Commit Graph

5667 Commits

Author SHA1 Message Date
Kautuk Consul
f1db7afd91 mm/vmalloc.c: eliminate extra loop in pcpu_get_vm_areas error path
If either of the vas or vms arrays are not properly kzalloced, then the
code jumps to the err_free label.

The err_free label runs a loop to check and free each of the array members
of the vas and vms arrays which is not required for this situation as none
of the array members have been allocated till this point.

Eliminate the extra loop we have to go through by introducing a new label
err_free2 and then jumping to it.

[akpm@linux-foundation.org: remove now-unneeded tests]
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
3f79768f23 mm: rearrange putback_inactive_pages
There is sometimes confusion between the global putback_lru_pages() in
migrate.c and the static putback_lru_pages() in vmscan.c: rename the
latter putback_inactive_pages(): it helps shrink_inactive_list() rather as
move_active_pages_to_lru() helps shrink_active_list().

Remove unused scan_control arg from putback_inactive_pages() and from
update_isolated_counts().  Move clear_active_flags() inside
update_isolated_counts().  Move NR_ISOLATED accounting up into
shrink_inactive_list() itself, so the balance is clearer.

Do the spin_lock_irq() before calling putback_inactive_pages() and
spin_unlock_irq() after return from it, so that it better matches
update_isolated_counts() and move_active_pages_to_lru().

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
f626012db0 mm: remove isolate_pages()
The isolate_pages() level in vmscan.c offers little but indirection: merge
it into isolate_lru_pages() as the compiler does, and use the names
nr_to_scan and nr_scanned in each case.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
1c1c53d43b mm: remove del_page_from_lru, add page_off_lru
del_page_from_lru() repeats del_page_from_lru_list(), also working out
which LRU the page was on, clearing the relevant bits.  Decouple those
functions: remove del_page_from_lru() and add page_off_lru().

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
4111304dab mm: enum lru_list lru
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
4d06f382c7 mm: no blank line after EXPORT_SYMBOL in swap.c
checkpatch rightly protests

  WARNING: EXPORT_SYMBOL(foo); should immediately follow its function/variable

so fix the five offenders in mm/swap.c.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
5095ae8375 mm: fewer underscores in ____pagevec_lru_add
What's so special about ____pagevec_lru_add() that it needs four leading
underscores?  Nothing, it just helped to distinguish from
__pagevec_lru_add() in 2.6.28 development.  Cut two leading underscores.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
2bcf887963 mm: take pagevecs off reclaim stack
Replace pagevecs in putback_lru_pages() and move_active_pages_to_lru()
by lists of pages_to_free: then apply Konstantin Khlebnikov's
free_hot_cold_page_list() to them instead of pagevec_release().

Which simplifies the flow (no need to drop and retake lock whenever
pagevec fills up) and reduces stale addresses in stack backtraces
(which often showed through the pagevecs); but more importantly,
removes another 120 bytes from the deepest stacks in page reclaim.
Although I've not recently seen an actual stack overflow here with
a vanilla kernel, move_active_pages_to_lru() has often featured in
deep backtraces.

However, free_hot_cold_page_list() does not handle compound pages
(nor need it: a Transparent HugePage would have been split by the
time it reaches the call in shrink_page_list()), but it is possible
for putback_lru_pages() or move_active_pages_to_lru() to be left
holding the last reference on a THP, so must exclude the unlikely
compound case before putting on pages_to_free.

Remove pagevec_strip(), its work now done in move_active_pages_to_lru().
The pagevec in scan_mapping_unevictable_pages() remains in mm/vmscan.c,
but that is never on the reclaim path, and cannot be replaced by a list.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
90b3feaec8 memcg: fix mem_cgroup_print_bad_page
If DEBUG_VM, mem_cgroup_print_bad_page() is called whenever bad_page()
shows a "Bad page state" message, removes page from circulation, adds a
taint and continues.  This is at a very low level, often when a spinlock
is held (sometimes when page table lock is held, for example).

We want to recover from this badness, not make it worse: we must not
kmalloc memory here, we must not do a cgroup path lookup via dubious
pointers.  No doubt that code was useful to debug a particular case at one
time, and may be again, but take it out of the mainline kernel.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Hugh Dickins
12d2710786 memcg: fix split_huge_page_refcounts()
This patch started off as a cleanup: __split_huge_page_refcounts() has to
cope with two scenarios, when the hugepage being split is already on LRU,
and when it is not; but why does it have to split that accounting across
three different sites?  Consolidate it in lru_add_page_tail(), handling
evictable and unevictable alike, and use standard add_page_to_lru_list()
when accounting is needed (when the head is not yet on LRU).

But a recent regression in -next, I guess the removal of PageCgroupAcctLRU
test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix:
under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number,
messing up reclaim calculations and causing a freeze at rmdir of cgroup.

Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that
count - this has not been the only such incident.  Document that
lru_add_page_tail() is for Transparent HugePages by #ifdef around it.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
0cee34fd72 mm: vmscan: check if reclaim should really abort even if compaction_ready() is true for one zone
If compaction can proceed for a given zone, shrink_zones() does not
reclaim any more pages from it.  After commit [e0c2327: vmscan: abort
reclaim/compaction if compaction can proceed], do_try_to_free_pages()
tries to finish as soon as possible once one zone can compact.

This was intended to prevent slabs being shrunk unnecessarily but there
are side-effects.  One is that a small zone that is ready for compaction
will abort reclaim even if the chances of successfully allocating a THP
from that zone is small.  It also means that reclaim can return too early
even though sc->nr_to_reclaim pages were not reclaimed.

This partially reverts the commit until it is proven that slabs are really
being shrunk unnecessarily but preserves the check to return 1 to avoid
OOM if reclaim was aborted prematurely.

[aarcange@redhat.com: This patch replaces a revert from Andrea]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
fe4b1b244b mm: vmscan: when reclaiming for compaction, ensure there are sufficient free pages available
In commit e0887c19 ("vmscan: limit direct reclaim for higher order
allocations"), Rik noted that reclaim was too aggressive when THP was
enabled.  In his initial patch he used the number of free pages to decide
if reclaim should abort for compaction.  My feedback was that reclaim and
compaction should be using the same logic when deciding if reclaim should
be aborted.

Unfortunately, this had the effect of reducing THP success rates when the
workload included something like streaming reads that continually
allocated pages.  The window during which compaction could run and return
a THP was too small.

This patch combines Rik's two patches together.  compaction_suitable() is
still used to decide if reclaim should be aborted to allow compaction is
used.  However, it will also ensure that there is a reasonable buffer of
free pages available.  This improves upon the THP allocation success rates
but bounds the number of pages that are freed for compaction.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel<riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
a6bc32b899 mm: compaction: introduce sync-light migration for use by compaction
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT
mode that avoids writing back pages to backing storage.  Async compaction
maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT.
For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is
used.

This avoids sync compaction stalling for an excessive length of time,
particularly when copying files to a USB stick where there might be a
large number of dirty pages backed by a filesystem that does not support
->writepages.

[aarcange@redhat.com: This patch is heavily based on Andrea's work]
[akpm@linux-foundation.org: fix fs/nfs/write.c build]
[akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
66199712e9 mm: page allocator: do not call direct reclaim for THP allocations while compaction is deferred
If compaction is deferred, direct reclaim is used to try to free enough
pages for the allocation to succeed.  For small high-orders, this has a
reasonable chance of success.  However, if the caller has specified
__GFP_NO_KSWAPD to limit the disruption to the system, it makes more sense
to fail the allocation rather than stall the caller in direct reclaim.
This patch skips direct reclaim if compaction is deferred and the caller
specifies __GFP_NO_KSWAPD.

Async compaction only considers a subset of pages so it is possible for
compaction to be deferred prematurely and not enter direct reclaim even in
cases where it should.  To compensate for this, this patch also defers
compaction only if sync compaction failed.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
c824493528 mm: compaction: make isolate_lru_page() filter-aware again
Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware")
noted that compaction does not migrate dirty or writeback pages and that
is was meaningless to pick the page and re-add it to the LRU list.  This
had to be partially reverted because some dirty pages can be migrated by
compaction without blocking.

This patch updates "mm: compaction: make isolate_lru_page" by skipping
over pages that migration has no possibility of migrating to minimise LRU
disruption.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel<riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
b969c4ab9f mm: compaction: determine if dirty pages can be migrated without blocking within ->migratepage
Asynchronous compaction is used when allocating transparent hugepages to
avoid blocking for long periods of time.  Due to reports of stalling,
there was a debate on disabling synchronous compaction but this severely
impacted allocation success rates.  Part of the reason was that many dirty
pages are skipped in asynchronous compaction by the following check;

	if (PageDirty(page) && !sync &&
		mapping->a_ops->migratepage != migrate_page)
			rc = -EBUSY;

This skips over all mapping aops using buffer_migrate_page() even though
it is possible to migrate some of these pages without blocking.  This
patch updates the ->migratepage callback with a "sync" parameter.  It is
the responsibility of the callback to fail gracefully if migration would
block.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Mel Gorman
7335084d44 mm: vmscan: do not OOM if aborting reclaim to start compaction
During direct reclaim it is possible that reclaim will be aborted so that
compaction can be attempted to satisfy a high-order allocation.  If this
decision is made before any pages are reclaimed, it is possible that 0 is
returned to the page allocator potentially triggering an OOM.  This has
not been observed but it is a possibility so this patch addresses it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Andrea Arcangeli
5013473152 mm: vmscan: check if we isolated a compound page during lumpy scan
Properly take into account if we isolated a compound page during the lumpy
scan in reclaim and skip over the tail pages when encountered.  This
corrects the values given to the tracepoint for number of lumpy pages
isolated and will avoid breaking the loop early if compound pages smaller
than the requested allocation size are requested.

[mgorman@suse.de: Updated changelog]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Mel Gorman
b16d3d5a52 mm: compaction: use synchronous compaction for /proc/sys/vm/compact_memory
When asynchronous compaction was introduced, the
/proc/sys/vm/compact_memory handler should have been updated to always use
synchronous compaction.  This did not happen so this patch addresses it.

The assumption is if a user writes to /proc/sys/vm/compact_memory, they
are willing for that process to stall.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Mel Gorman
a77ebd333c mm: compaction: allow compaction to isolate dirty pages
Short summary: There are severe stalls when a USB stick using VFAT is
used with THP enabled that are reduced by this series.  If you are
experiencing this problem, please test and report back and considering I
have seen complaints from openSUSE and Fedora users on this as well as a
few private mails, I'm guessing it's a widespread issue.  This is a new
type of USB-related stall because it is due to synchronous compaction
writing where as in the past the big problem was dirty pages reaching
the end of the LRU and being written by reclaim.

Am cc'ing Andrew this time and this series would replace
mm-do-not-stall-in-synchronous-compaction-for-thp-allocations.patch.
I'm also cc'ing Dave Jones as he might have merged that patch to Fedora
for wider testing and ideally it would be reverted and replaced by this
series.

That said, the later patches could really do with some review.  If this
series is not the answer then a new direction needs to be discussed
because as it is, the stalls are unacceptable as the results in this
leader show.

For testers that try backporting this to 3.1, it won't work because
there is a non-obvious dependency on not writing back pages in direct
reclaim so you need those patches too.

Changelog since V5
o Rebase to 3.2-rc5
o Tidy up the changelogs a bit

Changelog since V4
o Added reviewed-bys, credited Andrea properly for sync-light
o Allow dirty pages without mappings to be considered for migration
o Bound the number of pages freed for compaction
o Isolate PageReclaim pages on their own LRU list

This is against 3.2-rc5 and follows on from discussions on "mm: Do
not stall in synchronous compaction for THP allocations" and "[RFC
PATCH 0/5] Reduce compaction-related stalls". Initially, the proposed
patch eliminated stalls due to compaction which sometimes resulted in
user-visible interactivity problems on browsers by simply never using
sync compaction. The downside was that THP success allocation rates
were lower because dirty pages were not being migrated as reported by
Andrea. His approach at fixing this was nacked on the grounds that
it reverted fixes from Rik merged that reduced the amount of pages
reclaimed as it severely impacted his workloads performance.

This series attempts to reconcile the requirements of maximising THP
usage, without stalling in a user-visible fashion due to compaction
or cheating by reclaiming an excessive number of pages.

Patch 1 partially reverts commit 39deaf85 to allow migration to isolate
	dirty pages. This is because migration can move some dirty
	pages without blocking.

Patch 2 notes that the /proc/sys/vm/compact_memory handler is not using
	synchronous compaction when it should be. This is unrelated
	to the reported stalls but is worth fixing.

Patch 3 checks if we isolated a compound page during lumpy scan and
	account for it properly. For the most part, this affects
	tracing so it's unrelated to the stalls but worth fixing.

Patch 4 notes that it is possible to abort reclaim early for compaction
	and return 0 to the page allocator potentially entering the
	"may oom" path. This has not been observed in practice but
	the rest of the series potentially makes it easier to happen.

Patch 5 adds a sync parameter to the migratepage callback and gives
	the callback responsibility for migrating the page without
	blocking if sync==false. For example, fallback_migrate_page
	will not call writepage if sync==false. This increases the
	number of pages that can be handled by asynchronous compaction
	thereby reducing stalls.

Patch 6 restores filter-awareness to isolate_lru_page for migration.
	In practice, it means that pages under writeback and pages
	without a ->migratepage callback will not be isolated
	for migration.

Patch 7 avoids calling direct reclaim if compaction is deferred but
	makes sure that compaction is only deferred if sync
	compaction was used.

Patch 8 introduces a sync-light migration mechanism that sync compaction
	uses. The objective is to allow some stalls but to not call
	->writepage which can lead to significant user-visible stalls.

Patch 9 notes that while we want to abort reclaim ASAP to allow
	compation to go ahead that we leave a very small window of
	opportunity for compaction to run. This patch allows more pages
	to be freed by reclaim but bounds the number to a reasonable
	level based on the high watermark on each zone.

Patch 10 allows slabs to be shrunk even after compaction_ready() is
	true for one zone. This is to avoid a problem whereby a single
	small zone can abort reclaim even though no pages have been
	reclaimed and no suitably large zone is in a usable state.

Patch 11 fixes a problem with the rate of page scanning. As reclaim is
	rarely stalling on pages under writeback it means that scan
	rates are very high. This is particularly true for direct
	reclaim which is not calling writepage. The vmstat figures
	implied that much of this was busy work with PageReclaim pages
	marked for immediate reclaim. This patch is a prototype that
	moves these pages to their own LRU list.

This has been tested and other than 2 USB keys getting trashed,
nothing horrible fell out. That said, I am a bit unhappy with the
rescue logic in patch 11 but did not find a better way around it. It
does significantly reduce scan rates and System CPU time indicating
it is the right direction to take.

What is of critical importance is that stalls due to compaction
are massively reduced even though sync compaction was still
allowed. Testing from people complaining about stalls copying to USBs
with THP enabled are particularly welcome.

The following tests all involve THP usage and USB keys in some
way. Each test follows this type of pattern

1. Read from some fast fast storage, be it raw device or file. Each time
   the copy finishes, start again until the test ends
2. Write a large file to a filesystem on a USB stick. Each time the copy
   finishes, start again until the test ends
3. When memory is low, start an alloc process that creates a mapping
   the size of physical memory to stress THP allocation. This is the
   "real" part of the test and the part that is meant to trigger
   stalls when THP is enabled. Copying continues in the background.
4. Record the CPU usage and time to execute of the alloc process
5. Record the number of THP allocs and fallbacks as well as the number of THP
   pages in use a the end of the test just before alloc exited
6. Run the test 5 times to get an idea of variability
7. Between each run, sync is run and caches dropped and the test
   waits until nr_dirty is a small number to avoid interference
   or caching between iterations that would skew the figures.

The individual tests were then

writebackCPDeviceBasevfat
	Disable THP, read from a raw device (sda), vfat on USB stick
writebackCPDeviceBaseext4
	Disable THP, read from a raw device (sda), ext4 on USB stick
writebackCPDevicevfat
	THP enabled, read from a raw device (sda), vfat on USB stick
writebackCPDeviceext4
	THP enabled, read from a raw device (sda), ext4 on USB stick
writebackCPFilevfat
	THP enabled, read from a file on fast storage and USB, both vfat
writebackCPFileext4
	THP enabled, read from a file on fast storage and USB, both ext4

The kernels tested were

3.1		3.1
vanilla		3.2-rc5
freemore	Patches 1-10
immediate	Patches 1-11
andrea		The 8 patches Andrea posted as a basis of comparison

The results are very long unfortunately. I'll start with the case
where we are not using THP at all

writebackCPDeviceBasevfat
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.28 (    0.00%)   54.49 (-4143.46%)   48.63 (-3687.69%)    4.69 ( -265.11%)   51.88 (-3940.81%)
+/-                 0.06 (    0.00%)    2.45 (-4305.55%)    4.75 (-8430.57%)    7.46 (-13282.76%)    4.76 (-8440.70%)
User Time           0.09 (    0.00%)    0.05 (   40.91%)    0.06 (   29.55%)    0.07 (   15.91%)    0.06 (   27.27%)
+/-                 0.02 (    0.00%)    0.01 (   45.39%)    0.02 (   25.07%)    0.00 (   77.06%)    0.01 (   52.24%)
Elapsed Time      110.27 (    0.00%)   56.38 (   48.87%)   49.95 (   54.70%)   11.77 (   89.33%)   53.43 (   51.54%)
+/-                 7.33 (    0.00%)    3.77 (   48.61%)    4.94 (   32.63%)    6.71 (    8.50%)    4.76 (   35.03%)
THP Active          0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
Fault Alloc         0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
Fault Fallback      0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)

The THP figures are obviously all 0 because THP was enabled. The
main thing to watch is the elapsed times and how they compare to
times when THP is enabled later. It's also important to note that
elapsed time is improved by this series as System CPu time is much
reduced.

writebackCPDevicevfat

                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.22 (    0.00%)   13.89 (-1040.72%)   46.40 (-3709.20%)    4.44 ( -264.37%)   47.37 (-3789.33%)
+/-                 0.06 (    0.00%)   22.82 (-37635.56%)    3.84 (-6249.44%)    6.48 (-10618.92%)    6.60
(-10818.53%)
User Time           0.06 (    0.00%)    0.06 (   -6.90%)    0.05 (   17.24%)    0.05 (   13.79%)    0.04 (   31.03%)
+/-                 0.01 (    0.00%)    0.01 (   33.33%)    0.01 (   33.33%)    0.01 (   39.14%)    0.01 (   25.46%)
Elapsed Time     10445.54 (    0.00%) 2249.92 (   78.46%)   70.06 (   99.33%)   16.59 (   99.84%)  472.43 (
95.48%)
+/-               643.98 (    0.00%)  811.62 (  -26.03%)   10.02 (   98.44%)    7.03 (   98.91%)   59.99 (   90.68%)
THP Active         15.60 (    0.00%)   35.20 (  225.64%)   65.00 (  416.67%)   70.80 (  453.85%)   62.20 (  398.72%)
+/-                18.48 (    0.00%)   51.29 (  277.59%)   15.99 (   86.52%)   37.91 (  205.18%)   22.02 (  119.18%)
Fault Alloc       121.80 (    0.00%)   76.60 (   62.89%)  155.40 (  127.59%)  181.20 (  148.77%)  286.60 (  235.30%)
+/-                73.51 (    0.00%)   61.11 (   83.12%)   34.89 (   47.46%)   31.88 (   43.36%)   68.13 (   92.68%)
Fault Fallback    881.20 (    0.00%)  926.60 (   -5.15%)  847.60 (    3.81%)  822.00 (    6.72%)  716.60 (   18.68%)
+/-                73.51 (    0.00%)   61.26 (   16.67%)   34.89 (   52.54%)   31.65 (   56.94%)   67.75 (    7.84%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)       3540.88   1945.37    716.04     64.97   1937.03
Total Elapsed Time (seconds)              52417.33  11425.90    501.02    230.95   2520.28

The first thing to note is the "Elapsed Time" for the vanilla kernels
of 2249 seconds versus 56 with THP disabled which might explain the
reports of USB stalls with THP enabled. Applying the patches brings
performance in line with THP-disabled performance while isolating
pages for immediate reclaim from the LRU cuts down System CPU time.

The "Fault Alloc" success rate figures are also improved. The vanilla
kernel only managed to allocate 76.6 pages on average over the course
of 5 iterations where as applying the series allocated 181.20 on
average albeit it is well within variance. It's worth noting that
applies the series at least descreases the amount of variance which
implies an improvement.

Andrea's series had a higher success rate for THP allocations but
at a severe cost to elapsed time which is still better than vanilla
but still much worse than disabling THP altogether. One can bring my
series close to Andrea's by removing this check

        /*
         * If compaction is deferred for high-order allocations, it is because
         * sync compaction recently failed. In this is the case and the caller
         * has requested the system not be heavily disrupted, fail the
         * allocation now instead of entering direct reclaim
         */
        if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
                goto nopage;

I didn't include a patch that removed the above check because hurting
overall performance to improve the THP figure is not what the average
user wants. It's something to consider though if someone really wants
to maximise THP usage no matter what it does to the workload initially.

This is summary of vmstat figures from the same test.

                                       3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1
Page Ins                                  3257266139  1111844061    17263623    10901575   161423219
Page Outs                                   81054922    30364312     3626530     3657687     8753730
Swap Ins                                        3294        2851        6560        4964        4592
Swap Outs                                     390073      528094      620197      790912      698285
Direct pages scanned                      1077581700  3024951463  1764930052   115140570  5901188831
Kswapd pages scanned                        34826043     7112868     2131265     1686942     1893966
Kswapd pages reclaimed                      28950067     4911036     1246044      966475     1497726
Direct pages reclaimed                     805148398   280167837     3623473     2215044    40809360
Kswapd efficiency                                83%         69%         58%         57%         79%
Kswapd velocity                              664.399     622.521    4253.852    7304.360     751.490
Direct efficiency                                74%          9%          0%          1%          0%
Direct velocity                            20557.737  264745.137 3522673.849  498551.938 2341481.435
Percentage direct scans                          96%         99%         99%         98%         99%
Page writes by reclaim                        722646      529174      620319      791018      699198
Page writes file                              332573        1080         122         106         913
Page writes anon                              390073      528094      620197      790912      698285
Page reclaim immediate                             0  2552514720  1635858848   111281140  5478375032
Page rescued immediate                             0           0           0       87848           0
Slabs scanned                                  23552       23552        9216        8192        9216
Direct inode steals                              231           0           0           0           0
Kswapd inode steals                                0           0           0           0           0
Kswapd skipped wait                            28076         786           0          61           6
THP fault alloc                                  609         383         753         906        1433
THP collapse alloc                                12           6           0           0           6
THP splits                                       536         211         456         593        1136
THP fault fallback                              4406        4633        4263        4110        3583
THP collapse fail                                120         127           0           0           4
Compaction stalls                               1810         728         623         779        3200
Compaction success                               196          53          60          80         123
Compaction failures                             1614         675         563         699        3077
Compaction pages moved                        193158       53545      243185      333457      226688
Compaction move failure                         9952        9396       16424       23676       45070

The main things to look at are

1. Page In/out figures are much reduced by the series.

2. Direct page scanning is incredibly high (264745.137 pages scanned
   per second on the vanilla kernel) but isolating PageReclaim pages
   on their own list reduces the number of pages scanned significantly.

3. The fact that "Page rescued immediate" is a positive number implies
   that we sometimes race removing pages from the LRU_IMMEDIATE list
   that need to be put back on a normal LRU but it happens only for
   0.07% of the pages marked for immediate reclaim.

writebackCPDeviceext4
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.51 (    0.00%)    1.77 (  -17.66%)    1.46 (    2.92%)    1.15 (   23.77%)    1.89 (  -25.63%)
+/-                 0.27 (    0.00%)    0.67 ( -148.52%)    0.33 (  -22.76%)    0.30 (  -11.15%)    0.19 (   30.16%)
User Time           0.03 (    0.00%)    0.04 (  -37.50%)    0.05 (  -62.50%)    0.07 ( -112.50%)    0.04 (  -18.75%)
+/-                 0.01 (    0.00%)    0.02 ( -146.64%)    0.02 (  -97.91%)    0.02 (  -75.59%)    0.02 (  -63.30%)
Elapsed Time      124.93 (    0.00%)  114.49 (    8.36%)   96.77 (   22.55%)   27.48 (   78.00%)  205.70 (  -64.65%)
+/-                20.20 (    0.00%)   74.39 ( -268.34%)   59.88 ( -196.48%)    7.72 (   61.79%)   25.03 (  -23.95%)
THP Active        161.80 (    0.00%)   83.60 (   51.67%)  141.20 (   87.27%)   84.60 (   52.29%)   82.60 (   51.05%)
+/-                71.95 (    0.00%)   43.80 (   60.88%)   26.91 (   37.40%)   59.02 (   82.03%)   52.13 (   72.45%)
Fault Alloc       471.40 (    0.00%)  228.60 (   48.49%)  282.20 (   59.86%)  225.20 (   47.77%)  388.40 (   82.39%)
+/-                88.07 (    0.00%)   87.42 (   99.26%)   73.79 (   83.78%)  109.62 (  124.47%)   82.62 (   93.81%)
Fault Fallback    531.60 (    0.00%)  774.60 (  -45.71%)  720.80 (  -35.59%)  777.80 (  -46.31%)  614.80 (  -15.65%)
+/-                88.07 (    0.00%)   87.26 (    0.92%)   73.79 (   16.22%)  109.62 (  -24.47%)   82.29 (    6.56%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)         50.22     33.76     30.65     24.14    128.45
Total Elapsed Time (seconds)               1113.73   1132.19   1029.45    759.49   1707.26

Similar test but the USB stick is using ext4 instead of vfat. As
ext4 does not use writepage for migration, the large stalls due to
compaction when THP is enabled are not observed. Still, isolating
PageReclaim pages on their own list helped completion time largely
by reducing the number of pages scanned by direct reclaim although
time spend in congestion_wait could also be a factor.

Again, Andrea's series had far higher success rates for THP allocation
at the cost of elapsed time. I didn't look too closely but a quick
look at the vmstat figures tells me kswapd reclaimed 8 times more pages
than the patch series and direct reclaim reclaimed roughly three times
as many pages. It follows that if memory is aggressively reclaimed,
there will be more available for THP.

writebackCPFilevfat
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.76 (    0.00%)   29.10 (-1555.52%)   46.01 (-2517.18%)    4.79 ( -172.35%)   54.89 (-3022.53%)
+/-                 0.14 (    0.00%)   25.61 (-18185.17%)    2.15 (-1434.83%)    6.60 (-4610.03%)    9.75
(-6863.76%)
User Time           0.05 (    0.00%)    0.07 (  -45.83%)    0.05 (   -4.17%)    0.06 (  -29.17%)    0.06 (  -16.67%)
+/-                 0.02 (    0.00%)    0.02 (   20.11%)    0.02 (   -3.14%)    0.01 (   31.58%)    0.01 (   47.41%)
Elapsed Time     22520.79 (    0.00%) 1082.85 (   95.19%)   73.30 (   99.67%)   32.43 (   99.86%)  291.84 (  98.70%)
+/-              7277.23 (    0.00%)  706.29 (   90.29%)   19.05 (   99.74%)   17.05 (   99.77%)  125.55 (   98.27%)
THP Active         83.80 (    0.00%)   12.80 (   15.27%)   15.60 (   18.62%)   13.00 (   15.51%)    0.80 (    0.95%)
+/-                66.81 (    0.00%)   20.19 (   30.22%)    5.92 (    8.86%)   15.06 (   22.54%)    1.17 (    1.75%)
Fault Alloc       171.00 (    0.00%)   67.80 (   39.65%)   97.40 (   56.96%)  125.60 (   73.45%)  133.00 (   77.78%)
+/-                82.91 (    0.00%)   30.69 (   37.02%)   53.91 (   65.02%)   55.05 (   66.40%)   21.19 (   25.56%)
Fault Fallback    832.00 (    0.00%)  935.20 (  -12.40%)  906.00 (   -8.89%)  877.40 (   -5.46%)  870.20 (   -4.59%)
+/-                82.91 (    0.00%)   30.69 (   62.98%)   54.01 (   34.86%)   55.05 (   33.60%)   20.91 (   74.78%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)       7229.81    928.42    704.52     80.68   1330.76
Total Elapsed Time (seconds)             112849.04   5618.69    571.11    360.54   1664.28

In this case, the test is reading/writing only from filesystems but as
it's vfat, it's slow due to calling writepage during compaction. Little
to observe really - the time to complete the test goes way down
with the series applied and THP allocation success rates go up in
comparison to 3.2-rc5.  The success rates are lower than 3.1.0 but
the elapsed time for that kernel is abysmal so it is not really a
sensible comparison.

As before, Andrea's series allocates more THPs at the cost of overall
performance.

writebackCPFileext4
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.51 (    0.00%)    1.77 (  -17.66%)    1.46 (    2.92%)    1.15 (   23.77%)    1.89 (  -25.63%)
+/-                 0.27 (    0.00%)    0.67 ( -148.52%)    0.33 (  -22.76%)    0.30 (  -11.15%)    0.19 (   30.16%)
User Time           0.03 (    0.00%)    0.04 (  -37.50%)    0.05 (  -62.50%)    0.07 ( -112.50%)    0.04 (  -18.75%)
+/-                 0.01 (    0.00%)    0.02 ( -146.64%)    0.02 (  -97.91%)    0.02 (  -75.59%)    0.02 (  -63.30%)
Elapsed Time      124.93 (    0.00%)  114.49 (    8.36%)   96.77 (   22.55%)   27.48 (   78.00%)  205.70 (  -64.65%)
+/-                20.20 (    0.00%)   74.39 ( -268.34%)   59.88 ( -196.48%)    7.72 (   61.79%)   25.03 (  -23.95%)
THP Active        161.80 (    0.00%)   83.60 (   51.67%)  141.20 (   87.27%)   84.60 (   52.29%)   82.60 (   51.05%)
+/-                71.95 (    0.00%)   43.80 (   60.88%)   26.91 (   37.40%)   59.02 (   82.03%)   52.13 (   72.45%)
Fault Alloc       471.40 (    0.00%)  228.60 (   48.49%)  282.20 (   59.86%)  225.20 (   47.77%)  388.40 (   82.39%)
+/-                88.07 (    0.00%)   87.42 (   99.26%)   73.79 (   83.78%)  109.62 (  124.47%)   82.62 (   93.81%)
Fault Fallback    531.60 (    0.00%)  774.60 (  -45.71%)  720.80 (  -35.59%)  777.80 (  -46.31%)  614.80 (  -15.65%)
+/-                88.07 (    0.00%)   87.26 (    0.92%)   73.79 (   16.22%)  109.62 (  -24.47%)   82.29 (    6.56%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)         50.22     33.76     30.65     24.14    128.45
Total Elapsed Time (seconds)               1113.73   1132.19   1029.45    759.49   1707.26

Same type of story - elapsed times go down. In this case, allocation
success rates are roughtly the same. As before, Andrea's has higher
success rates but takes a lot longer.

Overall the series does reduce latencies and while the tests are
inherency racy as alloc competes with the cp processes, the variability
was included. The THP allocation rates are not as high as they could
be but that is because we would have to be more aggressive about
reclaim and compaction impacting overall performance.

This patch:

Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware")
noted that compaction does not migrate dirty or writeback pages and that
is was meaningless to pick the page and re-add it to the LRU list.

What was missed during review is that asynchronous migration moves dirty
pages if their ->migratepage callback is migrate_page() because these can
be moved without blocking.  This potentially impacted hugepage allocation
success rates by a factor depending on how many dirty pages are in the
system.

This patch partially reverts 39deaf85 to allow migration to isolate dirty
pages again.  This increases how much compaction disrupts the LRU but that
is addressed later in the series.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Tao Ma
ea4d349ffa vmscan/trace: Add 'file' info to trace_mm_vmscan_lru_isolate()
In trace_mm_vmscan_lru_isolate(), we don't output 'file' information to
the trace event and it is a bit inconvenient for the user to get the
real information(like pasted below).  mm_vmscan_lru_isolate:
isolate_mode=2 order=0 nr_requested=32 nr_scanned=32 nr_taken=32
contig_taken=0 contig_dirty=0 contig_failed=0

'active' can be obtained by analyzing mode(Thanks go to Minchan and
Mel), So this patch adds 'file' to the trace event and it now looks
like: mm_vmscan_lru_isolate: isolate_mode=2 order=0 nr_requested=32
nr_scanned=32 nr_taken=32 contig_taken=0 contig_dirty=0 contig_failed=0
file=0

Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Shaohua Li
45676885b7 thp: improve order in lru list for split huge page
Put the tail subpages of an isolated hugepage under splitting in the lru
reclaim head as they supposedly should be isolated too next.

Queues the subpages in physical order in the lru for non isolated
hugepages under splitting.  That might provide some theoretical cache
benefit to the buddy allocator later.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Shaohua Li
f21760b15d thp: add tlb_remove_pmd_tlb_entry
We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be
flushed, but not a corresponding API for pmd entry.  This isn't a
problem so far because THP is only for x86 currently and tlb_flush()
under x86 will flush entire TLB.  But this is confusion and could be
missed if thp is ported to other arch.

Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in
__tlb_remove_page() as suggested by Andrea Arcangeli.  The
__tlb_remove_page() function is supposed to be called after
tlb_remove_xxx_tlb_entry() and we can catch any misuse.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Shaohua Li
e5591307f0 thp: remove unnecessary tlb flush for mprotect
change_protection() will do TLB flush later, don't need duplicate tlb
flush.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Shaohua Li
569e55900a thp: improve the error code path
Improve the error code path.  Delete unnecessary sysfs file for example.
Also remove the #ifdef xxx to make code better.

Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Bob Liu
0efc8eb9c6 page_cgroup: drop multi CONFIG_MEMORY_HOTPLUG
No need for two CONFIG_MEMORY_HOTPLUG blocks.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00
Bob Liu
d0048b0e59 page_alloc: break early in check_for_regular_memory()
If there is a zone below ZONE_NORMAL has present_pages, we can set node
state to N_NORMAL_MEMORY, no need to loop to end.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Bob Liu
3ed28fa108 memcg: cleanup for_each_node_state()
We already have for_each_node(node) define in nodemask.h, better to use it.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
KAMEZAWA Hiroyuki
38c5d72f3e memcg: simplify LRU handling by new rule
Now, at LRU handling, memory cgroup needs to do complicated works to see
valid pc->mem_cgroup, which may be overwritten.

This patch is for relaxing the protocol. This patch guarantees
   - when pc->mem_cgroup is overwritten, page must not be on LRU.

By this, LRU routine can believe pc->mem_cgroup and don't need to check
bits on pc->flags.  This new rule may adds small overheads to swapin.  But
in most case, lru handling gets faster.

After this patch, PCG_ACCT_LRU bit is obsolete and removed.

[akpm@linux-foundation.org: remove unneeded VM_BUG_ON(), restore hannes's christmas tree]
[akpm@linux-foundation.org: clean up code comment]
[hughd@google.com: fix NULL mem_cgroup_try_charge]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
KAMEZAWA Hiroyuki
4e5f01c2b9 memcg: clear pc->mem_cgroup if necessary.
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup
and reducing atomic ops/complexity in memcg LRU handling.

In some cases, pages are added to lru before charge to memcg and pages
are not classfied to memory cgroup at lru addtion.  Now, the lru where
the page should be added is determined a bit in page_cgroup->flags and
pc->mem_cgroup.  I'd like to remove the check of flag.

To handle the case pc->mem_cgroup may contain stale pointers if pages
are added to LRU before classification.  This patch resets
pc->mem_cgroup to root_mem_cgroup before lru additions.

[akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build]
[hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build]
[akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal]
[hughd@google.com: stop oops in mem_cgroup_reset_owner()]
[hughd@google.com: fix page migration to reset_owner]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
KAMEZAWA Hiroyuki
36b62ad539 memcg: simplify corner case handling of LRU.
This patch simplifies LRU handling of racy case (memcg+SwapCache).  At
charging, SwapCache tend to be on LRU already.  So, before overwriting
pc->mem_cgroup, the page must be removed from LRU and added to LRU
later.

This patch does
        spin_lock(zone->lru_lock);
        if (PageLRU(page))
                remove from LRU
        overwrite pc->mem_cgroup
        if (PageLRU(page))
                add to new LRU.
        spin_unlock(zone->lru_lock);

And guarantee all pages are not on LRU at modifying pc->mem_cgroup.
This patch also unfies lru handling of replace_page_cache() and
swapin.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
KAMEZAWA Hiroyuki
dc67d50465 memcg: simplify page cache charging
This patch is a clean up. No functional/logical changes.

Because of commit ef6a3c6311 ("mm: add replace_page_cache_page()
function") , FUSE uses replace_page_cache() instead of
add_to_page_cache().  Then, mem_cgroup_cache_charge() is not called
against FUSE's pages from splice.

So now, mem_cgroup_cache_charge() gets pages that are not on the LRU
with the exception of PageSwapCache pages.  For checking,
WARN_ON_ONCE(PageLRU(page)) is added.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
David Rientjes
de077d222d oom, memcg: fix exclusion of memcg threads after they have detached their mm
The oom killer relies on logic that identifies threads that have already
been oom killed when scanning the tasklist and, if found, deferring
until such threads have exited.  This is done by checking for any
candidate threads that have the TIF_MEMDIE bit set.

For memcg ooms, candidate threads are first found by calling
task_in_mem_cgroup() since the oom killer should not defer if there's an
oom killed thread in another memcg.

Unfortunately, task_in_mem_cgroup() excludes threads if they have
detached their mm in the process of exiting so TIF_MEMDIE is never
detected for such conditions.  This is different for global, mempolicy,
and cpuset oom conditions where a detached mm is only excluded after
checking for TIF_MEMDIE and deferring, if necessary, in
select_bad_process().

The fix is to return true if a task has a detached mm but is still in
the memcg or its hierarchy that is currently oom.  This will allow the
oom killer to appropriately defer rather than kill unnecessarily or, in
the worst case, panic the machine if nothing else is available to kill.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Michal Hocko
c3cecc6834 memcg: free entries in soft_limit_tree if allocation fails
If we are not able to allocate tree nodes for all NUMA nodes then we
should release those that were allocated.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Bob Liu
9fb4b7cc07 page_cgroup: add helper function to get swap_cgroup
There are multiple places which need to get the swap_cgroup address, so
add a helper function:

  static struct swap_cgroup *swap_cgroup_getsc(swp_entry_t ent,
                                struct swap_cgroup_ctrl **ctrl);

to simplify the code.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Johannes Weiner
40f23a21a8 mm: memcg: remove unneeded checks from uncharge_page()
mem_cgroup_uncharge_page() is only called on either freshly allocated
pages without page->mapping or on rmapped PageAnon() pages.  There is no
need to check for a page->mapping that is not an anon_vma.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
7a0524cfc8 mm: memcg: remove unneeded checks from newpage_charge()
All callsites pass in freshly allocated pages and a valid mm.  As a
result, all checks pertaining to the page's mapcount, page->mapping or the
fallback to init_mm are unneeded.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
00c54c0bac mm: page_cgroup: check page_cgroup arrays in lookup_page_cgroup() only when necessary
lookup_page_cgroup() is usually used only against pages that are used in
userspace.

The exception is the CONFIG_DEBUG_VM-only memcg check from the page
allocator: it can run on pages without page_cgroup descriptors allocated
when the pages are fed into the page allocator for the first time during
boot or memory hotplug.

Include the array check only when CONFIG_DEBUG_VM is set and save the
unnecessary check in production kernels.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
cfa449461e mm: memcg: lookup_page_cgroup (almost) never returns NULL
Pages have their corresponding page_cgroup descriptors set up before
they are used in userspace, and thus managed by a memory cgroup.

The only time where lookup_page_cgroup() can return NULL is in the
CONFIG_DEBUG_VM-only page sanity checking code that executes while
feeding pages into the page allocator for the first time.

Remove the NULL checks against lookup_page_cgroup() results from all
callsites where we know that corresponding page_cgroup descriptors must
be allocated, and add a comment to the callsite that actually does have
to check the return value.

[hughd@google.com: stop oops in mem_cgroup_update_page_stat()]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
0e574a932d mm: memcg: clean up fault accounting
The fault accounting functions have a single, memcg-internal user, so they
don't need to be global.  In fact, their one-line bodies can be directly
folded into the caller.  And since faults happen one at a time, use
this_cpu_inc() directly instead of this_cpu_add(foo, 1).

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
72835c86ca mm: unify remaining mem_cont, mem, etc. variable names to memcg
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
ec0fffd84b mm: oom_kill: remove memcg argument from oom_kill_task()
The memcg argument of oom_kill_task() hasn't been used since 341aea2
'oom-kill: remove boost_dying_task_prio()'.  Kill it.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:06 -08:00
Johannes Weiner
f53d7ce32e mm: memcg: shorten preempt-disabled section around event checks
Only the ratelimit checks themselves have to run with preemption
disabled, the resulting actions - checking for usage thresholds,
updating the soft limit tree - can and should run with preemption
enabled.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reported-by: Yong Zhang <yong.zhang0@gmail.com>
Tested-by: Yong Zhang <yong.zhang0@gmail.com>
Reported-by: Luis Henriques <henrix@camandro.org>
Tested-by: Luis Henriques <henrix@camandro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
KAMEZAWA Hiroyuki
e94c8a9cbc memcg: make mem_cgroup_split_huge_fixup() more efficient
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle
page_cgroup modifcations.  It takes move_lock_page_cgroup() and modifies
page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times.

But thinking again,
  - compound_lock() is held at move_accout...then, it's not necessary
    to take move_lock_page_cgroup().
  - LRU is locked and all tail pages will go into the same LRU as
    head is now on.
  - page_cgroup is contiguous in huge page range.

This patch fixes mem_cgroup_split_huge_fixup() as to be called once per
hugepage and reduce costs for spliting.

[akpm@linux-foundation.org: fix typo, per Michal]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
6b208e3f6e mm: memcg: remove unused node/section info from pc->flags
To find the page corresponding to a certain page_cgroup, the pc->flags
encoded the node or section ID with the base array to compare the pc
pointer to.

Now that the per-memory cgroup LRU lists link page descriptors directly,
there is no longer any code that knows the struct page_cgroup of a PFN
but not the struct page.

[hughd@google.com: remove unused node/section info from pc->flags fix]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
925b7673cc mm: make per-memcg LRU lists exclusive
Now that all code that operated on global per-zone LRU lists is
converted to operate on per-memory cgroup LRU lists instead, there is no
reason to keep the double-LRU scheme around any longer.

The pc->lru member is removed and page->lru is linked directly to the
per-memory cgroup LRU lists, which removes two pointers from a
descriptor that exists for every page frame in the system.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
6290df5458 mm: collect LRU list heads into struct lruvec
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.

Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
b95a2f2d48 mm: vmscan: convert global reclaim to per-memcg LRU lists
The global per-zone LRU lists are about to go away on memcg-enabled
kernels, global reclaim must be able to find its pages on the per-memcg
LRU lists.

Since the LRU pages of a zone are distributed over all existing memory
cgroups, a scan target for a zone is complete when all memory cgroups
are scanned for their proportional share of a zone's memory.

The forced scanning of small scan targets from kswapd is limited to
zones marked unreclaimable, otherwise kswapd can quickly overreclaim by
force-scanning the LRU lists of multiple memory cgroups.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
ad2b8e6010 mm: memcg: remove optimization of keeping the root_mem_cgroup LRU lists empty
root_mem_cgroup, lacking a configurable limit, was never subject to
limit reclaim, so the pages charged to it could be kept off its LRU
lists.  They would be found on the global per-zone LRU lists upon
physical memory pressure and it made sense to avoid uselessly linking
them to both lists.

The global per-zone LRU lists are about to go away on memcg-enabled
kernels, with all pages being exclusively linked to their respective
per-memcg LRU lists.  As a result, pages of the root_mem_cgroup must
also be linked to its LRU lists again.  This is purely about the LRU
list, root_mem_cgroup is still not charged.

The overhead is temporary until the double-LRU scheme is going away
completely.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
5660048cca mm: move memcg hierarchy reclaim to generic reclaim code
Memory cgroup limit reclaim and traditional global pressure reclaim will
soon share the same code to reclaim from a hierarchical tree of memory
cgroups.

In preparation of this, move the two right next to each other in
shrink_zone().

The mem_cgroup_hierarchical_reclaim() polymath is split into a soft
limit reclaim function, which still does hierarchy walking on its own,
and a limit (shrinking) reclaim function, which relies on generic
reclaim code to walk the hierarchy.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00