Commit Graph

10 Commits

Author SHA1 Message Date
Avi Kivity
980da6ce57 KVM: Simplify coalesced mmio initialization
- add destructor function
- move related allocation into constructor
- add stubs for !CONFIG_KVM_MMIO

Signed-off-by: Avi Kivity <avi@redhat.com>
2010-03-01 12:35:41 -03:00
Gregory Haskins
090b7aff27 KVM: make io_bus interface more robust
Today kvm_io_bus_regsiter_dev() returns void and will internally BUG_ON
if it fails.  We want to create dynamic MMIO/PIO entries driven from
userspace later in the series, so we need to enhance the code to be more
robust with the following changes:

   1) Add a return value to the registration function
   2) Fix up all the callsites to check the return code, handle any
      failures, and percolate the error up to the caller.
   3) Add an unregister function that collapses holes in the array

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:12 +03:00
Michael S. Tsirkin
bda9020e24 KVM: remove in_range from io devices
This changes bus accesses to use high-level kvm_io_bus_read/kvm_io_bus_write
functions. in_range now becomes unused so it is removed from device ops in
favor of read/write callbacks performing range checks internally.

This allows aliasing (mostly for in-kernel virtio), as well as better error
handling by making it possible to pass errors up to userspace.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:05 +03:00
Michael S. Tsirkin
6c47469453 KVM: convert bus to slots_lock
Use slots_lock to protect device list on the bus.  slots_lock is already
taken for read everywhere, so we only need to take it for write when
registering devices.  This is in preparation to removing in_range and
kvm->lock around it.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:05 +03:00
Michael S. Tsirkin
d5c2dcc36a KVM: switch coalesced mmio changes to slots_lock
switch coalesced mmio slots_lock.  slots_lock is already taken for read
everywhere, so we only need to take it for write when changing zones.
This is in preparation to removing in_range and kvm->lock around it.

[avi: fix build]

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:04 +03:00
Marcelo Tosatti
64a2268dcf KVM: move coalesced_mmio locking to its own device
Move coalesced_mmio locking to its own device, instead of relying on
kvm->lock.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:32:49 +03:00
Avi Kivity
105f8d40a7 KVM: Calculate available entries in coalesced mmio ring
Instead of checking whether we'll wrap around, calculate how many entries
are available, and check whether we have enough (just one) for the pending
mmio.

By itself, this doesn't change anything, but it paves the way for making
this function lockless.

Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:32:47 +03:00
Gregory Haskins
d76685c4a0 KVM: cleanup io_device code
We modernize the io_device code so that we use container_of() instead of
dev->private, and move the vtable to a separate ops structure
(theoretically allows better caching for multiple instances of the same
ops structure)

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:32:45 +03:00
Gregory Haskins
787a660a4f KVM: Clean up coalesced_mmio destruction
We invoke kfree() on a data member instead of the structure.  This works today
because the kvm_io_device is the first element of the private structure, but
this could change in the future, so lets clean this up.

Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:32:45 +03:00
Laurent Vivier
5f94c1741b KVM: Add coalesced MMIO support (common part)
This patch adds all needed structures to coalesce MMIOs.
Until an architecture uses it, it is not compiled.

Coalesced MMIO introduces two ioctl() to define where are the MMIO zones that
can be coalesced:

- KVM_REGISTER_COALESCED_MMIO registers a coalesced MMIO zone.
  It requests one parameter (struct kvm_coalesced_mmio_zone) which defines
  a memory area where MMIOs can be coalesced until the next switch to
  user space. The maximum number of MMIO zones is KVM_COALESCED_MMIO_ZONE_MAX.

- KVM_UNREGISTER_COALESCED_MMIO cancels all registered zones inside
  the given bounds (bounds are also given by struct kvm_coalesced_mmio_zone).

The userspace client can check kernel coalesced MMIO availability by asking
ioctl(KVM_CHECK_EXTENSION) for the KVM_CAP_COALESCED_MMIO capability.
The ioctl() call to KVM_CAP_COALESCED_MMIO will return 0 if not supported,
or the page offset where will be stored the ring buffer.
The page offset depends on the architecture.

After an ioctl(KVM_RUN), the first page of the KVM memory mapped points to
a kvm_run structure. The offset given by KVM_CAP_COALESCED_MMIO is
an offset to the coalesced MMIO ring expressed in PAGE_SIZE relatively
to the address of the start of th kvm_run structure. The MMIO ring buffer
is defined by the structure kvm_coalesced_mmio_ring.

[akio: fix oops during guest shutdown]

Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Akio Takebe <takebe_akio@jp.fujitsu.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-07-20 12:42:31 +03:00