forked from luck/tmp_suning_uos_patched
b49516583f
156 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Rustam Kovhaev
|
b2e2fb6407 |
mm: kmemleak: slob: respect SLAB_NOLEAKTRACE flag
commit 34dbc3aaf5d9e89ba6cc5e24add9458c21ab1950 upstream.
When kmemleak is enabled for SLOB, system does not boot and does not
print anything to the console. At the very early stage in the boot
process we hit infinite recursion from kmemleak_init() and eventually
kernel crashes.
kmemleak_init() specifies SLAB_NOLEAKTRACE for KMEM_CACHE(), but
kmem_cache_create_usercopy() removes it because CACHE_CREATE_MASK is not
valid for SLOB.
Let's fix CACHE_CREATE_MASK and make kmemleak work with SLOB
Link: https://lkml.kernel.org/r/20211115020850.3154366-1-rkovhaev@gmail.com
Fixes:
|
||
Waiman Long
|
5458985533 |
mm: memcg/slab: properly set up gfp flags for objcg pointer array
[ Upstream commit 41eb5df1cbc9b302fc263ad7c9f38cfc38b4df61 ]
Patch series "mm: memcg/slab: Fix objcg pointer array handling problem", v4.
Since the merging of the new slab memory controller in v5.9, the page
structure stores a pointer to objcg pointer array for slab pages. When
the slab has no used objects, it can be freed in free_slab() which will
call kfree() to free the objcg pointer array in
memcg_alloc_page_obj_cgroups(). If it happens that the objcg pointer
array is the last used object in its slab, that slab may then be freed
which may caused kfree() to be called again.
With the right workload, the slab cache may be set up in a way that allows
the recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system. In fact, we have a reproducer that
can cause kernel stack overflow on a s390 system involving kmalloc-rcl-256
and kmalloc-rcl-128 slabs with the following kfree() loop recursively
called 74 times:
[ 285.520739] [<000000000ec432fc>] kfree+0x4bc/0x560 [ 285.520740]
[<000000000ec43466>] __free_slab+0xc6/0x228 [ 285.520741]
[<000000000ec41fc2>] __slab_free+0x3c2/0x3e0 [ 285.520742]
[<000000000ec432fc>] kfree+0x4bc/0x560 : While investigating this issue, I
also found an issue on the allocation side. If the objcg pointer array
happen to come from the same slab or a circular dependency linkage is
formed with multiple slabs, those affected slabs can never be freed again.
This patch series addresses these two issues by introducing a new set of
kmalloc-cg-<n> caches split from kmalloc-<n> caches. The new set will
only contain non-reclaimable and non-dma objects that are accounted in
memory cgroups whereas the old set are now for unaccounted objects only.
By making this split, all the objcg pointer arrays will come from the
kmalloc-<n> caches, but those caches will never hold any objcg pointer
array. As a result, deeply nested kfree() call and the unfreeable slab
problems are now gone.
This patch (of 4):
Since the merging of the new slab memory controller in v5.9, the page
structure may store a pointer to obj_cgroup pointer array for slab pages.
Currently, only the __GFP_ACCOUNT bit is masked off. However, the array
is not readily reclaimable and doesn't need to come from the DMA buffer.
So those GFP bits should be masked off as well.
Do the flag bit clearing at memcg_alloc_page_obj_cgroups() to make sure
that it is consistently applied no matter where it is called.
Link: https://lkml.kernel.org/r/20210505200610.13943-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-2-longman@redhat.com
Fixes:
|
||
Nikolay Borisov
|
2e95bc6cfe |
mm/sl?b.c: remove ctor argument from kmem_cache_flags
[ Upstream commit 3754000872188e3e4713d9d847fe3c615a47c220 ]
This argument hasn't been used since
|
||
Roman Gushchin
|
becaba65f6 |
mm: memcg/slab: fix obj_cgroup_charge() return value handling
Commit |
||
Roman Gushchin
|
279c3393e2 |
mm: kmem: move memcg_kmem_bypass() calls to get_mem/obj_cgroup_from_current()
Patch series "mm: kmem: kernel memory accounting in an interrupt context". This patchset implements memcg-based memory accounting of allocations made from an interrupt context. Historically, such allocations were passed unaccounted mostly because charging the memory cgroup of the current process wasn't an option. Also performance reasons were likely a reason too. The remote charging API allows to temporarily overwrite the currently active memory cgroup, so that all memory allocations are accounted towards some specified memory cgroup instead of the memory cgroup of the current process. This patchset extends the remote charging API so that it can be used from an interrupt context. Then it removes the fence that prevented the accounting of allocations made from an interrupt context. It also contains a couple of optimizations/code refactorings. This patchset doesn't directly enable accounting for any specific allocations, but prepares the code base for it. The bpf memory accounting will likely be the first user of it: a typical example is a bpf program parsing an incoming network packet, which allocates an entry in hashmap map to store some information. This patch (of 4): Currently memcg_kmem_bypass() is called before obtaining the current memory/obj cgroup using get_mem/obj_cgroup_from_current(). Moving memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the number of call sites and allows further code simplifications. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
YueHaibing
|
c7df08f195 |
mm/slab.h: remove duplicate include
Remove duplicate header which is included twice. Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Link: http://lkml.kernel.org/r/20200818114323.58156-1-yuehaibing@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Bharata B Rao
|
d1b2cf6cb8 |
mm: memcg/slab: uncharge during kmem_cache_free_bulk()
Object cgroup charging is done for all the objects during allocation, but
during freeing, uncharging ends up happening for only one object in the
case of bulk allocation/freeing.
Fix this by having a separate call to uncharge all the objects from
kmem_cache_free_bulk() and by modifying memcg_slab_free_hook() to take
care of bulk uncharging.
Fixes:
|
||
Roman Gushchin
|
74d555bed5 |
mm: slab: rename (un)charge_slab_page() to (un)account_slab_page()
charge_slab_page() and uncharge_slab_page() are not related anymore to memcg charging and uncharging. In order to make their names less confusing, let's rename them to account_slab_page() and unaccount_slab_page() respectively. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Link: http://lkml.kernel.org/r/20200707173612.124425-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
849504809f |
mm: memcg/slab: remove unused argument by charge_slab_page()
charge_slab_page() is not using the gfp argument anymore, remove it. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200707173612.124425-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
10befea91b |
mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
c7094406fc |
mm: memcg/slab: deprecate slab_root_caches
Currently there are two lists of kmem_caches: 1) slab_caches, which contains all kmem_caches, 2) slab_root_caches, which contains only root kmem_caches. And there is some preprocessor magic to have a single list if CONFIG_MEMCG_KMEM isn't enabled. It was required earlier because the number of non-root kmem_caches was proportional to the number of memory cgroups and could reach really big values. Now, when it cannot exceed the number of root kmem_caches, there is really no reason to maintain two lists. We never iterate over the slab_root_caches list on any hot paths, so it's perfectly fine to iterate over slab_caches and filter out non-root kmem_caches. It allows to remove a lot of config-dependent code and two pointers from the kmem_cache structure. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-16-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
272911a4ad |
mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just inline it into the single call point: memcg_slab_pre_alloc_hook(). It will make the code less bulky and can also help the compiler to generate a better code. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
d797b7d054 |
mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of memory cgroups anymore and is generally not very big, there is no more need for a dedicated workqueue. Also, as there is no more need to pass any arguments to the memcg_create_kmem_cache() except the root kmem_cache, it's possible to just embed the work structure into the kmem_cache and avoid the dynamic allocation of the work structure. This will also simplify the synchronization: for each root kmem_cache there is only one work. So there will be no more concurrent attempts to create a non-root kmem_cache for a root kmem_cache: the second and all following attempts to queue the work will fail. On the kmem_cache destruction path there is no more need to call the expensive flush_workqueue() and wait for all pending works to be finished. Instead, cancel_work_sync() can be used to cancel/wait for only one work. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
9855609bde |
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
f2fe7b09a5 |
mm: memcg/slab: charge individual slab objects instead of pages
Switch to per-object accounting of non-root slab objects. Charging is performed using obj_cgroup API in the pre_alloc hook. Obj_cgroup is charged with the size of the object and the size of metadata: as now it's the size of an obj_cgroup pointer. If the amount of memory has been charged successfully, the actual allocation code is executed. Otherwise, -ENOMEM is returned. In the post_alloc hook if the actual allocation succeeded, corresponding vmstats are bumped and the obj_cgroup pointer is saved. Otherwise, the charge is canceled. On the free path obj_cgroup pointer is obtained and used to uncharge the size of the releasing object. Memcg and lruvec counters are now representing only memory used by active slab objects and do not include the free space. The free space is shared and doesn't belong to any specific cgroup. Global per-node slab vmstats are still modified from (un)charge_slab_page() functions. The idea is to keep all slab pages accounted as slab pages on system level. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-10-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
964d4bd370 |
mm: memcg/slab: save obj_cgroup for non-root slab objects
Store the obj_cgroup pointer in the corresponding place of page->obj_cgroups for each allocated non-root slab object. Make sure that each allocated object holds a reference to obj_cgroup. Objcg pointer is obtained from the memcg->objcg dereferencing in memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook. Then in case of successful allocation(s) it's getting stored in the page->obj_cgroups vector. The objcg obtaining part look a bit bulky now, but it will be simplified by next commits in the series. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
286e04b8ed |
mm: memcg/slab: allocate obj_cgroups for non-root slab pages
Allocate and release memory to store obj_cgroup pointers for each non-root slab page. Reuse page->mem_cgroup pointer to store a pointer to the allocated space. This commit temporarily increases the memory footprint of the kernel memory accounting. To store obj_cgroup pointers we'll need a place for an objcg_pointer for each allocated object. However, the following patches in the series will enable sharing of slab pages between memory cgroups, which will dramatically increase the total slab utilization. And the final memory footprint will be significantly smaller than before. To distinguish between obj_cgroups and memcg pointers in case when it's not obvious which one is used (as in page_cgroup_ino()), let's always set the lowest bit in the obj_cgroup case. The original obj_cgroups pointer is marked to be ignored by kmemleak, which otherwise would report a memory leak for each allocated vector. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1a3e1f4096 |
mm: memcontrol: decouple reference counting from page accounting
The reference counting of a memcg is currently coupled directly to how many 4k pages are charged to it. This doesn't work well with Roman's new slab controller, which maintains pools of objects and doesn't want to keep an extra balance sheet for the pages backing those objects. This unusual refcounting design (reference counts usually track pointers to an object) is only for historical reasons: memcg used to not take any css references and simply stalled offlining until all charges had been reparented and the page counters had dropped to zero. When we got rid of the reparenting requirement, the simple mechanical translation was to take a reference for every charge. More historical context can be found in commit |
||
Roman Gushchin
|
d42f3245c7 |
mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
e42f174e43 |
mm, slab/slub: improve error reporting and overhead of cache_from_obj()
cache_from_obj() was added by commit |
||
Vlastimil Babka
|
d3c58f24be |
mm, slab/slub: move and improve cache_from_obj()
The function cache_from_obj() was added by commit |
||
Long Li
|
444050990d |
mm, slab: check GFP_SLAB_BUG_MASK before alloc_pages in kmalloc_order
kmalloc cannot allocate memory from HIGHMEM. Allocating large amounts of memory currently bypasses the check and will simply leak the memory when page_address() returns NULL. To fix this, factor the GFP_SLAB_BUG_MASK check out of slab & slub, and call it from kmalloc_order() as well. In order to make the code clear, the warning message is put in one place. Signed-off-by: Long Li <lonuxli.64@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
d7670879c5 |
mm, slab: fix sign conversion problem in memcg_uncharge_slab()
It was found that running the LTP test on a PowerPC system could produce erroneous values in /proc/meminfo, like: MemTotal: 531915072 kB MemFree: 507962176 kB MemAvailable: 1100020596352 kB Using bisection, the problem is tracked down to commit |
||
Roman Gushchin
|
4b13f64de2 |
mm: kmem: rename (__)memcg_kmem_(un)charge_memcg() to __memcg_kmem_(un)charge()
Drop the _memcg suffix from (__)memcg_kmem_(un)charge functions. It's shorter and more obvious. These are the most basic functions which are just (un)charging the given cgroup with the given amount of pages. Also fix up the corresponding comments. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-7-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
9c315e4d7d |
mm: memcg/slab: cache page number in memcg_(un)charge_slab()
There are many places in memcg_charge_slab() and memcg_uncharge_slab() which are calculating the number of pages to charge, css references to grab etc depending on the order of the slab page. Let's simplify the code by calculating it once and caching in the local variable. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-6-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
92d0510c35 |
mm: kmem: switch to nr_pages in (__)memcg_kmem_charge_memcg()
These functions are charging the given number of kernel pages to the given memory cgroup. The number doesn't have to be a power of two. Let's make them to take the unsigned int nr_pages as an argument instead of the page order. It makes them look consistent with the corresponding uncharge functions and functions like: mem_cgroup_charge_skmem(memcg, nr_pages). Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
50591183fa |
mm: kmem: cleanup memcg_kmem_uncharge_memcg() arguments
Drop the unused page argument and put the memcg pointer at the first place. This make the function consistent with its peers: __memcg_kmem_uncharge_memcg(), memcg_kmem_charge_memcg(), etc. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-3-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
10eaec2f63 |
mm: kmem: cleanup (__)memcg_kmem_charge_memcg() arguments
Patch series "mm: memcg: kmem API cleanup", v2. This patchset aims to clean up the kernel memory charging API. It doesn't bring any functional changes, just removes unused arguments, renames some functions and fixes some comments. Currently it's not obvious which functions are most basic (memcg_kmem_(un)charge_memcg()) and which are based on them (memcg_kmem_(un)charge()). The patchset renames these functions and removes unused arguments: TL;DR: was: memcg_kmem_charge_memcg(page, gfp, order, memcg) memcg_kmem_uncharge_memcg(memcg, nr_pages) memcg_kmem_charge(page, gfp, order) memcg_kmem_uncharge(page, order) now: memcg_kmem_charge(memcg, gfp, nr_pages) memcg_kmem_uncharge(memcg, nr_pages) memcg_kmem_charge_page(page, gfp, order) memcg_kmem_uncharge_page(page, order) This patch (of 6): The first argument of memcg_kmem_charge_memcg() and __memcg_kmem_charge_memcg() is the page pointer and it's not used. Let's drop it. Memcg pointer is passed as the last argument. Move it to the first place for consistency with other memcg functions, e.g. __memcg_kmem_uncharge_memcg() or try_charge(). Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
867e5e1de1 |
mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being used is somewhat confusing right now, and it's easy to make mistakes - especially when it comes to global reclaim. How it works: when memory cgroups are enabled, we always use the root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled in or disabled at runtime, we use pgdat->lruvec. Document that in a comment. Due to the way the reclaim code is generalized, all lookups use the mem_cgroup_lruvec() helper function, and nobody should have to find the right lruvec manually right now. But to avoid future mistakes, rename the pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper that suggests it's a commonly accessed member. While in this area, swap the mem_cgroup_lruvec() argument order. The name suggests a memcg operation, yet it takes a pgdat first and a memcg second. I have to double take every time I call this. Fix that. Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pengfei Li
|
cb5d9fb38c |
mm, slab: make kmalloc_info[] contain all types of names
Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
221ec5c0a4 |
mm: slab: make page_cgroup_ino() to recognize non-compound slab pages properly
page_cgroup_ino() doesn't return a valid memcg pointer for non-compound
slab pages, because it depends on PgHead AND PgSlab flags to be set to
determine the memory cgroup from the kmem_cache. It's correct for
compound pages, but not for generic small pages. Those don't have PgHead
set, so it ends up returning zero.
Fix this by replacing the condition to PageSlab() && !PageTail().
Before this patch:
[root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
0x0000000000000080 38 0 _______S___________________________________ slab
After this patch:
[root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
0x0000000000000080 147 0 _______S___________________________________ slab
Also, hwpoison_filter_task() uses output of page_cgroup_ino() in order
to filter error injection events based on memcg. So if
page_cgroup_ino() fails to return memcg pointer, we just fail to inject
memory error. Considering that hwpoison filter is for testing, affected
users are limited and the impact should be marginal.
[n-horiguchi@ah.jp.nec.com: changelog additions]
Link: http://lkml.kernel.org/r/20191031012151.2722280-1-guro@fb.com
Fixes:
|
||
Waiman Long
|
9adeaa2269 |
mm, slab: move memcg_cache_params structure to mm/slab.h
The memcg_cache_params structure is only embedded into the kmem_cache of slab and slub allocators as defined in slab_def.h and slub_def.h and used internally by mm code. There is no needed to expose it in a public header. So move it from include/linux/slab.h to mm/slab.h. It is just a refactoring patch with no code change. In fact both the slub_def.h and slab_def.h should be moved into the mm directory as well, but that will probably cause many merge conflicts. Link: http://lkml.kernel.org/r/20190718180827.18758-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
04f768a39d |
mm, slab: extend slab/shrink to shrink all memcg caches
Currently, a value of '1" is written to /sys/kernel/slab/<slab>/shrink file to shrink the slab by flushing out all the per-cpu slabs and free slabs in partial lists. This can be useful to squeeze out a bit more memory under extreme condition as well as making the active object counts in /proc/slabinfo more accurate. This usually applies only to the root caches, as the SLUB_MEMCG_SYSFS_ON option is usually not enabled and "slub_memcg_sysfs=1" not set. Even if memcg sysfs is turned on, it is too cumbersome and impractical to manage all those per-memcg sysfs files in a real production system. So there is no practical way to shrink memcg caches. Fix this by enabling a proper write to the shrink sysfs file of the root cache to scan all the available memcg caches and shrink them as well. For a non-root memcg cache (when SLUB_MEMCG_SYSFS_ON or slub_memcg_sysfs is on), only that cache will be shrunk when written. On a 2-socket 64-core 256-thread arm64 system with 64k page after a parallel kernel build, the the amount of memory occupied by slabs before shrinking slabs were: # grep task_struct /proc/slabinfo task_struct 53137 53192 4288 61 4 : tunables 0 0 0 : slabdata 872 872 0 # grep "^S[lRU]" /proc/meminfo Slab: 3936832 kB SReclaimable: 399104 kB SUnreclaim: 3537728 kB After shrinking slabs (by echoing "1" to all shrink files): # grep "^S[lRU]" /proc/meminfo Slab: 1356288 kB SReclaimable: 263296 kB SUnreclaim: 1092992 kB # grep task_struct /proc/slabinfo task_struct 2764 6832 4288 61 4 : tunables 0 0 0 : slabdata 112 112 0 Link: http://lkml.kernel.org/r/20190723151445.7385-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
6471384af2 |
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
fb2f2b0adb |
mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining. This allows us to release the memory cgroup without waiting for the last outstanding kernel object (e.g. dentry used by another application). Since the parent cgroup is already charged, everything we need to do is to splice the list of kmem_caches to the parent's kmem_caches list, swap the memcg pointer, drop the css refcounter for each kmem_cache and adjust the parent's css refcounter. Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held, or any other way that protects the memory cgroup from being released. We can race with the slab allocation and deallocation paths. It's not a big problem: parent's charge and slab global stats are always correct, and we don't care anymore about the child usage and global stats. The child cgroup is already offline, so we don't use or show it anywhere. Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't used anywhere except count_shadow_nodes(). But even there it won't break anything: after reparenting "nodes" will be 0 on child level (because we're already reparenting shrinker lists), and on parent level page stats always were 0, and this patch won't change anything. [guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup] Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
4d96ba3530 |
mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages
Every slab page charged to a non-root memory cgroup has a pointer to the memory cgroup and holds a reference to it, which protects a non-empty memory cgroup from being released. At the same time the page has a pointer to the corresponding kmem_cache, and also hold a reference to the kmem_cache. And kmem_cache by itself holds a reference to the cgroup. So there is clearly some redundancy, which allows to stop setting the page->mem_cgroup pointer and rely on getting memcg pointer indirectly via kmem_cache. Further it will allow to change this pointer easier, without a need to go over all charged pages. So let's stop setting page->mem_cgroup pointer for slab pages, and stop using the css refcounter directly for protecting the memory cgroup from going away. Instead rely on kmem_cache as an intermediate object. Make sure that vmstats and shrinker lists are working as previously, as well as /proc/kpagecgroup interface. Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
f0a3a24b53 |
mm: memcg/slab: rework non-root kmem_cache lifecycle management
Currently each charged slab page holds a reference to the cgroup to which it's charged. Kmem_caches are held by the memcg and are released all together with the memory cgroup. It means that none of kmem_caches are released unless at least one reference to the memcg exists, which is very far from optimal. Let's rework it in a way that allows releasing individual kmem_caches as soon as the cgroup is offline, the kmem_cache is empty and there are no pending allocations. To make it possible, let's introduce a new percpu refcounter for non-root kmem caches. The counter is initialized to the percpu mode, and is switched to the atomic mode during kmem_cache deactivation. The counter is bumped for every charged page and also for every running allocation. So the kmem_cache can't be released unless all allocations complete. To shutdown non-active empty kmem_caches, let's reuse the work queue, previously used for the kmem_cache deactivation. Once the reference counter reaches 0, let's schedule an asynchronous kmem_cache release. * I used the following simple approach to test the performance (stolen from another patchset by T. Harding): time find / -name fname-no-exist echo 2 > /proc/sys/vm/drop_caches repeat 10 times Results: orig patched real 0m1.455s real 0m1.355s user 0m0.206s user 0m0.219s sys 0m0.855s sys 0m0.807s real 0m1.487s real 0m1.699s user 0m0.221s user 0m0.256s sys 0m0.806s sys 0m0.948s real 0m1.515s real 0m1.505s user 0m0.183s user 0m0.215s sys 0m0.876s sys 0m0.858s real 0m1.291s real 0m1.380s user 0m0.193s user 0m0.198s sys 0m0.843s sys 0m0.786s real 0m1.364s real 0m1.374s user 0m0.180s user 0m0.182s sys 0m0.868s sys 0m0.806s real 0m1.352s real 0m1.312s user 0m0.201s user 0m0.212s sys 0m0.820s sys 0m0.761s real 0m1.302s real 0m1.349s user 0m0.205s user 0m0.203s sys 0m0.803s sys 0m0.792s real 0m1.334s real 0m1.301s user 0m0.194s user 0m0.201s sys 0m0.806s sys 0m0.779s real 0m1.426s real 0m1.434s user 0m0.216s user 0m0.181s sys 0m0.824s sys 0m0.864s real 0m1.350s real 0m1.295s user 0m0.200s user 0m0.190s sys 0m0.842s sys 0m0.811s So it looks like the difference is not noticeable in this test. [cai@lca.pw: fix an use-after-free in kmemcg_workfn()] Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
6cea1d569d |
mm: memcg/slab: unify SLAB and SLUB page accounting
Currently the page accounting code is duplicated in SLAB and SLUB internals. Let's move it into new (un)charge_slab_page helpers in the slab_common.c file. These helpers will be responsible for statistics (global and memcg-aware) and memcg charging. So they are replacing direct memcg_(un)charge_slab() calls. Link: http://lkml.kernel.org/r/20190611231813.3148843-6-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
4348669475 |
mm: memcg/slab: generalize postponed non-root kmem_cache deactivation
Currently SLUB uses a work scheduled after an RCU grace period to deactivate a non-root kmem_cache. This mechanism can be reused for kmem_caches release, but requires generalization for SLAB case. Introduce kmemcg_cache_deactivate() function, which calls allocator-specific __kmem_cache_deactivate() and schedules execution of __kmem_cache_deactivate_after_rcu() with all necessary locks in a worker context after an rcu grace period. Here is the new calling scheme: kmemcg_cache_deactivate() __kmemcg_cache_deactivate() SLAB/SLUB-specific kmemcg_rcufn() rcu kmemcg_workfn() work __kmemcg_cache_deactivate_after_rcu() SLAB/SLUB-specific instead of: __kmemcg_cache_deactivate() SLAB/SLUB-specific slab_deactivate_memcg_cache_rcu_sched() SLUB-only kmemcg_rcufn() rcu kmemcg_workfn() work kmemcg_cache_deact_after_rcu() SLUB-only For consistency, all allocator-specific functions start with "__". Link: http://lkml.kernel.org/r/20190611231813.3148843-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
0b14e8aa68 |
mm: memcg/slab: rename slab delayed deactivation functions and fields
The delayed work/rcu deactivation infrastructure of non-root kmem_caches can be also used for asynchronous release of these objects. Let's get rid of the word "deactivation" in corresponding names to make the code look better after generalization. It's easier to make the renaming first, so that the generalized code will look consistent from scratch. Let's rename struct memcg_cache_params fields: deact_fn -> work_fn deact_rcu_head -> rcu_head deact_work -> work And RCU/delayed work callbacks in slab common code: kmemcg_deactivate_rcufn -> kmemcg_rcufn kmemcg_deactivate_workfn -> kmemcg_workfn This patch contains no functional changes, only renamings. Link: http://lkml.kernel.org/r/20190611231813.3148843-3-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
c03914b7aa |
mm: memcg/slab: postpone kmem_cache memcg pointer initialization to memcg_link_cache()
Patch series "mm: reparent slab memory on cgroup removal", v7. # Why do we need this? We've noticed that the number of dying cgroups is steadily growing on most of our hosts in production. The following investigation revealed an issue in the userspace memory reclaim code [1], accounting of kernel stacks [2], and also the main reason: slab objects. The underlying problem is quite simple: any page charged to a cgroup holds a reference to it, so the cgroup can't be reclaimed unless all charged pages are gone. If a slab object is actively used by other cgroups, it won't be reclaimed, and will prevent the origin cgroup from being reclaimed. Slab objects, and first of all vfs cache, is shared between cgroups, which are using the same underlying fs, and what's even more important, it's shared between multiple generations of the same workload. So if something is running periodically every time in a new cgroup (like how systemd works), we do accumulate multiple dying cgroups. Strictly speaking pagecache isn't different here, but there is a key difference: we disable protection and apply some extra pressure on LRUs of dying cgroups, and these LRUs contain all charged pages. My experiments show that with the disabled kernel memory accounting the number of dying cgroups stabilizes at a relatively small number (~100, depends on memory pressure and cgroup creation rate), and with kernel memory accounting it grows pretty steadily up to several thousands. Memory cgroups are quite complex and big objects (mostly due to percpu stats), so it leads to noticeable memory losses. Memory occupied by dying cgroups is measured in hundreds of megabytes. I've even seen a host with more than 100Gb of memory wasted for dying cgroups. It leads to a degradation of performance with the uptime, and generally limits the usage of cgroups. My previous attempt [3] to fix the problem by applying extra pressure on slab shrinker lists caused a regressions with xfs and ext4, and has been reverted [4]. The following attempts to find the right balance [5, 6] were not successful. So instead of trying to find a maybe non-existing balance, let's do reparent accounted slab caches to the parent cgroup on cgroup removal. # Implementation approach There is however a significant problem with reparenting of slab memory: there is no list of charged pages. Some of them are in shrinker lists, but not all. Introducing of a new list is really not an option. But fortunately there is a way forward: every slab page has a stable pointer to the corresponding kmem_cache. So the idea is to reparent kmem_caches instead of slab pages. It's actually simpler and cheaper, but requires some underlying changes: 1) Make kmem_caches to hold a single reference to the memory cgroup, instead of a separate reference per every slab page. 2) Stop setting page->mem_cgroup pointer for memcg slab pages and use page->kmem_cache->memcg indirection instead. It's used only on slab page release, so performance overhead shouldn't be a big issue. 3) Introduce a refcounter for non-root slab caches. It's required to be able to destroy kmem_caches when they become empty and release the associated memory cgroup. There is a bonus: currently we release all memcg kmem_caches all together with the memory cgroup itself. This patchset allows individual kmem_caches to be released as soon as they become inactive and free. Some additional implementation details are provided in corresponding commit messages. # Results Below is the average number of dying cgroups on two groups of our production hosts. They do run some sort of web frontend workload, the memory pressure is moderate. As we can see, with the kernel memory reparenting the number stabilizes in 60s range; however with the original version it grows almost linearly and doesn't show any signs of plateauing. The difference in slab and percpu usage between patched and unpatched versions also grows linearly. In 7 days it exceeded 200Mb. day 0 1 2 3 4 5 6 7 original 56 362 628 752 1070 1250 1490 1560 patched 23 46 51 55 60 57 67 69 mem diff(Mb) 22 74 123 152 164 182 214 241 # Links [1]: commit |
||
Kees Cook
|
a64b53780e |
mm/slab: sanity-check page type when looking up cache
This avoids any possible type confusion when looking up an object. For example, if a non-slab were to be passed to kfree(), the invalid slab_cache pointer (i.e. overlapped with some other value from the struct page union) would be used for subsequent slab manipulations that could lead to further memory corruption. Since the page is already in cache, adding the PageSlab() check will have nearly zero cost, so add a check and WARN() to virt_to_cache(). Additionally replaces an open-coded virt_to_cache(). To support the failure mode this also updates all callers of virt_to_cache() and cache_from_obj() to handle a NULL cache pointer return value (though note that several already handle this case gracefully). [dan.carpenter@oracle.com: restore IRQs in kfree()] Link: http://lkml.kernel.org/r/20190613065637.GE16334@mwanda Link: http://lkml.kernel.org/r/20190530045017.15252-3-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
598a0717a8 |
mm/slab: validate cache membership under freelist hardening
Patch series "mm/slab: Improved sanity checking". This adds defenses against slab cache confusion (as seen in real-world exploits[1]) and gracefully handles type confusions when trying to look up slab caches from an arbitrary page. (Also is patch 3: new LKDTM tests for these defenses as well as for the existing double-free detection. This patch (of 3): When building under CONFIG_SLAB_FREELIST_HARDENING, it makes sense to perform sanity-checking on the assumed slab cache during kmem_cache_free() to make sure the kernel doesn't mix freelists across slab caches and corrupt memory (as seen in the exploitation of flaws like CVE-2018-9568[1]). Note that the prior code might WARN() but still corrupt memory (i.e. return the assumed cache instead of the owned cache). There is no noticeable performance impact (changes are within noise). Measuring parallel kernel builds, I saw the following with CONFIG_SLAB_FREELIST_HARDENED, before and after this patch: before: Run times: 288.85 286.53 287.09 287.07 287.21 Min: 286.53 Max: 288.85 Mean: 287.35 Std Dev: 0.79 after: Run times: 289.58 287.40 286.97 287.20 287.01 Min: 286.97 Max: 289.58 Mean: 287.63 Std Dev: 0.99 Delta: 0.1% which is well below the standard deviation [1] https://github.com/ThomasKing2014/slides/raw/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf Link: http://lkml.kernel.org/r/20190530045017.15252-2-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nicolas Boichat
|
6d6ea1e967 |
mm: add support for kmem caches in DMA32 zone
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit
|
||
Shakeel Butt
|
60cd4bcd62 |
memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
a2f775751d |
kmemleak: account for tagged pointers when calculating pointer range
kmemleak keeps two global variables, min_addr and max_addr, which store the range of valid (encountered by kmemleak) pointer values, which it later uses to speed up pointer lookup when scanning blocks. With tagged pointers this range will get bigger than it needs to be. This patch makes kmemleak untag pointers before saving them to min_addr and max_addr and when performing a lookup. Link: http://lkml.kernel.org/r/16e887d442986ab87fe87a755815ad92fa431a5f.1550066133.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Qian Cai <cai@lca.pw> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
53128245b4 |
kasan, kmemleak: pass tagged pointers to kmemleak
Right now we call kmemleak hooks before assigning tags to pointers in KASAN hooks. As a result, when an objects gets allocated, kmemleak sees a differently tagged pointer, compared to the one it sees when the object gets freed. Fix it by calling KASAN hooks before kmemleak's ones. Link: http://lkml.kernel.org/r/cd825aa4897b0fc37d3316838993881daccbe9f5.1549921721.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reported-by: Qian Cai <cai@lca.pw> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
0116523cff |
kasan, mm: change hooks signatures
Patch series "kasan: add software tag-based mode for arm64", v13. This patchset adds a new software tag-based mode to KASAN [1]. (Initially this mode was called KHWASAN, but it got renamed, see the naming rationale at the end of this section). The plan is to implement HWASan [2] for the kernel with the incentive, that it's going to have comparable to KASAN performance, but in the same time consume much less memory, trading that off for somewhat imprecise bug detection and being supported only for arm64. The underlying ideas of the approach used by software tag-based KASAN are: 1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store pointer tags in the top byte of each kernel pointer. 2. Using shadow memory, we can store memory tags for each chunk of kernel memory. 3. On each memory allocation, we can generate a random tag, embed it into the returned pointer and set the memory tags that correspond to this chunk of memory to the same value. 4. By using compiler instrumentation, before each memory access we can add a check that the pointer tag matches the tag of the memory that is being accessed. 5. On a tag mismatch we report an error. With this patchset the existing KASAN mode gets renamed to generic KASAN, with the word "generic" meaning that the implementation can be supported by any architecture as it is purely software. The new mode this patchset adds is called software tag-based KASAN. The word "tag-based" refers to the fact that this mode uses tags embedded into the top byte of kernel pointers and the TBI arm64 CPU feature that allows to dereference such pointers. The word "software" here means that shadow memory manipulation and tag checking on pointer dereference is done in software. As it is the only tag-based implementation right now, "software tag-based" KASAN is sometimes referred to as simply "tag-based" in this patchset. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support (announced by Arm [3]) instead of compiler instrumentation and manual shadow memory manipulation. Same as generic KASAN, software tag-based KASAN is strictly a debugging feature. [1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html [2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html [3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a ====== Rationale On mobile devices generic KASAN's memory usage is significant problem. One of the main reasons to have tag-based KASAN is to be able to perform a similar set of checks as the generic one does, but with lower memory requirements. Comment from Vishwath Mohan <vishwath@google.com>: I don't have data on-hand, but anecdotally both ASAN and KASAN have proven problematic to enable for environments that don't tolerate the increased memory pressure well. This includes (a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go, (c) Connected components like Pixel's visual core [1]. These are both places I'd love to have a low(er) memory footprint option at my disposal. Comment from Evgenii Stepanov <eugenis@google.com>: Looking at a live Android device under load, slab (according to /proc/meminfo) + kernel stack take 8-10% available RAM (~350MB). KASAN's overhead of 2x - 3x on top of it is not insignificant. Not having this overhead enables near-production use - ex. running KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do not reproduce in test configuration. These are the ones that often cost the most engineering time to track down. CPU overhead is bad, but generally tolerable. RAM is critical, in our experience. Once it gets low enough, OOM-killer makes your life miserable. [1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/ ====== Technical details Software tag-based KASAN mode is implemented in a very similar way to the generic one. This patchset essentially does the following: 1. TCR_TBI1 is set to enable Top Byte Ignore. 2. Shadow memory is used (with a different scale, 1:16, so each shadow byte corresponds to 16 bytes of kernel memory) to store memory tags. 3. All slab objects are aligned to shadow scale, which is 16 bytes. 4. All pointers returned from the slab allocator are tagged with a random tag and the corresponding shadow memory is poisoned with the same value. 5. Compiler instrumentation is used to insert tag checks. Either by calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE flags are reused). 6. When a tag mismatch is detected in callback instrumentation mode KASAN simply prints a bug report. In case of inline instrumentation, clang inserts a brk instruction, and KASAN has it's own brk handler, which reports the bug. 7. The memory in between slab objects is marked with a reserved tag, and acts as a redzone. 8. When a slab object is freed it's marked with a reserved tag. Bug detection is imprecise for two reasons: 1. We won't catch some small out-of-bounds accesses, that fall into the same shadow cell, as the last byte of a slab object. 2. We only have 1 byte to store tags, which means we have a 1/256 probability of a tag match for an incorrect access (actually even slightly less due to reserved tag values). Despite that there's a particular type of bugs that tag-based KASAN can detect compared to generic KASAN: use-after-free after the object has been allocated by someone else. ====== Testing Some kernel developers voiced a concern that changing the top byte of kernel pointers may lead to subtle bugs that are difficult to discover. To address this concern deliberate testing has been performed. It doesn't seem feasible to do some kind of static checking to find potential issues with pointer tagging, so a dynamic approach was taken. All pointer comparisons/subtractions have been instrumented in an LLVM compiler pass and a kernel module that would print a bug report whenever two pointers with different tags are being compared/subtracted (ignoring comparisons with NULL pointers and with pointers obtained by casting an error code to a pointer type) has been used. Then the kernel has been booted in QEMU and on an Odroid C2 board and syzkaller has been run. This yielded the following results. The two places that look interesting are: is_vmalloc_addr in include/linux/mm.h is_kernel_rodata in mm/util.c Here we compare a pointer with some fixed untagged values to make sure that the pointer lies in a particular part of the kernel address space. Since tag-based KASAN doesn't add tags to pointers that belong to rodata or vmalloc regions, this should work as is. To make sure debug checks to those two functions that check that the result doesn't change whether we operate on pointers with or without untagging has been added. A few other cases that don't look that interesting: Comparing pointers to achieve unique sorting order of pointee objects (e.g. sorting locks addresses before performing a double lock): tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c pipe_double_lock in fs/pipe.c unix_state_double_lock in net/unix/af_unix.c lock_two_nondirectories in fs/inode.c mutex_lock_double in kernel/events/core.c ep_cmp_ffd in fs/eventpoll.c fsnotify_compare_groups fs/notify/mark.c Nothing needs to be done here, since the tags embedded into pointers don't change, so the sorting order would still be unique. Checks that a pointer belongs to some particular allocation: is_sibling_entry in lib/radix-tree.c object_is_on_stack in include/linux/sched/task_stack.h Nothing needs to be done here either, since two pointers can only belong to the same allocation if they have the same tag. Overall, since the kernel boots and works, there are no critical bugs. As for the rest, the traditional kernel testing way (use until fails) is the only one that looks feasible. Another point here is that tag-based KASAN is available under a separate config option that needs to be deliberately enabled. Even though it might be used in a "near-production" environment to find bugs that are not found during fuzzing or running tests, it is still a debug tool. ====== Benchmarks The following numbers were collected on Odroid C2 board. Both generic and tag-based KASAN were used in inline instrumentation mode. Boot time [1]: * ~1.7 sec for clean kernel * ~5.0 sec for generic KASAN * ~5.0 sec for tag-based KASAN Network performance [2]: * 8.33 Gbits/sec for clean kernel * 3.17 Gbits/sec for generic KASAN * 2.85 Gbits/sec for tag-based KASAN Slab memory usage after boot [3]: * ~40 kb for clean kernel * ~105 kb (~260% overhead) for generic KASAN * ~47 kb (~20% overhead) for tag-based KASAN KASAN memory overhead consists of three main parts: 1. Increased slab memory usage due to redzones. 2. Shadow memory (the whole reserved once during boot). 3. Quaratine (grows gradually until some preset limit; the more the limit, the more the chance to detect a use-after-free). Comparing tag-based vs generic KASAN for each of these points: 1. 20% vs 260% overhead. 2. 1/16th vs 1/8th of physical memory. 3. Tag-based KASAN doesn't require quarantine. [1] Time before the ext4 driver is initialized. [2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`. [3] Measured as `cat /proc/meminfo | grep Slab`. ====== Some notes A few notes: 1. The patchset can be found here: https://github.com/xairy/kasan-prototype/tree/khwasan 2. Building requires a recent Clang version (7.0.0 or later). 3. Stack instrumentation is not supported yet and will be added later. This patch (of 25): Tag-based KASAN changes the value of the top byte of pointers returned from the kernel allocation functions (such as kmalloc). This patch updates KASAN hooks signatures and their usage in SLAB and SLUB code to reflect that. Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
84c07d11aa |
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
f9e13c0a5a |
slab, slub: skip unnecessary kasan_cache_shutdown()
The kasan quarantine is designed to delay freeing slab objects to catch use-after-free. The quarantine can be large (several percent of machine memory size). When kmem_caches are deleted related objects are flushed from the quarantine but this requires scanning the entire quarantine which can be very slow. We have seen the kernel busily working on this while holding slab_mutex and badly affecting cache_reaper, slabinfo readers and memcg kmem cache creations. It can easily reproduced by following script: yes . | head -1000000 | xargs stat > /dev/null for i in `seq 1 10`; do seq 500 | (cd /cg/memory && xargs mkdir) seq 500 | xargs -I{} sh -c 'echo $BASHPID > \ /cg/memory/{}/tasks && exec stat .' > /dev/null seq 500 | (cd /cg/memory && xargs rmdir) done The busy stack: kasan_cache_shutdown shutdown_cache memcg_destroy_kmem_caches mem_cgroup_css_free css_free_rwork_fn process_one_work worker_thread kthread ret_from_fork This patch is based on the observation that if the kmem_cache to be destroyed is empty then there should not be any objects of this cache in the quarantine. Without the patch the script got stuck for couple of hours. With the patch the script completed within a second. Link: http://lkml.kernel.org/r/20180327230603.54721-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |