Instead of having the kernel allocate memory to the guest, let userspace
allocate it and pass the address to the kernel.
This is required for s390 support, but also enables features like memory
sharing and using hugetlbfs backed memory.
Signed-off-by: Izik Eidus <izike@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The user is now able to set how many mmu pages will be allocated to the guest.
Signed-off-by: Izik Eidus <izike@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
When kvm uses user-allocated pages in the future for the guest, we won't
be able to use page->private for rmap, since page->rmap is reserved for
the filesystem. So we move the rmap base pointers to the memory slot.
A side effect of this is that we need to store the gfn of each gpte in
the shadow pages, since the memory slot is addressed by gfn, instead of
hfn like struct page.
Signed-off-by: Izik Eidus <izik@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
When we allow guest page faults to reach the guests directly, we lose
the fault tracking which allows us to detect demand paging. So we provide
an alternate mechnism by clearing the accessed bit when we set a pte, and
checking it later to see if the guest actually used it.
Signed-off-by: Avi Kivity <avi@qumranet.com>
There are two classes of page faults trapped by kvm:
- host page faults, where the fault is needed to allow kvm to install
the shadow pte or update the guest accessed and dirty bits
- guest page faults, where the guest has faulted and kvm simply injects
the fault back into the guest to handle
The second class, guest page faults, is pure overhead. We can eliminate
some of it on vmx using the following evil trick:
- when we set up a shadow page table entry, if the corresponding guest pte
is not present, set up the shadow pte as not present
- if the guest pte _is_ present, mark the shadow pte as present but also
set one of the reserved bits in the shadow pte
- tell the vmx hardware not to trap faults which have the present bit clear
With this, normal page-not-present faults go directly to the guest,
bypassing kvm entirely.
Unfortunately, this trick only works on Intel hardware, as AMD lacks a
way to discriminate among page faults based on error code. It is also
a little risky since it uses reserved bits which might become unreserved
in the future, so a module parameter is provided to disable it.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Move emulate_ctxt to kvm_vcpu to keep emulate context when we exit from kvm
module. Call x86_decode_insn() only when needed. Modify x86_emulate_insn() to
not modify the context if it must be re-entered.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch refactors the current hypercall infrastructure to better
support live migration and SMP. It eliminates the hypercall page by
trapping the UD exception that would occur if you used the wrong hypercall
instruction for the underlying architecture and replacing it with the right
one lazily.
A fall-out of this patch is that the unhandled hypercalls no longer trap to
userspace. There is very little reason though to use a hypercall to
communicate with userspace as PIO or MMIO can be used. There is no code
in tree that uses userspace hypercalls.
[avi: fix #ud injection on vmx]
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch just renames the current (misnamed) _arch namings to _x86 to
ensure better readability when a real arch layer takes place.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The mutex->splinlock convertion alllows us to make some code simplifications.
As we can keep the lock longer, we don't have to release it and then
have to check if the environment has not been modified before re-taking it. We
can remove kvm->busy and kvm->memory_config_version.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
SVM gets the DB and L bits for the cs by decoding the segment. This
is in fact the completely generic code, so hoist it for kvm-lite to use.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
invlpg shouldn't fetch the "src" address, since it may not be valid,
however SVM's "solution" which neuters emulation of all group 7
instruction is horrible and breaks kvm-lite. The simplest fix is to
put a special check in for invlpg.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch enables INIT/SIPI handling using in-kernel APIC by
introducing a ->mp_state field to emulate the SMP state transition.
[avi: remove smp_processor_id() warning]
Signed-off-by: Qing He <qing.he@intel.com>
Signed-off-by: Xin Li <xin.b.li@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
By sleeping in the kernel when hlt is executed, we simplify the in-kernel
guest interrupt path considerably.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Because lightweight exits (exits which don't involve userspace) are many
times faster than heavyweight exits, it makes sense to emulate high usage
devices in the kernel. The local APIC is one such device, especially for
Windows and for SMP, so we add an APIC model to kvm.
It also allows in-kernel host-side drivers to inject interrupts without
going through userspace.
[compile fix on i386 from Jindrich Makovicka]
Signed-off-by: Yaozu (Eddie) Dong <Eddie.Dong@intel.com>
Signed-off-by: Qing He <qing.he@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch is to wrap APIC base register and CR8 operation which can
provide a unique API for user level irqchip and kernel irqchip.
This is a preparation of merging lapic/ioapic patch.
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Split kvm_setup_pio() into two functions, one to setup in/out pio
(kvm_emulate_pio()) and one to setup ins/outs pio (kvm_emulate_pio_string()).
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
All guest-invokable printks should be ratelimited to prevent malicious
guests from flooding logs. This is a start.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
All the physical CPUs on the board should support the same VMX feature
set. Add check_processor_compatibility to kvm_arch_ops for the consistency
check.
Signed-off-by: Sheng Yang <sheng.yang@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Now we use a kmem cache for allocating vcpus, we can get the 16-byte
alignment required by fxsave & fxrstor instructions, and avoid
manually aligning the buffer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Avi wants the allocations of vcpus centralized again. The easiest way
is to add a "size" arg to kvm_init_arch, and expose the thus-prepared
cache to the modules.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
... in favor of the more general emulator_{read,write}_*.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This allows the kvm mmu to perform sleepy operations, such as memory
allocation.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Current kvm disables preemption while the new virtualization registers are
in use. This of course is not very good for latency sensitive workloads (one
use of virtualization is to offload user interface and other latency
insensitive stuff to a container, so that it is easier to analyze the
remaining workload). This patch re-enables preemption for kvm; preemption
is now only disabled when switching the registers in and out, and during
the switch to guest mode and back.
Contains fixes from Shaohua Li <shaohua.li@intel.com>.
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch converts the vcpus array in "struct kvm" to a pointer
array, and changes the "vcpu_create" and "vcpu_setup" hooks into one
"vcpu_create" call which does the allocation and initialization of the
vcpu (calling back into the kvm_vcpu_init core helper).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
struct kvm_vcpu has vmx-specific members; remove them to a private structure.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
gfn_to_page might sleep with swap support. Move it out of the kmap calls.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Creating one's own BITMAP macro seems suboptimal: if we use manual
arithmetic in the one place exposed to userspace, we can use standard
macros elsewhere.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
On this machine (Intel), writing to the CR4 bits 0x00000800 and
0x00001000 cause a GPF. The Intel manual is a little unclear, but
AFIACT they're reserved, too.
Also fix spelling of CR4_RESEVED_BITS.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The kernel now has asm/cpu-features.h: use those macros instead of inventing
our own.
Also spell out definition of CR3_RESEVED_BITS, fix spelling and
tighten it for the non-PAE case.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The kernel now has asm/cpu-features.h: use those macros instead of
inventing our own.
Also spell out definition of CR0_RESEVED_BITS (no code change) and fix typo.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch adds a `vcpu_id' field in `struct vcpu', so we can
differentiate BSP and APs without pointer comparison or arithmetic.
Signed-off-by: Qing He <qing.he@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
A guest context switch to an uncached cr3 can require allocation of
shadow pages, but we only recycle shadow pages in kvm_mmu_page_fault().
Move shadow page recycling to mmu_topup_memory_caches(), which is called
from both the page fault handler and from guest cr3 reload.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow real-mode emulation of rdmsr and wrmsr. This allows smp Windows to
boot, presumably for its sipi trampoline.
Signed-off-by: Avi Kivity <avi@qumranet.com>
The memory slot management functions were oriented against vcpu 0, where
they should be kvm-wide. This causes hangs starting X on guest smp.
Fix by making the functions (and resultant tail in the mmu) non-vcpu-specific.
Unfortunately this reduces the efficiency of the mmu object cache a bit. We
may have to revisit this later.
Signed-off-by: Avi Kivity <avi@qumranet.com>
We need to distinguish between large page shadows which have the nx bit set
and those which don't. The problem shows up when booting a newer smp Linux
kernel, where the trampoline page (which is in real mode, which uses the
same shadow pages as large pages) is using the same mapping as a kernel data
page, which is mapped using nx, causing kvm to spin on that page.
Signed-off-by: Avi Kivity <avi@qumranet.com>
When a vcpu causes a shadow tlb entry to have reduced permissions, it
must also clear the tlb on remote vcpus. We do that by:
- setting a bit on the vcpu that requests a tlb flush before the next entry
- if the vcpu is currently executing, we send an ipi to make sure it
exits before we continue
Signed-off-by: Avi Kivity <avi@qumranet.com>
Switch guest paging context may require us to allocate memory, which
might fail. Instead of wiring up error paths everywhere, make context
switching lazy and actually do the switch before the next guest entry,
where we can return an error if allocation fails.
Signed-off-by: Avi Kivity <avi@qumranet.com>
KVM compilation fails for some .configs. This fixes it.
Signed-off-by: Markus Rechberger <markus.rechberger@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
MSR_EFER.LME/LMA bits are automatically save/restored by VMX
hardware, KVM only needs to save NX/SCE bits at time of heavy
weight VM Exit. But clearing NX bits in host envirnment may
cause system hang if the host page table is using EXB bits,
thus we leave NX bits as it is. If Host NX=1 and guest NX=0, we
can do guest page table EXB bits check before inserting a shadow
pte (though no guest is expecting to see this kind of gp fault).
If host NX=0, we present guest no Execute-Disable feature to guest,
thus no host NX=0, guest NX=1 combination.
This patch reduces raw vmexit time by ~27%.
Me: fix compile warnings on i386.
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
In a lightweight exit (where we exit and reenter the guest without
scheduling or exiting to userspace in between), we don't need various
msrs on the host, and avoiding shuffling them around reduces raw exit
time by 8%.
i386 compile fix by Daniel Hecken <dh@bahntechnik.de>.
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The lightweight vmexit path avoids saving and reloading certain host
state. However in certain cases lightweight vmexit handling can schedule()
which requires reloading the host state.
So we store the host state in the vcpu structure, and reloaded it if we
relinquish the vcpu.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Instead of calling two functions and repeating expensive checks, call one
function and provide it with before/after information.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Many msrs and the like will only be used by the host if we schedule() or
return to userspace. Therefore, we avoid saving them if we handle the
exit within the kernel, and if a reschedule is not requested.
Based on a patch from Eddie Dong <eddie.dong@intel.com> with a couple of
fixes by me.
Signed-off-by: Yaozu(Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The lazy fpu changes did not take into account that some vmexit handlers
can sleep. Move loading the guest state into the inner loop so that it
can be reloaded if necessary, and move loading the host state into
vmx_vcpu_put() so it can be performed whenever we relinquish the vcpu.
Signed-off-by: Avi Kivity <avi@qumranet.com>
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When emulating an mmio read, we actually emulate twice: once to determine
the physical address of the mmio, and, after we've exited to userspace to
get the mmio value, we emulate again to place the value in the result
register and update any flags.
But we don't really need to enter the guest again for that, only to take
an immediate vmexit. So, if we detect that we're doing an mmio read,
emulate a single instruction before entering the guest again.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Set all of the host mask bits for CR0 so that we can maintain a proper
shadow of CR0. This exposes CR0.TS, paving the way for lazy fpu handling.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Avoid saving and restoring the guest fpu state on every exit. This
shaves ~100 cycles off the guest/host switch.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Make the exit statistics per-vcpu instead of global. This gives a 3.5%
boost when running one virtual machine per core on my two socket dual core
(4 cores total) machine.
Signed-off-by: Avi Kivity <avi@qumranet.com>
With this, we can specify that accesses to one physical memory range will
be remapped to another. This is useful for the vga window at 0xa0000 which
is used as a movable window into the (much larger) framebuffer.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Mapping a guest page to a host page is a common operation. Currently,
one has first to find the memory slot where the page belongs (gfn_to_memslot),
then locate the page itself (gfn_to_page()).
This is clumsy, and also won't work well with memory aliases. So simplify
gfn_to_page() not to require memory slot translation first, and instead do it
internally.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Functions that play around with the physical memory map
need a way to clear mappings to possibly nonexistent or
invalid memory. Both the mmu cache and the processor tlb
are cleared.
Signed-off-by: Dor Laor <dor.laor@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
When a vcpu is migrated from one cpu to another, its timestamp counter
may lose its monotonic property if the host has unsynced timestamp counters.
This can confuse the guest, sometimes to the point of refusing to boot.
As the rdtsc instruction is rather fast on AMD processors (7-10 cycles),
we can simply record the last host tsc when we drop the cpu, and adjust
the vcpu tsc offset when we detect that we've migrated to a different cpu.
Signed-off-by: Avi Kivity <avi@qumranet.com>
The kvm mmu keeps a shadow page for hugepage pdes; if several such pdes map
the same physical address, they share the same shadow page. This is a fairly
common case (kernel mappings on i386 nonpae Linux, for example).
However, if the two pdes map the same memory but with different permissions, kvm
will happily use the cached shadow page. If the access through the more
permissive pde will occur after the access to the strict pde, an endless pagefault
loop will be generated and the guest will make no progress.
Fix by making the access permissions part of the cache lookup key.
The fix allows Xen pae to boot on kvm and run guest domains.
Thanks to Jeremy Fitzhardinge for reporting the bug and testing the fix.
Signed-off-by: Avi Kivity <avi@qumranet.com>
set_cr0_no_modeswitch() was a hack to avoid corrupting segment registers.
As we now cache the protected mode values on entry to real mode, this
isn't an issue anymore, and it interferes with reboot (which usually _is_
a modeswitch).
Signed-off-by: Avi Kivity <avi@qumranet.com>
The initial, noncaching, version of the kvm mmu flushed the all nonglobal
shadow page table translations (much like a native tlb flush). The new
implementation flushes translations only when they change, rendering global
pte tracking superfluous.
This removes the unused tracking mechanism and storage space.
Signed-off-by: Avi Kivity <avi@qumranet.com>
The current string pio interface communicates using guest virtual addresses,
relying on userspace to translate addresses and to check permissions. This
interface cannot fully support guest smp, as the check needs to take into
account two pages at one in case an unaligned string transfer straddles a
page boundary.
Change the interface not to communicate guest addresses at all; instead use
a buffer page (mmaped by userspace) and do transfers there. The kernel
manages the virtual to physical translation and can perform the checks
atomically by taking the appropriate locks.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Allow a special signal mask to be used while executing in guest mode. This
allows signals to be used to interrupt a vcpu without requiring signal
delivery to a userspace handler, which is quite expensive. Userspace still
receives -EINTR and can get the signal via sigwait().
Signed-off-by: Avi Kivity <avi@qumranet.com>
KVM used to handle cpuid by letting userspace decide what values to
return to the guest. We now handle cpuid completely in the kernel. We
still let userspace decide which values the guest will see by having
userspace set up the value table beforehand (this is necessary to allow
management software to set the cpu features to the least common denominator,
so that live migration can work).
The motivation for the change is that kvm kernel code can be impacted by
cpuid features, for example the x86 emulator.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Currently when passing the a PIO emulation request to userspace, we
rely on userspace updating %rax (on 'in' instructions) and %rsi/%rdi/%rcx
(on string instructions). This (a) requires two extra ioctls for getting
and setting the registers and (b) is unfriendly to non-x86 archs, when
they get kvm ports.
So fix by doing the register fixups in the kernel and passing to userspace
only an abstract description of the PIO to be done.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Instead of passing a 'struct kvm_run' back and forth between the kernel and
userspace, allocate a page and allow the user to mmap() it. This reduces
needless copying and makes the interface expandable by providing lots of
free space.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Allocate a distinct inode for every vcpu in a VM. This has the following
benefits:
- the filp cachelines are no longer bounced when f_count is incremented on
every ioctl()
- the API and internal code are distinctly clearer; for example, on the
KVM_GET_REGS ioctl, there is no need to copy the vcpu number from
userspace and then copy the registers back; the vcpu identity is derived
from the fd used to make the call
Right now the performance benefits are completely theoretical since (a) we
don't support more than one vcpu per VM and (b) virtualization hardware
inefficiencies completely everwhelm any cacheline bouncing effects. But
both of these will change, and we need to prepare the API today.
Signed-off-by: Avi Kivity <avi@qumranet.com>
This adds a special MSR based hypercall API to KVM. This is to be
used by paravirtual kernels and virtual drivers.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Besides using an established api, this allows using kvm in older kernels.
Signed-off-by: Markus Rechberger <markus.rechberger@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
On hotplug, we execute the hardware extension enable sequence. On unplug, we
decache any vcpus that last ran on the exiting cpu, and execute the hardware
extension disable sequence.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will allow us to iterate over all vcpus and see which cpus they are
running on.
[akpm@osdl.org: use standard (ugly) initialisers]
Signed-off-by: Avi Kivity <avi@qumranet.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows netbsd 3.1 i386 to get further along installing.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mmu sometimes needs memory for reverse mapping and parent pte chains.
however, we can't allocate from within the mmu because of the atomic context.
So, move the allocations to a central place that can be executed before the
main mmu machinery, where we can bail out on failure before any damage is
done.
(error handling is deffered for now, but the basic structure is there)
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We always need cr3 to point to something valid, so if we detect that we're
freeing a root page, simply push it back to the top of the active list.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In fork() (or when we protect a page that is no longer a page table), we can
experience floods of writes to a page, which have to be emulated. This is
expensive.
So, if we detect such a flood, zap the page so subsequent writes can proceed
natively.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Since we write protect shadowed guest page tables, there is no need to trap
page invalidations (the guest will always change the mapping before issuing
the invlpg instruction).
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When beginning to process a page fault, make sure we have enough shadow pages
available to service the fault. If not, free some pages.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A page table may have been recycled into a regular page, and so any
instruction can be executed on it. Unprotect the page and let the cpu do its
thing.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As the mmu write protects guest page table, we emulate those writes. Since
they are not mmio, there is no need to go to userspace to perform them.
So, perform the writes in the kernel if possible, and notify the mmu about
them so it can take the approriate action.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Define a hashtable for caching shadow page tables. Look up the cache on
context switch (cr3 change) or during page faults.
The key to the cache is a combination of
- the guest page table frame number
- the number of paging levels in the guest
* we can cache real mode, 32-bit mode, pae, and long mode page
tables simultaneously. this is useful for smp bootup.
- the guest page table table
* some kernels use a page as both a page table and a page directory. this
allows multiple shadow pages to exist for that page, one per level
- the "quadrant"
* 32-bit mode page tables span 4MB, whereas a shadow page table spans
2MB. similarly, a 32-bit page directory spans 4GB, while a shadow
page directory spans 1GB. the quadrant allows caching up to 4 shadow page
tables for one guest page in one level.
- a "metaphysical" bit
* for real mode, and for pse pages, there is no guest page table, so set
the bit to avoid write protecting the page.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>