The whole bio_integrity() definition is inside an #ifdef
CONFIG_BLK_DEV_INTEGRITY, there's no need for the conditional code.
Signed-off-by: Alberto Bertogli <albertito@blitiri.com.ar>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch removes end_queued_request() and end_dequeued_request(),
which are no longer used.
As a results, users of __end_request() became only end_request().
So the actual code in __end_request() is moved to end_request()
and __end_request() is removed.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Define as 32, which is is what BDEVNAME_SIZE is/was as well. This keeps
the user interface the same and gets rid of the difference between
kernel and user api here.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds an new interface, blk_lld_busy(), to check lld's
busy state from the block layer.
blk_lld_busy() calls down into low-level drivers for the checking
if the drivers set q->lld_busy_fn() using blk_queue_lld_busy().
This resolves a performance problem on request stacking devices below.
Some drivers like scsi mid layer stop dispatching request when
they detect busy state on its low-level device like host/target/device.
It allows other requests to stay in the I/O scheduler's queue
for a chance of merging.
Request stacking drivers like request-based dm should follow
the same logic.
However, there is no generic interface for the stacked device
to check if the underlying device(s) are busy.
If the request stacking driver dispatches and submits requests to
the busy underlying device, the requests will stay in
the underlying device's queue without a chance of merging.
This causes performance problem on burst I/O load.
With this patch, busy state of the underlying device is exported
via q->lld_busy_fn(). So the request stacking driver can check it
and stop dispatching requests if busy.
The underlying device driver must return the busy state appropriately:
1: when the device driver can't process requests immediately.
0: when the device driver can process requests immediately,
including abnormal situations where the device driver needs
to kill all requests.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This header file is of interest for user space programming, i.e.
for tools that process blktrace data.
We would like to use it for a tool on-top of blktrace which processes
data provided by blktrace. For this purpose, it would be helpful
if the blktrace API would make it to /usr/include/linux.
The git tree for the blktrace tools comes with its own copy of this header
file. I didn't manage to replace that copy with the file generated
by the patch below yet. A few more cleanups would be needed.
For example, the blktrace ioctl numbers, which are currently defined in
usr/include/fs.h, might need to be moved. Should be feasible, though.
Signed-off-by: Sven Schuetz <sven@linux.vnet.ibm.com>
Signed-off-by: Martin Peschke <mp3@de.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
SSD devices should give an RPM setting of 1 in word 217 of the ID
page. If we see such a device, tell the block layer about it.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We don't want to idle in AS/CFQ if the device doesn't have a seek
penalty. So add a QUEUE_FLAG_NONROT to indicate a non-rotational
device, low level drivers should set this flag upon discovery of
an SSD or similar device type.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The current floppy_struct allows floppies to number sectors starting
from 0 or 1. This patch allows arbitrary first-sector numbers - for
example, 0xC1 for Amstrad CPC disks.
This extends the existing 1-bit field (FD_ZEROBASED, bit 2 of stretch)
to 8 bits (FD_SECTMASK, bits 2 to 9).
Currently 0x00 denotes a first sector number of 1, and 0x01 denotes a
first sector number of 0. We extend this by interpreting FD_SECTMASK
as the first sector number with the LSB flipped.
Signed-off-by: Keith Wansbrough <keith@lochan.org>
Cc: Alain Knaff <alain@linux.lu>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Karel Zak <kzak@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds a queue flag to indicate the block device can be
used for request stacking.
Request stacking drivers need to stack their devices on top of
only devices of which q->request_fn is functional.
Since bio stacking drivers (e.g. md, loop) basically initialize
their queue using blk_alloc_queue() and don't set q->request_fn,
the check of (q->request_fn == NULL) looks enough for that purpose.
However, dm will become both types of stacking driver (bio-based and
request-based). And dm will always set q->request_fn even if the dm
device is bio-based of which q->request_fn is not functional actually.
So we need something else to distinguish the type of the device.
Adding a queue flag is a solution for that.
The reason why dm always sets q->request_fn is to keep
the compatibility of dm user-space tools.
Currently, all dm user-space tools are using bio-based dm without
specifying the type of the dm device they use.
To use request-based dm without changing such tools, the kernel
must decide the type of the dm device automatically.
The automatic type decision can't be done at the device creation time
and needs to be deferred until such tools load a mapping table,
since the actual type is decided by dm target type included in
the mapping table.
So a dm device has to be initialized using blk_init_queue()
so that we can load either type of table.
Then, all queue stuffs are set (e.g. q->request_fn) and we have
no element to distinguish that it is bio-based or request-based,
even after a table is loaded and the type of the device is decided.
By the way, some stuffs of the queue (e.g. request_list, elevator)
are needless when the dm device is used as bio-based.
But the memory size is not so large (about 20[KB] per queue on ia64),
so I hope the memory loss can be acceptable for bio-based dm users.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds blk_insert_cloned_request(), a generic request
submission interface for request stacking drivers.
Request-based dm will use it to submit their clones to underlying
devices.
blk_rq_check_limits() is also added because it is possible that
the lower queue has stronger limitations than the upper queue
if multiple drivers are stacking at request-level.
Not only for blk_insert_cloned_request()'s internal use, the function
will be used by request-based dm when the queue limitation is
modified (e.g. by replacing dm's table).
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds blk_update_request(), which updates struct request
with completing its data part, but doesn't complete the struct
request itself.
Though it looks like end_that_request_first() of older kernels,
blk_update_request() should be used only by request stacking drivers.
Request-based dm will use it in bio->bi_end_io callback to update
the original request when a data part of a cloned request completes.
Followings are additional background information of why request-based
dm needs this interface.
- Request stacking drivers can't use blk_end_request() directly from
the lower driver's completion context (bio->bi_end_io or rq->end_io),
because some device drivers (e.g. ide) may try to complete
their request with queue lock held, and it may cause deadlock.
See below for detailed description of possible deadlock:
<http://marc.info/?l=linux-kernel&m=120311479108569&w=2>
- To solve that, request-based dm offloads the completion of
cloned struct request to softirq context (i.e. using
blk_complete_request() from rq->end_io).
- Though it is possible to use the same solution from bio->bi_end_io,
it will delay the notification of bio completion to the original
submitter. Also, it will cause inefficient partial completion,
because the lower driver can't perform the cloned request anymore
and request-based dm needs to requeue and redispatch it to
the lower driver again later. That's not good.
- So request-based dm needs blk_update_request() to perform the bio
completion in the lower driver's completion context, which is more
efficient.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Don't put functions that are only used in fs/bio-integrity.c in
blkdev.h, it's much cleaner to just keep it in there. Also kill
completely unused bdev_get_tag_size()
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Only works for the generic request timer handling. Allows one to
sporadically ignore request completions, thus exercising the timeout
handling.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Not all callers need (or want!) the mempool backing guarentee, it
essentially means that you can only use bio_alloc() for short allocations
and not for preallocating some bio's at setup or init time.
So add bio_kmalloc() which does the same thing as bio_alloc(), except
it just uses kmalloc() as the backing instead of the bio mempools.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Two mods to blkdev_issue_discard(), thinking ahead to its use on swap:
1. Add gfp_mask argument, so swap allocation can use it where GFP_KERNEL
might deadlock but GFP_NOIO is safe.
2. Enlarge nr_sects argument from unsigned to sector_t: unsigned long is
enough to cover a whole swap area, but sector_t suits any partition.
Change sb_issue_discard()'s nr_blocks to sector_t too; but no need seen
for a gfp_mask there, just pass GFP_KERNEL down to blkdev_issue_discard().
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Right now SCSI and others do their own command timeout handling.
Move those bits to the block layer.
Instead of having a timer per command, we try to be a bit more clever
and simply have one per-queue. This avoids the overhead of having to
tear down and setup a timer for each command, so it will result in a lot
less timer fiddling.
Signed-off-by: Mike Anderson <andmike@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The revalidate_disk routine now checks if a disk has been resized by
comparing the gendisk capacity to the bdev inode size. If they are
different (usually because the disk has been resized underneath the kernel)
the bdev inode size is adjusted to match the capacity.
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a wrapper for the lower-level revalidate_disk call-backs such
as sd_revalidate_disk(). It allows us to perform pre and post
operations when calling them.
We will use this wrapper in a later patch to adjust block device sizes
after an online resize (a _post_ operation).
Signed-off-by: Andrew Patterson <andrew.patterson@hp.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch changes blk_rq_map_user to accept a NULL user-space buffer
with a READ command if rq_map_data is not NULL. Thus a caller can pass
page frames to lk_rq_map_user to just set up a request and bios with
page frames propely. bio_uncopy_user (called via blk_rq_unmap_user)
doesn't copy data to user space with such request.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This adds blk_rq_aligned helper function to see if alignment and
padding requirement is satisfied for DMA transfer. This also converts
blk_rq_map_kern and __blk_rq_map_user to use the helper function.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch introduces struct rq_map_data to enable bio_copy_use_iov()
use reserved pages.
Currently, bio_copy_user_iov allocates bounce pages but
drivers/scsi/sg.c wants to allocate pages by itself and use
them. struct rq_map_data can be used to pass allocated pages to
bio_copy_user_iov.
The current users of bio_copy_user_iov simply passes NULL (they don't
want to use pre-allocated pages).
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Douglas Gilbert <dougg@torque.net>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Currently, blk_rq_map_user and blk_rq_map_user_iov always do
GFP_KERNEL allocation.
This adds gfp_mask argument to blk_rq_map_user and blk_rq_map_user_iov
so sg can use it (sg always does GFP_ATOMIC allocation).
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Douglas Gilbert <dougg@torque.net>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Somewhat incomplete, as we do allow merges of requests and bios
that have different completion CPUs given. This is done on the
assumption that a larger IO is still more beneficial than CPU
locality.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds support for controlling the IO completion CPU of
either all requests on a queue, or on a per-request basis. We export
a sysfs variable (rq_affinity) which, if set, migrates completions
of requests to the CPU that originally submitted it. A bio helper
(bio_set_completion_cpu()) is also added, so that queuers can ask
for completion on that specific CPU.
In testing, this has been show to cut the system time by as much
as 20-40% on synthetic workloads where CPU affinity is desired.
This requires a little help from the architecture, so it'll only
work as designed for archs that are using the new generic smp
helper infrastructure.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that disk and partition handlings are mostly unified, it's easy to
allow disk to have extended device number. This patch makes
add_disk() use extended device number if disk->minors is zero. Both
sd and ide-disk are updated to use this.
* sd_format_disk_name() is implemented which can generically determine
the drive name. This removes disk number restriction stemming from
limited device names.
* If sd index goes over SD_MAX_DISKS (which can be increased now BTW),
sd simply doesn't initialize minors letting block layer choose
extended device number.
* If CONFIG_DEBUG_EXT_DEVT is set, both sd and ide-disk always set
minors to 0 and use extended device numbers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
With previous changes, it's meaningless to limit the number of
partitions. Replace @ext_minors with GENHD_FL_EXT_DEVT such that
setting the flag allows the disk to have maximum number of allowed
partitions (only limited by the number of entries in parsed_partitions
as determined by MAX_PART constant).
This kills not-too-pretty alloc_disk_ext[_node]() functions and makes
@minors parameter to alloc_disk[_node]() unnecessary. The parameter
is left alone to avoid disturbing the users.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
disk->__part used to be statically allocated to the maximum possible
number of partitions. This patch makes partition array allocation
dynamic. The added overhead is minimal as only real change is one
memory dereference changed to RCU one. This saves both a bit of
memory and cpu cycles iterating through unoccupied slots and makes
increasing partition limit easier.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Move stats related fields - stamp, in_flight, dkstats - from disk to
part0 and unify stat handling such that...
* part_stat_*() now updates part0 together if the specified partition
is not part0. ie. part_stat_*() are now essentially all_stat_*().
* {disk|all}_stat_*() are gone.
* part_round_stats() is updated similary. It handles part0 stats
automatically and disk_round_stats() is killed.
* part_{inc|dec}_in_fligh() is implemented which automatically updates
part0 stats for parts other than part0.
* disk_map_sector_rcu() is updated to return part0 if no part matches.
Combined with the above changes, this makes NULL special case
handling in callers unnecessary.
* Separate stats show code paths for disk are collapsed into part
stats show code paths.
* Rename disk_stat_lock/unlock() to part_stat_lock/unlock()
While at it, reposition stat handling macros a bit and add missing
parentheses around macro parameters.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
GENHD_FL_FAIL for disk is what make_it_fail is for parts. Kill it and
use part0->make_it_fail. Sysfs node handling is unified too.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Till now, bdev->bd_part is set only if the bdev was for parts other
than part0. This patch makes bdev->bd_part always set so that code
paths don't have to differenciate common handling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Move disk->holder_dir to part0->holder_dir. Kill now mostly
superflous bdev_get_holder().
While at it, kill superflous kobject_get/put() around holder_dir,
slave_dir and cmd_filter creation and collapse
disk_sysfs_add_subdirs() into register_disk(). These serve no purpose
but obfuscating the code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that capacity and __dev are moved to part0, part0 and others can
share the same method.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Move disk->__dev to part0->__dev. This simplifies bdget_disk() and
lookup_devt() and allows common sysfs attributes to be unified.
part_to_disk() is updated to handle part0 -> disk.
Updated to include a fix from Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>,
he writes:
"part0 is a "special" partition and doesn't need to have capacity set - this
fixes regression caused by "block: move __dev from disk to part0" commit."
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Move disk->capacity to part0->nr_sects and convert all users who
directly accessed the field to use {get|set}_capacity(). This is done
early to allow the __dev field to be moved.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
genhd and partition code handled disk and partitions separately. All
information about the whole disk was in struct genhd and partitions in
struct hd_struct. However, the whole disk (part0) and other
partitions have a lot in common and the data structures end up having
good number of common fields and thus separate code paths doing the
same thing. Also, the partition array was indexed by partno - 1 which
gets pretty confusing at times.
This patch introduces partition 0 and makes the partition array
indexed by partno. Following patches will unify the handling of disk
and parts piece-by-piece.
This patch also implements disk_partitionable() which tests whether a
disk is partitionable. With coming dynamic partition array change,
the most common usage of disk_max_parts() will be testing whether a
disk is partitionable and the number of max partitions will become
much less important.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Implement {disk|part}_to_dev() and use them to access generic device
instead of directly dereferencing {disk|part}->dev. To make sure no
user is left behind, rename generic devices fields to __dev.
This is in preparation of unifying partition 0 handling with other
partitions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
With extended minors and the soon-to-follow debug feature, large minor
numbers for block devices will be common. This patch does the
followings to make printouts pretty.
* Adapt print formats such that large minors don't break the
formatting.
* For extended MAJ:MIN, %02x%02x for MAJ:MIN used in
printk_all_partitions() doesn't cut it anymore. Update it such that
%03x:%05x is used if either MAJ or MIN doesn't fit in %02x.
* Implement ext_range sysfs attribute which shows total minors the
device can use including both conventional minor space and the
extended one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Implement extended device numbers. A block driver can tell block
layer that it wants to use extended device numbers. After the usual
minor space is used up, block layer automatically allocates devt's
from EXT_BLOCK_MAJOR.
Currently only one major number is allocated for this but as the
allocation is strictly on-demand, ~1mil minor space under it should
suffice unless the system actually has more than ~1mil partitions and
if that ever happens adding more majors to the extended devt area is
easy.
Due to internal implementation issues, the first partition can't be
allocated on the extended area. In other words, genhd->minors should
at least be 1. This limitation will be lifted by later changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
There are two variants of stat functions - ones prefixed with double
underbars which don't care about preemption and ones without which
disable preemption before manipulating per-cpu counters. It's unclear
whether the underbarred ones assume that preemtion is disabled on
entry as some callers don't do that.
This patch unifies diskstats access by implementing disk_stat_lock()
and disk_stat_unlock() which take care of both RCU (for partition
access) and preemption (for per-cpu counter access). diskstats access
should always be enclosed between the two functions. As such, there's
no need for the versions which disables preemption. They're removed
and double underbars ones are renamed to drop the underbars. As an
extra argument is added, there's no danger of using the old version
unconverted.
disk_stat_lock() uses get_cpu() and returns the cpu index and all
diskstat functions which access per-cpu counters now has @cpu
argument to help RT.
This change adds RCU or preemption operations at some places but also
collapses several preemption ops into one at others. Overall, the
performance difference should be negligible as all involved ops are
very lightweight per-cpu ones.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
disk->part[] is protected by its matching bdev's lock. However,
non-critical accesses like collecting stats and printing out sysfs and
proc information used to be performed without any locking. As
partitions can come and go dynamically, partitions can go away
underneath those non-critical accesses. As some of those accesses are
writes, this theoretically can lead to silent corruption.
This patch fixes the race by using RCU for the partition array and dev
reference counter to hold partitions.
* Rename disk->part[] to disk->__part[] to make sure no one outside
genhd layer proper accesses it directly.
* Use RCU for disk->__part[] dereferencing.
* Implement disk_{get|put}_part() which can be used to get and put
partitions from gendisk respectively.
* Iterators are implemented to help iterate through all partitions
safely.
* Functions which require RCU readlock are marked with _rcu suffix.
* Use disk_put_part() in __blkdev_put() instead of directly putting
the contained kobject.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* Implement disk_devt() and part_devt() and use them to directly
access devt instead of computing it from ->major and ->first_minor.
Note that all references to ->major and ->first_minor outside of
block layer is used to determine devt of the disk (the part0) and as
->major and ->first_minor will continue to represent devt for the
disk, converting these users aren't strictly necessary. However,
convert them for consistency.
* Implement disk_max_parts() to avoid directly deferencing
genhd->minors.
* Update bdget_disk() such that it doesn't assume consecutive minor
space.
* Move devt computation from register_disk() to add_disk() and make it
the only one (all other usages use the initially determined value).
These changes clean up the code and will help disk->part dereference
fix and extended block device numbers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
In hd_struct, @partno is used to denote partition number and a number
of other places use @part to denote hd_struct. Functions use @part
and @index instead. This causes confusion and makes it difficult to
use consistent variable names for hd_struct. Always use @partno if a
variable represents partition number.
Also, print out functions use @f or @part for seq_file argument. Use
@seqf uniformly instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch makes the following misc updates in preparation for
disk->part dereference fix and extended block devt support.
* implment part_to_disk()
* fix comment about gendisk->part indexing
* rename get_part() to disk_map_sector()
* don't use n which is always zero while printing disk information in
diskstats_show()
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Iterating over entries using callback usually isn't too fun especially
when the entry being iterated over can't be manipulated freely. This
patch converts class->p->class_devices to klist and implements class
device iterator so that the users can freely build their own control
structure. The users are also free to call back into class code
without worrying about locking.
class_for_each_device() and class_find_device() are converted to use
the new iterators, so their users don't have to worry about locking
anymore either.
Note: This depends on klist-dont-iterate-over-deleted-entries patch
because class_intf->add/remove_dev() depends on proper synchronization
with device removal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
A klist entry is kept on the list till all its current iterations are
finished; however, a new iteration after deletion also iterates over
deleted entries as long as their reference count stays above zero.
This causes problems for cases where there are users which iterate
over the list while synchronized against list manipulations and
natuarally expect already deleted entries to not show up during
iteration.
This patch implements dead flag which gets set on deletion so that
iteration can skip already deleted entries. The dead flag piggy backs
on the lowest bit of knode->n_klist and only visible to klist
implementation proper.
While at it, drop klist_iter->i_head as it's redundant and doesn't
offer anything in semantics or performance wise as klist_iter->i_klist
is dereferenced on every iteration anyway.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
raid5 can overflow with more than 255 stripes, and we can increase it
to an int for free on both 32 and 64-bit archs due to the padding.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>