not allow task about to OOM kill to bypass the limit
Commit 4942642080 ("mm: memcg: handle non-error OOM situations more
gracefully") allowed tasks that already entered a memcg OOM condition to
bypass the memcg limit on subsequent allocation attempts hoping this
would expedite finishing the page fault and executing the kill.

David Rientjes is worried that this breaks memcg isolation guarantees
and since there is no evidence that the bypass actually speeds up fault
processing just change it so that these subsequent charge attempts fail
outright.  The notable exception being __GFP_NOFAIL charges which are
required to bypass the limit regardless.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-bt: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12 18:19:26 -08:00
Johannes Weiner
96f1c58d85 mm: memcg: fix race condition between memcg teardown and swapin
There is a race condition between a memcg being torn down and a swapin
triggered from a different memcg of a page that was recorded to belong
to the exiting memcg on swapout (with CONFIG_MEMCG_SWAP extension).  The
result is unreclaimable pages pointing to dead memcgs, which can lead to
anything from endless loops in later memcg teardown (the page is charged
to all hierarchical parents but is not on any LRU list) or crashes from
following the dangling memcg pointer.

Memcgs with tasks in them can not be torn down and usually charges don't
show up in memcgs without tasks.  Swapin with the CONFIG_MEMCG_SWAP
extension is the notable exception because it charges the cgroup that
was recorded as owner during swapout, which may be empty and in the
process of being torn down when a task in another memcg triggers the
swapin:

  teardown:                 swapin:

                            lookup_swap_cgroup_id()
                            rcu_read_lock()
                            mem_cgroup_lookup()
                            css_tryget()
                            rcu_read_unlock()
  disable css_tryget()
  call_rcu()
    offline_css()
      reparent_charges()
                            res_counter_charge() (hierarchical!)
                            css_put()
                              css_free()
                            pc->mem_cgroup = dead memcg
                            add page to dead lru

Add a final reparenting step into css_free() to make sure any such raced
charges are moved out of the memcg before it's finally freed.

In the longer term it would be cleaner to have the css_tryget() and the
res_counter charge under the same RCU lock section so that the charge
reparenting is deferred until the last charge whose tryget succeeded is
visible.  But this will require more invasive changes that will be
harder to evaluate and backport into stable, so better defer them to a
separate change set.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12 18:19:26 -08:00
Johannes Weiner
a0d8b00a33 mm: memcg: do not declare OOM from __GFP_NOFAIL allocations
Commit 84235de394 ("fs: buffer: move allocation failure loop into the
allocator") started recognizing __GFP_NOFAIL in memory cgroups but
forgot to disable the OOM killer.

Any task that does not fail allocation will also not enter the OOM
completion path.  So don't declare an OOM state in this case or it'll be
leaked and the task be able to bypass the limit until the next
userspace-triggered page fault cleans up the OOM state.

Reported-by: William Dauchy <wdauchy@gmail.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[3.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-12 18:19:26 -08:00
Tejun Heo
2da8ca822d cgroup: replace cftype->read_seq_string() with cftype->seq_show()
In preparation of conversion to kernfs, cgroup file handling is
updated so that it can be easily mapped to kernfs.  This patch
replaces cftype->read_seq_string() with cftype->seq_show() which is
not limited to single_open() operation and will map directcly to
kernfs seq_file interface.

The conversions are mechanical.  As ->seq_show() doesn't have @css and
@cft, the functions which make use of them are converted to use
seq_css() and seq_cft() respectively.  In several occassions, e.f. if
it has seq_string in its name, the function name is updated to fit the
new method better.

This patch does not introduce any behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
2013-12-05 12:28:04 -05:00
Tejun Heo
791badbdb3 memcg: convert away from cftype->read() and ->read_map()
In preparation of conversion to kernfs, cgroup file handling is being
consolidated so that it can be easily mapped to the seq_file based
interface of kernfs.

cftype->read_map() doesn't add any value and being replaced with
->read_seq_string(), and all users of cftype->read() can be easily
served, usually better, by seq_file and other methods.

Update mem_cgroup_read() to return u64 instead of printing itself and
rename it to mem_cgroup_read_u64(), and update
mem_cgroup_oom_control_read() to use ->read_seq_string() instead of
->read_map().

This patch doesn't make any visible behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2013-12-05 12:28:02 -05:00
Tejun Heo
edab95103d cgroup: Merge branch 'memcg_event' into for-3.14
Merge v3.12 based patch series to move cgroup_event implementation to
memcg into for-3.14.  The following two commits cause a conflict in
kernel/cgroup.c

  2ff2a7d03b ("cgroup: kill css_id")
  79bd9814e5 ("cgroup, memcg: move cgroup_event implementation to memcg")

Each patch removes a struct definition from kernel/cgroup.c.  As the
two are adjacent, they cause a context conflict.  Easily resolved by
removing both structs.

Signed-off-by: Tejun Heo <tj@kernel.org>
2013-11-22 18:32:25 -05:00
Tejun Heo
3bc942f372 memcg: rename cgroup_event to mem_cgroup_event
cgroup_event is only available in memcg now.  Let's brand it that way.
While at it, add a comment encouraging deprecation of the feature and
remove the respective section from cgroup documentation.

This patch is cosmetic.

v3: Typo update as per Li Zefan.

v2: Index in cgroups.txt updated accordingly as suggested by Li Zefan.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
2013-11-22 18:20:44 -05:00
Tejun Heo
59b6f87344 memcg: make cgroup_event deal with mem_cgroup instead of cgroup_subsys_state
cgroup_event is now memcg specific.  Replace cgroup_event->css with
->memcg and convert [un]register_event() callbacks to take mem_cgroup
pointer instead of cgroup_subsys_state one.  This simplifies the code
slightly and makes css_to_vmpressure() unnecessary which is removed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
2013-11-22 18:20:43 -05:00
Tejun Heo
347c4a8747 memcg: remove cgroup_event->cft
The only use of cgroup_event->cft is distinguishing "usage_in_bytes"
and "memsw.usgae_in_bytes" for mem_cgroup_usage_[un]register_event(),
which can be done by adding an explicit argument to the function and
implementing two wrappers so that the two cases can be distinguished
from the function alone.

Remove cgroup_event->cft and the related code including
[un]register_events() methods.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
2013-11-22 18:20:43 -05:00
Tejun Heo
fba9480783 cgroup, memcg: move cgroup->event_list[_lock] and event callbacks into memcg
cgroup_event is being moved from cgroup core to memcg and the
implementation is already moved by the previous patch.  This patch
moves the data fields and callbacks.

* cgroup->event_list[_lock] are moved to mem_cgroup.

* cftype->[un]register_event() are moved to cgroup_event.  This makes
  it impossible for individual cftype definitions to specify their
  event callbacks.  This is worked around by simply hard-coding
  filename to event callback mapping in cgroup_write_event_control().
  This is awkward and inflexible, which is actually desirable given
  that we don't want to grow more usages of this feature.

* eventfd_ctx declaration is removed from cgroup.h, which makes
  vmpressure.h miss eventfd_ctx declaration.  Include eventfd.h from
  vmpressure.h.

v2: Use file name from dentry instead of cftype.  This will allow
    removing all cftype handling in the function.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
2013-11-22 18:20:43 -05:00
Tejun Heo
b5557c4c3b memcg: cgroup_write_event_control() now knows @css is for memcg
@css for cgroup_write_event_control() is now always for memcg and the
target file should be a memcg file too.  Drop code which assumes @css
is dummy_css and the target file may belong to different subsystems.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
2013-11-22 18:20:42 -05:00
Tejun Heo
79bd9814e5 cgroup, memcg: move cgroup_event implementation to memcg
cgroup_event is way over-designed and tries to build a generic
flexible event mechanism into cgroup - fully customizable event
specification for each user of the interface.  This is utterly
unnecessary and overboard especially in the light of the planned
unified hierarchy as there's gonna be single agent.  Simply generating
events at fixed points, or if that's too restrictive, configureable
cadence or single set of configureable points should be enough.

Thankfully, memcg is the only user and gets to keep it.  Replacing it
with something simpler on sane_behavior is strongly recommended.

This patch moves cgroup_event and "cgroup.event_control"
implementation to mm/memcontrol.c.  Clearing of events on cgroup
destruction is moved from cgroup_destroy_locked() to
mem_cgroup_css_offline(), which shouldn't make any noticeable
difference.

cgroup_css() and __file_cft() are exported to enable the move;
however, this will soon be reverted once the event code is updated to
be memcg specific.

Note that "cgroup.event_control" will now exist only on the hierarchy
with memcg attached to it.  While this change is visible to userland,
it is unlikely to be noticeable as the file has never been meaningful
outside memcg.

Aside from the above change, this is pure code relocation.

v2: Per Li Zefan's comments, init/Kconfig updated accordingly and
    poll.h inclusion moved from cgroup.c to memcontrol.c.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
2013-11-22 18:20:42 -05:00
Kirill A. Shutemov
bf929152e9 mm, thp: change pmd_trans_huge_lock() to return taken lock
With split ptlock it's important to know which lock
pmd_trans_huge_lock() took.  This patch adds one more parameter to the
function to return the lock.

In most places migration to new api is trivial.  Exception is
move_huge_pmd(): we need to take two locks if pmd tables are different.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15 09:32:14 +09:00
Linus Torvalds
42a2d923cc Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) The addition of nftables.  No longer will we need protocol aware
    firewall filtering modules, it can all live in userspace.

    At the core of nftables is a, for lack of a better term, virtual
    machine that executes byte codes to inspect packet or metadata
    (arriving interface index, etc.) and make verdict decisions.

    Besides support for loading packet contents and comparing them, the
    interpreter supports lookups in various datastructures as
    fundamental operations.  For example sets are supports, and
    therefore one could create a set of whitelist IP address entries
    which have ACCEPT verdicts attached to them, and use the appropriate
    byte codes to do such lookups.

    Since the interpreted code is composed in userspace, userspace can
    do things like optimize things before giving it to the kernel.

    Another major improvement is the capability of atomically updating
    portions of the ruleset.  In the existing netfilter implementation,
    one has to update the entire rule set in order to make a change and
    this is very expensive.

    Userspace tools exist to create nftables rules using existing
    netfilter rule sets, but both kernel implementations will need to
    co-exist for quite some time as we transition from the old to the
    new stuff.

    Kudos to Patrick McHardy, Pablo Neira Ayuso, and others who have
    worked so hard on this.

 2) Daniel Borkmann and Hannes Frederic Sowa made several improvements
    to our pseudo-random number generator, mostly used for things like
    UDP port randomization and netfitler, amongst other things.

    In particular the taus88 generater is updated to taus113, and test
    cases are added.

 3) Support 64-bit rates in HTB and TBF schedulers, from Eric Dumazet
    and Yang Yingliang.

 4) Add support for new 577xx tigon3 chips to tg3 driver, from Nithin
    Sujir.

 5) Fix two fatal flaws in TCP dynamic right sizing, from Eric Dumazet,
    Neal Cardwell, and Yuchung Cheng.

 6) Allow IP_TOS and IP_TTL to be specified in sendmsg() ancillary
    control message data, much like other socket option attributes.
    From Francesco Fusco.

 7) Allow applications to specify a cap on the rate computed
    automatically by the kernel for pacing flows, via a new
    SO_MAX_PACING_RATE socket option.  From Eric Dumazet.

 8) Make the initial autotuned send buffer sizing in TCP more closely
    reflect actual needs, from Eric Dumazet.

 9) Currently early socket demux only happens for TCP sockets, but we
    can do it for connected UDP sockets too.  Implementation from Shawn
    Bohrer.

10) Refactor inet socket demux with the goal of improving hash demux
    performance for listening sockets.  With the main goals being able
    to use RCU lookups on even request sockets, and eliminating the
    listening lock contention.  From Eric Dumazet.

11) The bonding layer has many demuxes in it's fast path, and an RCU
    conversion was started back in 3.11, several changes here extend the
    RCU usage to even more locations.  From Ding Tianhong and Wang
    Yufen, based upon suggestions by Nikolay Aleksandrov and Veaceslav
    Falico.

12) Allow stackability of segmentation offloads to, in particular, allow
    segmentation offloading over tunnels.  From Eric Dumazet.

13) Significantly improve the handling of secret keys we input into the
    various hash functions in the inet hashtables, TCP fast open, as
    well as syncookies.  From Hannes Frederic Sowa.  The key fundamental
    operation is "net_get_random_once()" which uses static keys.

    Hannes even extended this to ipv4/ipv6 fragmentation handling and
    our generic flow dissector.

14) The generic driver layer takes care now to set the driver data to
    NULL on device removal, so it's no longer necessary for drivers to
    explicitly set it to NULL any more.  Many drivers have been cleaned
    up in this way, from Jingoo Han.

15) Add a BPF based packet scheduler classifier, from Daniel Borkmann.

16) Improve CRC32 interfaces and generic SKB checksum iterators so that
    SCTP's checksumming can more cleanly be handled.  Also from Daniel
    Borkmann.

17) Add a new PMTU discovery mode, IP_PMTUDISC_INTERFACE, which forces
    using the interface MTU value.  This helps avoid PMTU attacks,
    particularly on DNS servers.  From Hannes Frederic Sowa.

18) Use generic XPS for transmit queue steering rather than internal
    (re-)implementation in virtio-net.  From Jason Wang.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
  random32: add test cases for taus113 implementation
  random32: upgrade taus88 generator to taus113 from errata paper
  random32: move rnd_state to linux/random.h
  random32: add prandom_reseed_late() and call when nonblocking pool becomes initialized
  random32: add periodic reseeding
  random32: fix off-by-one in seeding requirement
  PHY: Add RTL8201CP phy_driver to realtek
  xtsonic: add missing platform_set_drvdata() in xtsonic_probe()
  macmace: add missing platform_set_drvdata() in mace_probe()
  ethernet/arc/arc_emac: add missing platform_set_drvdata() in arc_emac_probe()
  ipv6: protect for_each_sk_fl_rcu in mem_check with rcu_read_lock_bh
  vlan: Implement vlan_dev_get_egress_qos_mask as an inline.
  ixgbe: add warning when max_vfs is out of range.
  igb: Update link modes display in ethtool
  netfilter: push reasm skb through instead of original frag skbs
  ip6_output: fragment outgoing reassembled skb properly
  MAINTAINERS: mv643xx_eth: take over maintainership from Lennart
  net_sched: tbf: support of 64bit rates
  ixgbe: deleting dfwd stations out of order can cause null ptr deref
  ixgbe: fix build err, num_rx_queues is only available with CONFIG_RPS
  ...
2013-11-13 17:40:34 +09:00
Linus Torvalds
5cbb3d216e Merge branch 'akpm' (patches from Andrew Morton)
Merge first patch-bomb from Andrew Morton:
 "Quite a lot of other stuff is banked up awaiting further
  next->mainline merging, but this batch contains:

   - Lots of random misc patches
   - OCFS2
   - Most of MM
   - backlight updates
   - lib/ updates
   - printk updates
   - checkpatch updates
   - epoll tweaking
   - rtc updates
   - hfs
   - hfsplus
   - documentation
   - procfs
   - update gcov to gcc-4.7 format
   - IPC"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (269 commits)
  ipc, msg: fix message length check for negative values
  ipc/util.c: remove unnecessary work pending test
  devpts: plug the memory leak in kill_sb
  ./Makefile: export initial ramdisk compression config option
  init/Kconfig: add option to disable kernel compression
  drivers: w1: make w1_slave::flags long to avoid memory corruption
  drivers/w1/masters/ds1wm.cuse dev_get_platdata()
  drivers/memstick/core/ms_block.c: fix unreachable state in h_msb_read_page()
  drivers/memstick/core/mspro_block.c: fix attributes array allocation
  drivers/pps/clients/pps-gpio.c: remove redundant of_match_ptr
  kernel/panic.c: reduce 1 byte usage for print tainted buffer
  gcov: reuse kbasename helper
  kernel/gcov/fs.c: use pr_warn()
  kernel/module.c: use pr_foo()
  gcov: compile specific gcov implementation based on gcc version
  gcov: add support for gcc 4.7 gcov format
  gcov: move gcov structs definitions to a gcc version specific file
  kernel/taskstats.c: return -ENOMEM when alloc memory fails in add_del_listener()
  kernel/taskstats.c: add nla_nest_cancel() for failure processing between nla_nest_start() and nla_nest_end()
  kernel/sysctl_binary.c: use scnprintf() instead of snprintf()
  ...
2013-11-13 15:45:43 +09:00
Linus Torvalds
a998646456 Merge branch 'for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup changes from Tejun Heo:
 "Not too much activity this time around.  css_id is finally killed and
  a minor update to device_cgroup"

* 'for-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  device_cgroup: remove can_attach
  cgroup: kill css_id
  memcg: stop using css id
  memcg: fail to create cgroup if the cgroup id is too big
  memcg: convert to use cgroup id
  memcg: convert to use cgroup_is_descendant()
2013-11-13 15:21:53 +09:00
Qiang Huang
7a67d7abcc memcg, kmem: use cache_from_memcg_idx instead of hard code
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:10 +09:00
Qiang Huang
f35c3a8eed memcg, kmem: use is_root_cache instead of hard code
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:10 +09:00
Ying Han
071aee1384 memcg: support hierarchical memory.numa_stats
The memory.numa_stat file was not hierarchical.  Memory charged to the
children was not shown in parent's numa_stat.

This change adds the "hierarchical_" stats to the existing stats.  The
new hierarchical stats include the sum of all children's values in
addition to the value of the memcg.

Tested: Create cgroup a, a/b and run workload under b.  The values of
b are included in the "hierarchical_*" under a.

$ cd /sys/fs/cgroup
$ echo 1 > memory.use_hierarchy
$ mkdir a a/b

Run workload in a/b:
$ (echo $BASHPID >> a/b/cgroup.procs && cat /some/file && bash) &

The hierarchical_ fields in parent (a) show use of workload in a/b:
$ cat a/memory.numa_stat
total=0 N0=0 N1=0 N2=0 N3=0
file=0 N0=0 N1=0 N2=0 N3=0
anon=0 N0=0 N1=0 N2=0 N3=0
unevictable=0 N0=0 N1=0 N2=0 N3=0
hierarchical_total=908 N0=552 N1=317 N2=39 N3=0
hierarchical_file=850 N0=549 N1=301 N2=0 N3=0
hierarchical_anon=58 N0=3 N1=16 N2=39 N3=0
hierarchical_unevictable=0 N0=0 N1=0 N2=0 N3=0

$ cat a/b/memory.numa_stat
total=908 N0=552 N1=317 N2=39 N3=0
file=850 N0=549 N1=301 N2=0 N3=0
anon=58 N0=3 N1=16 N2=39 N3=0
unevictable=0 N0=0 N1=0 N2=0 N3=0
hierarchical_total=908 N0=552 N1=317 N2=39 N3=0
hierarchical_file=850 N0=549 N1=301 N2=0 N3=0
hierarchical_anon=58 N0=3 N1=16 N2=39 N3=0
hierarchical_unevictable=0 N0=0 N1=0 N2=0 N3=0

Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:06 +09:00
Greg Thelen
25485de6e9 memcg: refactor mem_control_numa_stat_show()
Refactor mem_control_numa_stat_show() to use a new stats structure for
smaller and simpler code.  This consolidates nearly identical code.

    text      data      bss        dec      hex   filename
  8,137,679 1,703,496 1,896,448 11,737,623 b31a17 vmlinux.before
  8,136,911 1,703,496 1,896,448 11,736,855 b31717 vmlinux.after

Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:06 +09:00
Qiang Huang
b9921ecdee mm: add a helper function to check may oom condition
Use helper function to check if we need to deal with oom condition.

Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:04 +09:00
David S. Miller
394efd19d5 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/ethernet/emulex/benet/be.h
	drivers/net/netconsole.c
	net/bridge/br_private.h

Three mostly trivial conflicts.

The net/bridge/br_private.h conflict was a function signature (argument
addition) change overlapping with the extern removals from Joe Perches.

In drivers/net/netconsole.c we had one change adjusting a printk message
whilst another changed "printk(KERN_INFO" into "pr_info(".

Lastly, the emulex change was a new inline function addition overlapping
with Joe Perches's extern removals.

Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-04 13:48:30 -05:00
Greg Thelen
6920a1bd03 memcg: remove incorrect underflow check
When a memcg is deleted mem_cgroup_reparent_charges() moves charged
memory to the parent memcg.  As of v3.11-9444-g3ea67d0 "memcg: add per
cgroup writeback pages accounting" there's bad pointer read.  The goal
was to check for counter underflow.  The counter is a per cpu counter
and there are two problems with the code:

 (1) per cpu access function isn't used, instead a naked pointer is used
     which easily causes oops.
 (2) the check doesn't sum all cpus

Test:
  $ cd /sys/fs/cgroup/memory
  $ mkdir x
  $ echo 3 > /proc/sys/vm/drop_caches
  $ (echo $BASHPID >> x/tasks && exec cat) &
  [1] 7154
  $ grep ^mapped x/memory.stat
  mapped_file 53248
  $ echo 7154 > tasks
  $ rmdir x
  <OOPS>

The fix is to remove the check.  It's currently dangerous and isn't
worth fixing it to use something expensive, such as
percpu_counter_sum(), for each reparented page.  __this_cpu_read() isn't
enough to fix this because there's no guarantees of the current cpus
count.  The only guarantees is that the sum of all per-cpu counter is >=
nr_pages.

Fixes: 3ea67d06e4 ("memcg: add per cgroup writeback pages accounting")
Reported-and-tested-by: Flavio Leitner <fbl@redhat.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-01 12:22:28 -07:00
Johannes Weiner
696ac172ff mm: memcg: fix test for child groups
When memcg code needs to know whether any given memcg has children, it
uses the cgroup child iteration primitives and returns true/false
depending on whether the iteration loop is executed at least once or
not.

Because a cgroup's list of children is RCU protected, these primitives
require the RCU read-lock to be held, which is not the case for all
memcg callers.  This results in the following splat when e.g.  enabling
hierarchy mode:

  WARNING: CPU: 3 PID: 1 at kernel/cgroup.c:3043 css_next_child+0xa3/0x160()
  CPU: 3 PID: 1 Comm: systemd Not tainted 3.12.0-rc5-00117-g83f11a9-dirty #18
  Hardware name: LENOVO 3680B56/3680B56, BIOS 6QET69WW (1.39 ) 04/26/2012
  Call Trace:
    dump_stack+0x54/0x74
    warn_slowpath_common+0x78/0xa0
    warn_slowpath_null+0x1a/0x20
    css_next_child+0xa3/0x160
    mem_cgroup_hierarchy_write+0x5b/0xa0
    cgroup_file_write+0x108/0x2a0
    vfs_write+0xbd/0x1e0
    SyS_write+0x4c/0xa0
    system_call_fastpath+0x16/0x1b

In the memcg case, we only care about children when we are attempting to
modify inheritable attributes interactively.  Racing with deletion could
mean a spurious -EBUSY, no problem.  Racing with addition is handled
just fine as well through the memcg_create_mutex: if the child group is
not on the list after the mutex is acquired, it won't be initialized
from the parent's attributes until after the unlock.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-31 16:58:13 -07:00
Johannes Weiner
0056f4e66a mm: memcg: lockdep annotation for memcg OOM lock
The memcg OOM lock is a mutex-type lock that is open-coded due to
memcg's special needs.  Add annotations for lockdep coverage.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-31 16:58:13 -07:00
Johannes Weiner
3168ecbe1c mm: memcg: use proper memcg in limit bypass
Commit 84235de394 ("fs: buffer: move allocation failure loop into the
allocator") allowed __GFP_NOFAIL allocations to bypass the limit if they
fail to reclaim enough memory for the charge.  But because the main test
case was on a 3.2-based system, the patch missed the fact that on newer
kernels the charge function needs to return root_mem_cgroup when
bypassing the limit, and not NULL.  This will corrupt whatever memory is
at NULL + percpu pointer offset.  Fix this quickly before problems are
reported.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-31 16:58:13 -07:00