Once a lock class is zapped, all the lock chains that include the zapped
class are essentially useless. The lock_chain structure itself can be
reused, but not the corresponding chain_hlocks[] entries. Over time,
we will run out of chain_hlocks entries while there are still plenty
of other lockdep array entries available.
To fix this imbalance, we have to make chain_hlocks entries reusable
just like the others. As the freed chain_hlocks entries are in blocks of
various lengths. A simple bitmap like the one used in the other reusable
lockdep arrays isn't applicable. Instead the chain_hlocks entries are
put into bucketed lists (MAX_CHAIN_BUCKETS) of chain blocks. Bucket 0
is the variable size bucket which houses chain blocks of size larger than
MAX_CHAIN_BUCKETS sorted in decreasing size order. Initially, the whole
array is in one chain block (the primordial chain block) in bucket 0.
The minimum size of a chain block is 2 chain_hlocks entries. That will
be the minimum allocation size. In other word, allocation requests
for one chain_hlocks entry will cause 2-entry block to be returned and
hence 1 entry will be wasted.
Allocation requests for the chain_hlocks are fulfilled first by looking
for chain block of matching size. If not found, the first chain block
from bucket[0] (the largest one) is split. That can cause hlock entries
fragmentation and reduce allocation efficiency if a chain block of size >
MAX_CHAIN_BUCKETS is ever zapped and put back to after the primordial
chain block. So the MAX_CHAIN_BUCKETS must be large enough that this
should seldom happen.
By reusing the chain_hlocks entries, we are able to handle workloads
that add and zap a lot of lock classes without the risk of running out
of chain_hlocks entries as long as the total number of outstanding lock
classes at any time remain within a reasonable limit.
Two new tracking counters, nr_free_chain_hlocks & nr_large_chain_blocks,
are added to track the total number of chain_hlocks entries in the
free bucketed lists and the number of large chain blocks in buckets[0]
respectively. The nr_free_chain_hlocks replaces nr_chain_hlocks.
The nr_large_chain_blocks counter enables to see if we should increase
the number of buckets (MAX_CHAIN_BUCKETS) available so as to avoid to
avoid the fragmentation problem in bucket[0].
An internal nfsd test that ran for more than an hour and kept on
loading and unloading kernel modules could cause the following message
to be displayed.
[ 4318.443670] BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!
The patched kernel was able to complete the test with a lot of free
chain_hlocks entries to spare:
# cat /proc/lockdep_stats
:
dependency chains: 18867 [max: 65536]
dependency chain hlocks: 74926 [max: 327680]
dependency chain hlocks lost: 0
:
zapped classes: 1541
zapped lock chains: 56765
large chain blocks: 1
By changing MAX_CHAIN_BUCKETS to 3 and add a counter for the size of the
largest chain block. The system still worked and We got the following
lockdep_stats data:
dependency chains: 18601 [max: 65536]
dependency chain hlocks used: 73133 [max: 327680]
dependency chain hlocks lost: 0
:
zapped classes: 1541
zapped lock chains: 56702
large chain blocks: 45165
large chain block size: 20165
By running the test again, I was indeed able to cause chain_hlocks
entries to get lost:
dependency chain hlocks used: 74806 [max: 327680]
dependency chain hlocks lost: 575
:
large chain blocks: 48737
large chain block size: 7
Due to the fragmentation, it is possible that the
"MAX_LOCKDEP_CHAIN_HLOCKS too low!" error can happen even if a lot of
of chain_hlocks entries appear to be free.
Fortunately, a MAX_CHAIN_BUCKETS value of 16 should be big enough that
few variable sized chain blocks, other than the initial one, should
ever be present in bucket 0.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-7-longman@redhat.com
Add a new counter nr_zapped_lock_chains to track the number lock chains
that have been removed.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-6-longman@redhat.com
If a lock chain contains a class that is zapped, the whole lock chain is
likely to be invalid. If the zapped class is at the end of the chain,
the partial chain without the zapped class should have been stored
already as the current code will store all its predecessor chains. If
the zapped class is somewhere in the middle, there is no guarantee that
the partial chain will actually happen. It may just clutter up the hash
and make searching slower. I would rather prefer storing the chain only
when it actually happens.
So just dump the corresponding chain_hlocks entries for now. A latter
patch will try to reuse the freed chain_hlocks entries.
This patch also changes the type of nr_chain_hlocks to unsigned integer
to be consistent with the other counters.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-5-longman@redhat.com
The whole point of the lockdep dynamic key patch is to allow unused
locks to be removed from the lockdep data buffers so that existing
buffer space can be reused. However, there is no way to find out how
many unused locks are zapped and so we don't know if the zapping process
is working properly.
Add a new nr_zapped_classes counter to track that and show it in
/proc/lockdep_stats.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-4-longman@redhat.com
There are currently three counters to track the IRQ context of a lock
chain - nr_hardirq_chains, nr_softirq_chains and nr_process_chains.
They are incremented when a new lock chain is added, but they are
not decremented when a lock chain is removed. That causes some of the
statistic counts reported by /proc/lockdep_stats to be incorrect.
IRQ
Fix that by decrementing the right counter when a lock chain is removed.
Since inc_chains() no longer accesses hardirq_context and softirq_context
directly, it is moved out from the CONFIG_TRACE_IRQFLAGS conditional
compilation block.
Fixes: a0b0fd53e1 ("locking/lockdep: Free lock classes that are no longer in use")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-2-longman@redhat.com
Report the number of stack traces and the number of stack trace hash
chains. These two numbers are useful because these allow to estimate
the number of stack trace hash collisions.
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190722182443.216015-5-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although commit 669de8bda8 ("kernel/workqueue: Use dynamic lockdep keys
for workqueues") unregisters dynamic lockdep keys when a workqueue is
destroyed, a side effect of that commit is that all stack traces
associated with the lockdep key are leaked when a workqueue is destroyed.
Fix this by storing each unique stack trace once. Other changes in this
patch are:
- Use NULL instead of { .nr_entries = 0 } to represent 'no trace'.
- Store a pointer to a stack trace in struct lock_class and struct
lock_list instead of storing 'nr_entries' and 'offset'.
This patch avoids that the following program triggers the "BUG:
MAX_STACK_TRACE_ENTRIES too low!" complaint:
#include <fcntl.h>
#include <unistd.h>
int main()
{
for (;;) {
int fd = open("/dev/infiniband/rdma_cm", O_RDWR);
close(fd);
}
}
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yuyang Du <duyuyang@gmail.com>
Link: https://lkml.kernel.org/r/20190722182443.216015-4-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch does not change the behavior of the lockdep code.
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190722182443.216015-2-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When system has been running for a long time, signed integer
counters are not enough for some lockdep statistics. Using
unsigned long counters can satisfy the requirement. Besides,
most of lockdep statistics are unsigned. It is better to use
unsigned int instead of int.
Remove unused variables.
- max_recursion_depth
- nr_cyclic_check_recursions
- nr_find_usage_forwards_recursions
- nr_find_usage_backwards_recursions
Signed-off-by: Kobe Wu <kobe-cp.wu@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <linux-mediatek@lists.infradead.org>
Cc: <wsd_upstream@mediatek.com>
Cc: Eason Lin <eason-yh.lin@mediatek.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/1561365348-16050-1-git-send-email-kobe-cp.wu@mediatek.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
check_prev_add_irq() tests all incompatible scenarios one after the
other while adding a lock (@next) to a tree dependency (@prev):
LOCK_USED_IN_HARDIRQ vs LOCK_ENABLED_HARDIRQ
LOCK_USED_IN_HARDIRQ_READ vs LOCK_ENABLED_HARDIRQ
LOCK_USED_IN_SOFTIRQ vs LOCK_ENABLED_SOFTIRQ
LOCK_USED_IN_SOFTIRQ_READ vs LOCK_ENABLED_SOFTIRQ
Also for these four scenarios, we must at least iterate the @prev
backward dependency. Then if it matches the relevant LOCK_USED_* bit,
we must also iterate the @next forward dependency.
Therefore in the best case we iterate 4 times, in the worst case 8 times.
A different approach can let us divide the number of branch iterations
by 4:
1) Iterate through @prev backward dependencies and accumulate all the IRQ
uses in a single mask. In the best case where the current lock hasn't
been used in IRQ, we stop here.
2) Iterate through @next forward dependencies and try to find a lock
whose usage is exclusive to the accumulated usages gathered in the
previous step. If we find one (call it @lockA), we have found an
incompatible use, otherwise we stop here. Only bad locking scenario
go further. So a sane verification stop here.
3) Iterate again through @prev backward dependency and find the lock
whose usage matches @lockA in term of incompatibility. Call that
lock @lockB.
4) Report the incompatible usages of @lockA and @lockB
If no incompatible use is found, the verification never goes beyond
step 2 which means at most two iterations.
The following compares the execution measurements of the function
check_prev_add_irq():
Number of calls | Avg (ns) | Stdev (ns) | Total time (ns)
------------------------------------------------------------------------
Mainline 8452 | 2652 | 11962 | 22415143
This patch 8452 | 1518 | 7090 | 12835602
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-5-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of open-coding the bitmasks, generate them using the
lockdep_states.h header.
This prepares for additional states, which would make the manual masks
tedious and error prone.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch does not change any functionality but makes the next patch in
this series easier to read.
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: johannes.berg@intel.com
Cc: tj@kernel.org
Link: https://lkml.kernel.org/r/20190214230058.196511-14-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It makes the code more self-explanatory and tells throughout the code
what magic number refers to:
- state (Hardirq/Softirq)
- direction (used in or enabled above state)
- read or write
We can even remove some comments that were compensating for the lack of
those constant names.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/1545973321-24422-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A sizable portion of the CPU cycles spent on the __lock_acquire() is used
up by the atomic increment of the class->ops stat counter. By taking it out
from the lock_class structure and changing it to a per-cpu per-lock-class
counter, we can reduce the amount of cacheline contention on the class
structure when multiple CPUs are trying to acquire locks of the same
class simultaneously.
To limit the increase in memory consumption because of the percpu nature
of that counter, it is now put back under the CONFIG_DEBUG_LOCKDEP
config option. So the memory consumption increase will only occur if
CONFIG_DEBUG_LOCKDEP is defined. The lock_class structure, however,
is reduced in size by 16 bytes on 64-bit archs after ops removal and
a minor restructuring of the fields.
This patch also fixes a bug in the increment code as the counter is of
the 'unsigned long' type, but atomic_inc() was used to increment it.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/d66681f3-8781-9793-1dcf-2436a284550b@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Two boots + a make defconfig, the first didn't have the redundant bit
in, the second did:
lock-classes: 1168 1169 [max: 8191]
direct dependencies: 7688 5812 [max: 32768]
indirect dependencies: 25492 25937
all direct dependencies: 220113 217512
dependency chains: 9005 9008 [max: 65536]
dependency chain hlocks: 34450 34366 [max: 327680]
in-hardirq chains: 55 51
in-softirq chains: 371 378
in-process chains: 8579 8579
stack-trace entries: 108073 88474 [max: 524288]
combined max dependencies: 178738560 169094640
max locking depth: 15 15
max bfs queue depth: 320 329
cyclic checks: 9123 9190
redundant checks: 5046
redundant links: 1828
find-mask forwards checks: 2564 2599
find-mask backwards checks: 39521 39789
So it saves nearly 2k links and a fair chunk of stack-trace entries, but
as expected, makes no real difference on the indirect dependencies.
At the same time, you see the max BFS depth increase, which is also
expected, although it could easily be boot variance -- these numbers are
not entirely stable between boots.
The down side is that the cycles in the graph become larger and thus
the reports harder to read.
XXX: do we want this as a CONFIG variable, implied by LOCKDEP_SMALL?
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: boqun.feng@gmail.com
Cc: iamjoonsoo.kim@lge.com
Cc: kernel-team@lge.com
Cc: kirill@shutemov.name
Cc: npiggin@gmail.com
Cc: walken@google.com
Link: http://lkml.kernel.org/r/20170303091338.GH6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CONFIG_PROVE_LOCKING_SMALL shrinks the memory usage of lockdep so the
kernel text, data, and bss fit in the required 32MB limit, but this
option is not set for every config that enables lockdep.
A 4.10 kernel fails to boot with the console output
Kernel: Using 8 locked TLB entries for main kernel image.
hypervisor_tlb_lock[2000000:0:8000000071c007c3:1]: errors with f
Program terminated
with these config options
CONFIG_LOCKDEP=y
CONFIG_LOCK_STAT=y
CONFIG_PROVE_LOCKING=n
To fix, rename CONFIG_PROVE_LOCKING_SMALL to CONFIG_LOCKDEP_SMALL, and
enable this option with CONFIG_LOCKDEP=y so we get the reduced memory
usage every time lockdep is turned on.
Tested that CONFIG_LOCKDEP_SMALL is set to 'y' if and only if
CONFIG_LOCKDEP is set to 'y'. When other lockdep-related config options
that select CONFIG_LOCKDEP are enabled (e.g. CONFIG_LOCK_STAT or
CONFIG_PROVE_LOCKING), verified that CONFIG_LOCKDEP_SMALL is also
enabled.
Fixes: e6b5f1be7a ("config: Adding the new config parameter CONFIG_PROVE_LOCKING_SMALL for sparc")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Babu Moger <babu.moger@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Reduce the size of data structure for lockdep entries by half if
PROVE_LOCKING_SMALL if defined. This is used only for sparc.
Signed-off-by: Babu Moger <babu.moger@oracle.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>