Initially con_priv was supposedly used for transport specific data when
the SCMI driver had an abstraction to communicate with different mailbox
controllers. But after some discussions, the idea was dropped but this
variable slipped through the cracks.
This patch gets rid of this unused variable.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Just after the initial patches were queued, Jonathan Cameron mentioned
that scmi_one_xfer_{get_put} were not very clear and suggested to use
scmi_xfer_{alloc,free}. While I agree to some extent, the reason not to
have alloc/free as these are preallocated buffers and these functions
just returns a reference to free slot in that preallocated array.
However it was agreed to drop "_one" as it's implicit that we are always
dealing with one slot anyways.
This patch updates the name accordingly dropping "_one" in both {get,put}
functions. Also scmi_one_xfer_init is renamed as scmi_xfer_get_init to
reflect the fact that it gets the free slots and then initialise it.
Reported-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
There are few missing descriptions for function parameters and structure
members along with certain instances where excessive function parameters
or structure members are described.
This patch fixes all of those warnings.
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
By using FIELD_{FIT,GET,PREP} and GENMASK macro accessors we can avoid
some clumpsy custom shifting and masking macros and also improve the
code better readability.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
The performance protocol is intended for the performance management of
group(s) of device(s) that run in the same performance domain. It
includes even the CPUs. A performance domain is defined by a set of
devices that always have to run at the same performance level.
For example, a set of CPUs that share a voltage domain, and have a
common frequency control, is said to be in the same performance domain.
The commands in this protocol provide functionality to describe the
protocol version, describe various attribute flags, set and get the
performance level of a domain. It also supports discovery of the list
of performance levels supported by a performance domain, and the
properties of each performance level.
This patch adds basic support for the performance protocol.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
The SCMI specification encompasses various protocols. However, not every
protocol has to be present on a given platform/implementation as not
every protocol is relevant for it.
Furthermore, the platform chooses which protocols it exposes to a given
agent. The only protocol that must be implemented is the base protocol.
The base protocol is used by an agent to discover which protocols are
available to it.
In order to enumerate the discovered implemented protocols, this patch
adds support for a separate scmi protocol bus. It also adds mechanism to
register support for different protocols.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
The base protocol describes the properties of the implementation and
provide generic error management. The base protocol provides commands
to describe protocol version, discover implementation specific
attributes and vendor/sub-vendor identification, list of protocols
implemented and the various agents are in the system including OSPM
and the platform. It also supports registering for notifications of
platform errors.
This protocol is mandatory. This patch adds support for the same along
with some basic infrastructure to add support for other protocols.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
The SCMI is intended to allow OSPM to manage various functions that are
provided by the hardware platform it is running on, including power and
performance functions. SCMI provides two levels of abstraction, protocols
and transports. Protocols define individual groups of system control and
management messages. A protocol specification describes the messages
that it supports. Transports describe the method by which protocol
messages are communicated between agents and the platform.
This patch adds basic infrastructure to manage the message allocation,
initialisation, packing/unpacking and shared memory management.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>