forked from luck/tmp_suning_uos_patched
c576472a05
14336 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Eric Dumazet
|
9707960ecf |
inet: annotate date races around sk->sk_txhash
[ Upstream commit b71eaed8c04f72a919a9c44e83e4ee254e69e7f3 ] UDP sendmsg() path can be lockless, it is possible for another thread to re-connect an change sk->sk_txhash under us. There is no serious impact, but we can use READ_ONCE()/WRITE_ONCE() pair to document the race. BUG: KCSAN: data-race in __ip4_datagram_connect / skb_set_owner_w write to 0xffff88813397920c of 4 bytes by task 30997 on cpu 1: sk_set_txhash include/net/sock.h:1937 [inline] __ip4_datagram_connect+0x69e/0x710 net/ipv4/datagram.c:75 __ip6_datagram_connect+0x551/0x840 net/ipv6/datagram.c:189 ip6_datagram_connect+0x2a/0x40 net/ipv6/datagram.c:272 inet_dgram_connect+0xfd/0x180 net/ipv4/af_inet.c:580 __sys_connect_file net/socket.c:1837 [inline] __sys_connect+0x245/0x280 net/socket.c:1854 __do_sys_connect net/socket.c:1864 [inline] __se_sys_connect net/socket.c:1861 [inline] __x64_sys_connect+0x3d/0x50 net/socket.c:1861 do_syscall_64+0x4a/0x90 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff88813397920c of 4 bytes by task 31039 on cpu 0: skb_set_hash_from_sk include/net/sock.h:2211 [inline] skb_set_owner_w+0x118/0x220 net/core/sock.c:2101 sock_alloc_send_pskb+0x452/0x4e0 net/core/sock.c:2359 sock_alloc_send_skb+0x2d/0x40 net/core/sock.c:2373 __ip6_append_data+0x1743/0x21a0 net/ipv6/ip6_output.c:1621 ip6_make_skb+0x258/0x420 net/ipv6/ip6_output.c:1983 udpv6_sendmsg+0x160a/0x16b0 net/ipv6/udp.c:1527 inet6_sendmsg+0x5f/0x80 net/ipv6/af_inet6.c:642 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x360/0x4d0 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmmsg+0x315/0x4b0 net/socket.c:2490 __do_sys_sendmmsg net/socket.c:2519 [inline] __se_sys_sendmmsg net/socket.c:2516 [inline] __x64_sys_sendmmsg+0x53/0x60 net/socket.c:2516 do_syscall_64+0x4a/0x90 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0xbca3c43d -> 0xfdb309e0 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 31039 Comm: syz-executor.2 Not tainted 5.13.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Eric Dumazet
|
7293f63b7b |
net: annotate data race in sock_error()
[ Upstream commit f13ef10059ccf5f4ed201cd050176df62ec25bb8 ] sock_error() is known to be racy. The code avoids an atomic operation is sk_err is zero, and this field could be changed under us, this is fine. Sysbot reported: BUG: KCSAN: data-race in sock_alloc_send_pskb / unix_release_sock write to 0xffff888131855630 of 4 bytes by task 9365 on cpu 1: unix_release_sock+0x2e9/0x6e0 net/unix/af_unix.c:550 unix_release+0x2f/0x50 net/unix/af_unix.c:859 __sock_release net/socket.c:599 [inline] sock_close+0x6c/0x150 net/socket.c:1258 __fput+0x25b/0x4e0 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0xae/0x130 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:174 [inline] exit_to_user_mode_prepare+0x156/0x190 kernel/entry/common.c:208 __syscall_exit_to_user_mode_work kernel/entry/common.c:290 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:301 do_syscall_64+0x56/0x90 arch/x86/entry/common.c:57 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff888131855630 of 4 bytes by task 9385 on cpu 0: sock_error include/net/sock.h:2269 [inline] sock_alloc_send_pskb+0xe4/0x4e0 net/core/sock.c:2336 unix_dgram_sendmsg+0x478/0x1610 net/unix/af_unix.c:1671 unix_seqpacket_sendmsg+0xc2/0x100 net/unix/af_unix.c:2055 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x360/0x4d0 net/socket.c:2350 __sys_sendmsg_sock+0x25/0x30 net/socket.c:2416 io_sendmsg fs/io_uring.c:4367 [inline] io_issue_sqe+0x231a/0x6750 fs/io_uring.c:6135 __io_queue_sqe+0xe9/0x360 fs/io_uring.c:6414 __io_req_task_submit fs/io_uring.c:2039 [inline] io_async_task_func+0x312/0x590 fs/io_uring.c:5074 __tctx_task_work fs/io_uring.c:1910 [inline] tctx_task_work+0x1d4/0x3d0 fs/io_uring.c:1924 task_work_run+0xae/0x130 kernel/task_work.c:164 tracehook_notify_signal include/linux/tracehook.h:212 [inline] handle_signal_work kernel/entry/common.c:145 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0xf8/0x190 kernel/entry/common.c:208 __syscall_exit_to_user_mode_work kernel/entry/common.c:290 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:301 do_syscall_64+0x56/0x90 arch/x86/entry/common.c:57 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x00000000 -> 0x00000068 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 9385 Comm: syz-executor.3 Not tainted 5.13.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Mathy Vanhoef
|
f74df6e086 |
mac80211: Fix NULL ptr deref for injected rate info
commit bddc0c411a45d3718ac535a070f349be8eca8d48 upstream. The commit |
||
Changbin Du
|
4abfd597fe |
net: make get_net_ns return error if NET_NS is disabled
[ Upstream commit ea6932d70e223e02fea3ae20a4feff05d7c1ea9a ]
There is a panic in socket ioctl cmd SIOCGSKNS when NET_NS is not enabled.
The reason is that nsfs tries to access ns->ops but the proc_ns_operations
is not implemented in this case.
[7.670023] Unable to handle kernel NULL pointer dereference at virtual address 00000010
[7.670268] pgd = 32b54000
[7.670544] [00000010] *pgd=00000000
[7.671861] Internal error: Oops: 5 [#1] SMP ARM
[7.672315] Modules linked in:
[7.672918] CPU: 0 PID: 1 Comm: systemd Not tainted 5.13.0-rc3-00375-g6799d4f2da49 #16
[7.673309] Hardware name: Generic DT based system
[7.673642] PC is at nsfs_evict+0x24/0x30
[7.674486] LR is at clear_inode+0x20/0x9c
The same to tun SIOCGSKNS command.
To fix this problem, we make get_net_ns() return -EINVAL when NET_NS is
disabled. Meanwhile move it to right place net/core/net_namespace.c.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Fixes:
|
||
Pavel Skripkin
|
d6db727457 |
net: caif: add proper error handling
commit a2805dca5107d5603f4bbc027e81e20d93476e96 upstream.
caif_enroll_dev() can fail in some cases. Ingnoring
these cases can lead to memory leak due to not assigning
link_support pointer to anywhere.
Fixes:
|
||
Pavel Skripkin
|
dac53568c6 |
net: caif: added cfserl_release function
commit bce130e7f392ddde8cfcb09927808ebd5f9c8669 upstream. Added cfserl_release() function. Cc: stable@vger.kernel.org Signed-off-by: Pavel Skripkin <paskripkin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Maxim Mikityanskiy
|
f1d4184f12 |
net/tls: Fix use-after-free after the TLS device goes down and up
[ Upstream commit c55dcdd435aa6c6ad6ccac0a4c636d010ee367a4 ]
When a netdev with active TLS offload goes down, tls_device_down is
called to stop the offload and tear down the TLS context. However, the
socket stays alive, and it still points to the TLS context, which is now
deallocated. If a netdev goes up, while the connection is still active,
and the data flow resumes after a number of TCP retransmissions, it will
lead to a use-after-free of the TLS context.
This commit addresses this bug by keeping the context alive until its
normal destruction, and implements the necessary fallbacks, so that the
connection can resume in software (non-offloaded) kTLS mode.
On the TX side tls_sw_fallback is used to encrypt all packets. The RX
side already has all the necessary fallbacks, because receiving
non-decrypted packets is supported. The thing needed on the RX side is
to block resync requests, which are normally produced after receiving
non-decrypted packets.
The necessary synchronization is implemented for a graceful teardown:
first the fallbacks are deployed, then the driver resources are released
(it used to be possible to have a tls_dev_resync after tls_dev_del).
A new flag called TLS_RX_DEV_DEGRADED is added to indicate the fallback
mode. It's used to skip the RX resync logic completely, as it becomes
useless, and some objects may be released (for example, resync_async,
which is allocated and freed by the driver).
Fixes:
|
||
Maxim Mikityanskiy
|
874ece252e |
net/tls: Replace TLS_RX_SYNC_RUNNING with RCU
[ Upstream commit 05fc8b6cbd4f979a6f25759c4a17dd5f657f7ecd ] RCU synchronization is guaranteed to finish in finite time, unlike a busy loop that polls a flag. This patch is a preparation for the bugfix in the next patch, where the same synchronize_net() call will also be used to sync with the TX datapath. Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Vlad Buslov
|
ac493452e9 |
net: zero-initialize tc skb extension on allocation
[ Upstream commit 9453d45ecb6c2199d72e73c993e9d98677a2801b ]
Function skb_ext_add() doesn't initialize created skb extension with any
value and leaves it up to the user. However, since extension of type
TC_SKB_EXT originally contained only single value tc_skb_ext->chain its
users used to just assign the chain value without setting whole extension
memory to zero first. This assumption changed when TC_SKB_EXT extension was
extended with additional fields but not all users were updated to
initialize the new fields which leads to use of uninitialized memory
afterwards. UBSAN log:
[ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28
[ 778.301495] load of value 107 is not a valid value for type '_Bool'
[ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2
[ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 778.307901] Call Trace:
[ 778.308680] <IRQ>
[ 778.309358] dump_stack+0xbb/0x107
[ 778.310307] ubsan_epilogue+0x5/0x40
[ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48
[ 778.312454] ? memset+0x20/0x40
[ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch]
[ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch]
[ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch]
[ 778.317188] ? create_prof_cpu_mask+0x20/0x20
[ 778.318220] ? arch_stack_walk+0x82/0xf0
[ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb
[ 778.320399] ? stack_trace_save+0x91/0xc0
[ 778.321362] ? stack_trace_consume_entry+0x160/0x160
[ 778.322517] ? lock_release+0x52e/0x760
[ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch]
[ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch]
[ 778.325950] __netif_receive_skb_core+0x771/0x2db0
[ 778.327067] ? lock_downgrade+0x6e0/0x6f0
[ 778.328021] ? lock_acquire+0x565/0x720
[ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0
[ 778.329902] ? inet_gro_receive+0x2a7/0x10a0
[ 778.330914] ? lock_downgrade+0x6f0/0x6f0
[ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0
[ 778.332876] ? lock_release+0x52e/0x760
[ 778.333808] ? dev_gro_receive+0xcc8/0x2380
[ 778.334810] ? lock_downgrade+0x6f0/0x6f0
[ 778.335769] __netif_receive_skb_list_core+0x295/0x820
[ 778.336955] ? process_backlog+0x780/0x780
[ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core]
[ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0
[ 778.341033] ? kvm_clock_get_cycles+0x14/0x20
[ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0
[ 778.343288] ? __kasan_kmalloc+0x7a/0x90
[ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core]
[ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core]
[ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820
[ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core]
[ 778.349688] ? napi_gro_flush+0x26c/0x3c0
[ 778.350641] napi_complete_done+0x188/0x6b0
[ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core]
[ 778.352853] __napi_poll+0x9f/0x510
[ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core]
[ 778.355158] net_rx_action+0x34c/0xa40
[ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0
[ 778.357083] ? sched_clock_cpu+0x18/0x190
[ 778.358041] ? __common_interrupt+0x8e/0x1a0
[ 778.359045] __do_softirq+0x1ce/0x984
[ 778.359938] __irq_exit_rcu+0x137/0x1d0
[ 778.360865] irq_exit_rcu+0xa/0x20
[ 778.361708] common_interrupt+0x80/0xa0
[ 778.362640] </IRQ>
[ 778.363212] asm_common_interrupt+0x1e/0x40
[ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10
[ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00
[ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246
[ 778.370570] RAX: ffff88842de46a80 RBX: ffffffff84425840 RCX: ffffffff83418468
[ 778.372143] RDX: 000000000026f1da RSI: 0000000000000004 RDI: ffffffff8343af5e
[ 778.373722] RBP: fffffbfff0884b08 R08: 0000000000000000 R09: ffff88842de46bcb
[ 778.375292] R10: ffffed1085bc8d79 R11: 0000000000000001 R12: 0000000000000000
[ 778.376860] R13: ffffffff851124a0 R14: 0000000000000000 R15: dffffc0000000000
[ 778.378491] ? rcu_eqs_enter.constprop.0+0xb8/0xe0
[ 778.379606] ? default_idle_call+0x5e/0xe0
[ 778.380578] default_idle+0xa/0x10
[ 778.381406] default_idle_call+0x96/0xe0
[ 778.382350] do_idle+0x3d4/0x550
[ 778.383153] ? arch_cpu_idle_exit+0x40/0x40
[ 778.384143] cpu_startup_entry+0x19/0x20
[ 778.385078] start_kernel+0x3c7/0x3e5
[ 778.385978] secondary_startup_64_no_verify+0xb0/0xbb
Fix the issue by providing new function tc_skb_ext_alloc() that allocates
tc skb extension and initializes its memory to 0 before returning it to the
caller. Change all existing users to use new API instead of calling
skb_ext_add() directly.
Fixes:
|
||
Yunsheng Lin
|
2f23d5bcd9 |
net: sched: fix tx action rescheduling issue during deactivation
[ Upstream commit 102b55ee92f9fda4dde7a45d2b20538e6e3e3d1e ] Currently qdisc_run() checks the STATE_DEACTIVATED of lockless qdisc before calling __qdisc_run(), which ultimately clear the STATE_MISSED when all the skb is dequeued. If STATE_DEACTIVATED is set before clearing STATE_MISSED, there may be rescheduling of net_tx_action() at the end of qdisc_run_end(), see below: CPU0(net_tx_atcion) CPU1(__dev_xmit_skb) CPU2(dev_deactivate) . . . . set STATE_MISSED . . __netif_schedule() . . . set STATE_DEACTIVATED . . qdisc_reset() . . . .<--------------- . synchronize_net() clear __QDISC_STATE_SCHED | . . . | . . . | . some_qdisc_is_busy() . | . return *false* . | . . test STATE_DEACTIVATED | . . __qdisc_run() *not* called | . . . | . . test STATE_MISS | . . __netif_schedule()--------| . . . . . . . . __qdisc_run() is not called by net_tx_atcion() in CPU0 because CPU2 has set STATE_DEACTIVATED flag during dev_deactivate(), and STATE_MISSED is only cleared in __qdisc_run(), __netif_schedule is called at the end of qdisc_run_end(), causing tx action rescheduling problem. qdisc_run() called by net_tx_action() runs in the softirq context, which should has the same semantic as the qdisc_run() called by __dev_xmit_skb() protected by rcu_read_lock_bh(). And there is a synchronize_net() between STATE_DEACTIVATED flag being set and qdisc_reset()/some_qdisc_is_busy in dev_deactivate(), we can safely bail out for the deactived lockless qdisc in net_tx_action(), and qdisc_reset() will reset all skb not dequeued yet. So add the rcu_read_lock() explicitly to protect the qdisc_run() and do the STATE_DEACTIVATED checking in net_tx_action() before calling qdisc_run_begin(). Another option is to do the checking in the qdisc_run_end(), but it will add unnecessary overhead for non-tx_action case, because __dev_queue_xmit() will not see qdisc with STATE_DEACTIVATED after synchronize_net(), the qdisc with STATE_DEACTIVATED can only be seen by net_tx_action() because of __netif_schedule(). The STATE_DEACTIVATED checking in qdisc_run() is to avoid race between net_tx_action() and qdisc_reset(), see: commit |
||
Yunsheng Lin
|
21c7151092 |
net: sched: fix packet stuck problem for lockless qdisc
[ Upstream commit a90c57f2cedd52a511f739fb55e6244e22e1a2fb ]
Lockless qdisc has below concurrent problem:
cpu0 cpu1
. .
q->enqueue .
. .
qdisc_run_begin() .
. .
dequeue_skb() .
. .
sch_direct_xmit() .
. .
. q->enqueue
. qdisc_run_begin()
. return and do nothing
. .
qdisc_run_end() .
cpu1 enqueue a skb without calling __qdisc_run() because cpu0
has not released the lock yet and spin_trylock() return false
for cpu1 in qdisc_run_begin(), and cpu0 do not see the skb
enqueued by cpu1 when calling dequeue_skb() because cpu1 may
enqueue the skb after cpu0 calling dequeue_skb() and before
cpu0 calling qdisc_run_end().
Lockless qdisc has below another concurrent problem when
tx_action is involved:
cpu0(serving tx_action) cpu1 cpu2
. . .
. q->enqueue .
. qdisc_run_begin() .
. dequeue_skb() .
. . q->enqueue
. . .
. sch_direct_xmit() .
. . qdisc_run_begin()
. . return and do nothing
. . .
clear __QDISC_STATE_SCHED . .
qdisc_run_begin() . .
return and do nothing . .
. . .
. qdisc_run_end() .
This patch fixes the above data race by:
1. If the first spin_trylock() return false and STATE_MISSED is
not set, set STATE_MISSED and retry another spin_trylock() in
case other CPU may not see STATE_MISSED after it releases the
lock.
2. reschedule if STATE_MISSED is set after the lock is released
at the end of qdisc_run_end().
For tx_action case, STATE_MISSED is also set when cpu1 is at the
end if qdisc_run_end(), so tx_action will be rescheduled again
to dequeue the skb enqueued by cpu2.
Clear STATE_MISSED before retrying a dequeuing when dequeuing
returns NULL in order to reduce the overhead of the second
spin_trylock() and __netif_schedule() calling.
Also clear the STATE_MISSED before calling __netif_schedule()
at the end of qdisc_run_end() to avoid doing another round of
dequeuing in the pfifo_fast_dequeue().
The performance impact of this patch, tested using pktgen and
dummy netdev with pfifo_fast qdisc attached:
threads without+this_patch with+this_patch delta
1 2.61Mpps 2.60Mpps -0.3%
2 3.97Mpps 3.82Mpps -3.7%
4 5.62Mpps 5.59Mpps -0.5%
8 2.78Mpps 2.77Mpps -0.3%
16 2.22Mpps 2.22Mpps -0.0%
Fixes:
|
||
Paolo Abeni
|
1f1b431a4f |
net: really orphan skbs tied to closing sk
[ Upstream commit 098116e7e640ba677d9e345cbee83d253c13d556 ] If the owing socket is shutting down - e.g. the sock reference count already dropped to 0 and only sk_wmem_alloc is keeping the sock alive, skb_orphan_partial() becomes a no-op. When forwarding packets over veth with GRO enabled, the above causes refcount errors. This change addresses the issue with a plain skb_orphan() call in the critical scenario. Fixes: 9adc89af724f ("net: let skb_orphan_partial wake-up waiters.") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Roi Dayan
|
6d6bc8c752 |
netfilter: flowtable: Remove redundant hw refresh bit
commit c07531c01d8284aedaf95708ea90e76d11af0e21 upstream.
Offloading conns could fail for multiple reasons and a hw refresh bit is
set to try to reoffload it in next sw packet.
But it could be in some cases and future points that the hw refresh bit
is not set but a refresh could succeed.
Remove the hw refresh bit and do offload refresh if requested.
There won't be a new work entry if a work is already pending
anyway as there is the hw pending bit.
Fixes:
|
||
Mathy Vanhoef
|
e3561d5af0 |
mac80211: properly handle A-MSDUs that start with an RFC 1042 header
commit a1d5ff5651ea592c67054233b14b30bf4452999c upstream. Properly parse A-MSDUs whose first 6 bytes happen to equal a rfc1042 header. This can occur in practice when the destination MAC address equals AA:AA:03:00:00:00. More importantly, this simplifies the next patch to mitigate A-MSDU injection attacks. Cc: stable@vger.kernel.org Signed-off-by: Mathy Vanhoef <Mathy.Vanhoef@kuleuven.be> Link: https://lore.kernel.org/r/20210511200110.0b2b886492f0.I23dd5d685fe16d3b0ec8106e8f01b59f499dffed@changeid Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Dongliang Mu
|
b34cb7ac32 |
NFC: nci: fix memory leak in nci_allocate_device
commit e0652f8bb44d6294eeeac06d703185357f25d50b upstream.
nfcmrvl_disconnect fails to free the hci_dev field in struct nci_dev.
Fix this by freeing hci_dev in nci_free_device.
BUG: memory leak
unreferenced object 0xffff888111ea6800 (size 1024):
comm "kworker/1:0", pid 19, jiffies 4294942308 (age 13.580s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 60 fd 0c 81 88 ff ff .........`......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000004bc25d43>] kmalloc include/linux/slab.h:552 [inline]
[<000000004bc25d43>] kzalloc include/linux/slab.h:682 [inline]
[<000000004bc25d43>] nci_hci_allocate+0x21/0xd0 net/nfc/nci/hci.c:784
[<00000000c59cff92>] nci_allocate_device net/nfc/nci/core.c:1170 [inline]
[<00000000c59cff92>] nci_allocate_device+0x10b/0x160 net/nfc/nci/core.c:1132
[<00000000006e0a8e>] nfcmrvl_nci_register_dev+0x10a/0x1c0 drivers/nfc/nfcmrvl/main.c:153
[<000000004da1b57e>] nfcmrvl_probe+0x223/0x290 drivers/nfc/nfcmrvl/usb.c:345
[<00000000d506aed9>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396
[<00000000bc632c92>] really_probe+0x159/0x4a0 drivers/base/dd.c:554
[<00000000f5009125>] driver_probe_device+0x84/0x100 drivers/base/dd.c:740
[<000000000ce658ca>] __device_attach_driver+0xee/0x110 drivers/base/dd.c:846
[<000000007067d05f>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:431
[<00000000f8e13372>] __device_attach+0x122/0x250 drivers/base/dd.c:914
[<000000009cf68860>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:491
[<00000000359c965a>] device_add+0x5be/0xc30 drivers/base/core.c:3109
[<00000000086e4bd3>] usb_set_configuration+0x9d9/0xb90 drivers/usb/core/message.c:2164
[<00000000ca036872>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238
[<00000000d40d36f6>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293
[<00000000bc632c92>] really_probe+0x159/0x4a0 drivers/base/dd.c:554
Reported-by: syzbot+19bcfc64a8df1318d1c3@syzkaller.appspotmail.com
Fixes:
|
||
Matthew Wilcox (Oracle)
|
cfddf6a685 |
mm: fix struct page layout on 32-bit systems
commit 9ddb3c14afba8bc5950ed297f02d4ae05ff35cd1 upstream.
32-bit architectures which expect 8-byte alignment for 8-byte integers and
need 64-bit DMA addresses (arm, mips, ppc) had their struct page
inadvertently expanded in 2019. When the dma_addr_t was added, it forced
the alignment of the union to 8 bytes, which inserted a 4 byte gap between
'flags' and the union.
Fix this by storing the dma_addr_t in one or two adjacent unsigned longs.
This restores the alignment to that of an unsigned long. We always
store the low bits in the first word to prevent the PageTail bit from
being inadvertently set on a big endian platform. If that happened,
get_user_pages_fast() racing against a page which was freed and
reallocated to the page_pool could dereference a bogus compound_head(),
which would be hard to trace back to this cause.
Link: https://lkml.kernel.org/r/20210510153211.1504886-1-willy@infradead.org
Fixes:
|
||
Linus Lüssing
|
e2c34cacff |
net: bridge: mcast: fix broken length + header check for MRDv6 Adv.
[ Upstream commit 99014088156cd78867d19514a0bc771c4b86b93b ]
The IPv6 Multicast Router Advertisements parsing has the following two
issues:
For one thing, ICMPv6 MRD Advertisements are smaller than ICMPv6 MLD
messages (ICMPv6 MRD Adv.: 8 bytes vs. ICMPv6 MLDv1/2: >= 24 bytes,
assuming MLDv2 Reports with at least one multicast address entry).
When ipv6_mc_check_mld_msg() tries to parse an Multicast Router
Advertisement its MLD length check will fail - and it will wrongly
return -EINVAL, even if we have a valid MRD Advertisement. With the
returned -EINVAL the bridge code will assume a broken packet and will
wrongly discard it, potentially leading to multicast packet loss towards
multicast routers.
The second issue is the MRD header parsing in
br_ip6_multicast_mrd_rcv(): It wrongly checks for an ICMPv6 header
immediately after the IPv6 header (IPv6 next header type). However
according to RFC4286, section 2 all MRD messages contain a Router Alert
option (just like MLD). So instead there is an IPv6 Hop-by-Hop option
for the Router Alert between the IPv6 and ICMPv6 header, again leading
to the bridge wrongly discarding Multicast Router Advertisements.
To fix these two issues, introduce a new return value -ENODATA to
ipv6_mc_check_mld() to indicate a valid ICMPv6 packet with a hop-by-hop
option which is not an MLD but potentially an MRD packet. This also
simplifies further parsing in the bridge code, as ipv6_mc_check_mld()
already fully checks the ICMPv6 header and hop-by-hop option.
These issues were found and fixed with the help of the mrdisc tool
(https://github.com/troglobit/mrdisc).
Fixes:
|
||
Pablo Neira Ayuso
|
a7eb38aacc |
netfilter: nftables_offload: VLAN id needs host byteorder in flow dissector
[ Upstream commit ff4d90a89d3d4d9814e0a2696509a7d495be4163 ]
The flow dissector representation expects the VLAN id in host byteorder.
Add the NFT_OFFLOAD_F_NETWORK2HOST flag to swap the bytes from nft_cmp.
Fixes:
|
||
Pablo Neira Ayuso
|
cf2de861b2 |
netfilter: nft_payload: fix C-VLAN offload support
[ Upstream commit 14c20643ef9457679cc6934d77adc24296505214 ]
- add another struct flow_dissector_key_vlan for C-VLAN
- update layer 3 dependency to allow to match on IPv4/IPv6
Fixes:
|
||
Archie Pusaka
|
1d7bd87a2c |
Bluetooth: verify AMP hci_chan before amp_destroy
commit 5c4c8c9544099bb9043a10a5318130a943e32fc3 upstream. hci_chan can be created in 2 places: hci_loglink_complete_evt() if it is an AMP hci_chan, or l2cap_conn_add() otherwise. In theory, Only AMP hci_chan should be removed by a call to hci_disconn_loglink_complete_evt(). However, the controller might mess up, call that function, and destroy an hci_chan which is not initiated by hci_loglink_complete_evt(). This patch adds a verification that the destroyed hci_chan must have been init'd by hci_loglink_complete_evt(). Example crash call trace: Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0xe3/0x144 lib/dump_stack.c:118 print_address_description+0x67/0x22a mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report mm/kasan/report.c:412 [inline] kasan_report+0x251/0x28f mm/kasan/report.c:396 hci_send_acl+0x3b/0x56e net/bluetooth/hci_core.c:4072 l2cap_send_cmd+0x5af/0x5c2 net/bluetooth/l2cap_core.c:877 l2cap_send_move_chan_cfm_icid+0x8e/0xb1 net/bluetooth/l2cap_core.c:4661 l2cap_move_fail net/bluetooth/l2cap_core.c:5146 [inline] l2cap_move_channel_rsp net/bluetooth/l2cap_core.c:5185 [inline] l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:5464 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:5799 [inline] l2cap_recv_frame+0x1d12/0x51aa net/bluetooth/l2cap_core.c:7023 l2cap_recv_acldata+0x2ea/0x693 net/bluetooth/l2cap_core.c:7596 hci_acldata_packet net/bluetooth/hci_core.c:4606 [inline] hci_rx_work+0x2bd/0x45e net/bluetooth/hci_core.c:4796 process_one_work+0x6f8/0xb50 kernel/workqueue.c:2175 worker_thread+0x4fc/0x670 kernel/workqueue.c:2321 kthread+0x2f0/0x304 kernel/kthread.c:253 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:415 Allocated by task 38: set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0x8d/0x9a mm/kasan/kasan.c:553 kmem_cache_alloc_trace+0x102/0x129 mm/slub.c:2787 kmalloc include/linux/slab.h:515 [inline] kzalloc include/linux/slab.h:709 [inline] hci_chan_create+0x86/0x26d net/bluetooth/hci_conn.c:1674 l2cap_conn_add.part.0+0x1c/0x814 net/bluetooth/l2cap_core.c:7062 l2cap_conn_add net/bluetooth/l2cap_core.c:7059 [inline] l2cap_connect_cfm+0x134/0x852 net/bluetooth/l2cap_core.c:7381 hci_connect_cfm+0x9d/0x122 include/net/bluetooth/hci_core.h:1404 hci_remote_ext_features_evt net/bluetooth/hci_event.c:4161 [inline] hci_event_packet+0x463f/0x72fa net/bluetooth/hci_event.c:5981 hci_rx_work+0x197/0x45e net/bluetooth/hci_core.c:4791 process_one_work+0x6f8/0xb50 kernel/workqueue.c:2175 worker_thread+0x4fc/0x670 kernel/workqueue.c:2321 kthread+0x2f0/0x304 kernel/kthread.c:253 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:415 Freed by task 1732: set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free mm/kasan/kasan.c:521 [inline] __kasan_slab_free+0x106/0x128 mm/kasan/kasan.c:493 slab_free_hook mm/slub.c:1409 [inline] slab_free_freelist_hook+0xaa/0xf6 mm/slub.c:1436 slab_free mm/slub.c:3009 [inline] kfree+0x182/0x21e mm/slub.c:3972 hci_disconn_loglink_complete_evt net/bluetooth/hci_event.c:4891 [inline] hci_event_packet+0x6a1c/0x72fa net/bluetooth/hci_event.c:6050 hci_rx_work+0x197/0x45e net/bluetooth/hci_core.c:4791 process_one_work+0x6f8/0xb50 kernel/workqueue.c:2175 worker_thread+0x4fc/0x670 kernel/workqueue.c:2321 kthread+0x2f0/0x304 kernel/kthread.c:253 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:415 The buggy address belongs to the object at ffff8881d7af9180 which belongs to the cache kmalloc-128 of size 128 The buggy address is located 24 bytes inside of 128-byte region [ffff8881d7af9180, ffff8881d7af9200) The buggy address belongs to the page: page:ffffea00075ebe40 count:1 mapcount:0 mapping:ffff8881da403200 index:0x0 flags: 0x8000000000000200(slab) raw: 8000000000000200 dead000000000100 dead000000000200 ffff8881da403200 raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881d7af9080: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ffff8881d7af9100: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8881d7af9180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881d7af9200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8881d7af9280: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc Signed-off-by: Archie Pusaka <apusaka@chromium.org> Reported-by: syzbot+98228e7407314d2d4ba2@syzkaller.appspotmail.com Reviewed-by: Alain Michaud <alainm@chromium.org> Reviewed-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: George Kennedy <george.kennedy@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Eric Dumazet
|
d38bce5adc |
sch_red: fix off-by-one checks in red_check_params()
[ Upstream commit 3a87571f0ffc51ba3bf3ecdb6032861d0154b164 ]
This fixes following syzbot report:
UBSAN: shift-out-of-bounds in ./include/net/red.h:237:23
shift exponent 32 is too large for 32-bit type 'unsigned int'
CPU: 1 PID: 8418 Comm: syz-executor170 Not tainted 5.12.0-rc4-next-20210324-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x141/0x1d7 lib/dump_stack.c:120
ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
__ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327
red_set_parms include/net/red.h:237 [inline]
choke_change.cold+0x3c/0xc8 net/sched/sch_choke.c:414
qdisc_create+0x475/0x12f0 net/sched/sch_api.c:1247
tc_modify_qdisc+0x4c8/0x1a50 net/sched/sch_api.c:1663
rtnetlink_rcv_msg+0x44e/0xad0 net/core/rtnetlink.c:5553
netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2502
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927
sock_sendmsg_nosec net/socket.c:654 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:674
____sys_sendmsg+0x6e8/0x810 net/socket.c:2350
___sys_sendmsg+0xf3/0x170 net/socket.c:2404
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2433
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x43f039
Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffdfa725168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 0000000000400488 RCX: 000000000043f039
RDX: 0000000000000000 RSI: 0000000020000040 RDI: 0000000000000004
RBP: 0000000000403020 R08: 0000000000400488 R09: 0000000000400488
R10: 0000000000400488 R11: 0000000000000246 R12: 00000000004030b0
R13: 0000000000000000 R14: 00000000004ac018 R15: 0000000000400488
Fixes:
|
||
Steffen Klassert
|
95d58bf5ed |
xfrm: Fix NULL pointer dereference on policy lookup
[ Upstream commit b1e3a5607034aa0a481c6f69a6893049406665fb ]
When xfrm interfaces are used in combination with namespaces
and ESP offload, we get a dst_entry NULL pointer dereference.
This is because we don't have a dst_entry attached in the ESP
offloading case and we need to do a policy lookup before the
namespace transition.
Fix this by expicit checking of skb_dst(skb) before accessing it.
Fixes:
|
||
Ahmed S. Darwish
|
0224432a8f |
net: xfrm: Localize sequence counter per network namespace
[ Upstream commit e88add19f68191448427a6e4eb059664650a837f ]
A sequence counter write section must be serialized or its internal
state can get corrupted. The "xfrm_state_hash_generation" seqcount is
global, but its write serialization lock (net->xfrm.xfrm_state_lock) is
instantiated per network namespace. The write protection is thus
insufficient.
To provide full protection, localize the sequence counter per network
namespace instead. This should be safe as both the seqcount read and
write sections access data exclusively within the network namespace. It
also lays the foundation for transforming "xfrm_state_hash_generation"
data type from seqcount_t to seqcount_LOCKNAME_t in further commits.
Fixes:
|
||
Evan Nimmo
|
c7a175a24b |
xfrm: Use actual socket sk instead of skb socket for xfrm_output_resume
[ Upstream commit 9ab1265d52314fce1b51e8665ea6dbc9ac1a027c ] A situation can occur where the interface bound to the sk is different to the interface bound to the sk attached to the skb. The interface bound to the sk is the correct one however this information is lost inside xfrm_output2 and instead the sk on the skb is used in xfrm_output_resume instead. This assumes that the sk bound interface and the bound interface attached to the sk within the skb are the same which can lead to lookup failures inside ip_route_me_harder resulting in the packet being dropped. We have an l2tp v3 tunnel with ipsec protection. The tunnel is in the global VRF however we have an encapsulated dot1q tunnel interface that is within a different VRF. We also have a mangle rule that marks the packets causing them to be processed inside ip_route_me_harder. Prior to commit |
||
Vlad Buslov
|
4a78ae1278 |
net: sched: fix err handler in tcf_action_init()
[ Upstream commit b3650bf76a32380d4d80a3e21b5583e7303f216c ] With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Paolo Abeni
|
b830650c1a |
net: let skb_orphan_partial wake-up waiters.
commit 9adc89af724f12a03b47099cd943ed54e877cd59 upstream.
Currently the mentioned helper can end-up freeing the socket wmem
without waking-up any processes waiting for more write memory.
If the partially orphaned skb is attached to an UDP (or raw) socket,
the lack of wake-up can hang the user-space.
Even for TCP sockets not calling the sk destructor could have bad
effects on TSQ.
Address the issue using skb_orphan to release the sk wmem before
setting the new sock_efree destructor. Additionally bundle the
whole ownership update in a new helper, so that later other
potential users could avoid duplicate code.
v1 -> v2:
- use skb_orphan() instead of sort of open coding it (Eric)
- provide an helper for the ownership change (Eric)
Fixes:
|
||
Vlad Buslov
|
81692c6add |
net: sched: fix action overwrite reference counting
commit 87c750e8c38bce706eb32e4d8f1e3402f2cebbd4 upstream.
Action init code increments reference counter when it changes an action.
This is the desired behavior for cls API which needs to obtain action
reference for every classifier that points to action. However, act API just
needs to change the action and releases the reference before returning.
This sequence breaks when the requested action doesn't exist, which causes
act API init code to create new action with specified index, but action is
still released before returning and is deleted (unless it was referenced
concurrently by cls API).
Reproduction:
$ sudo tc actions ls action gact
$ sudo tc actions change action gact drop index 1
$ sudo tc actions ls action gact
Extend tcf_action_init() to accept 'init_res' array and initialize it with
action->ops->init() result. In tcf_action_add() remove pointers to created
actions from actions array before passing it to tcf_action_put_many().
Fixes:
|
||
Martin Willi
|
8dc08a2962 |
can: dev: Move device back to init netns on owning netns delete
commit 3a5ca857079ea022e0b1b17fc154f7ad7dbc150f upstream.
When a non-initial netns is destroyed, the usual policy is to delete
all virtual network interfaces contained, but move physical interfaces
back to the initial netns. This keeps the physical interface visible
on the system.
CAN devices are somewhat special, as they define rtnl_link_ops even
if they are physical devices. If a CAN interface is moved into a
non-initial netns, destroying that netns lets the interface vanish
instead of moving it back to the initial netns. default_device_exit()
skips CAN interfaces due to having rtnl_link_ops set. Reproducer:
ip netns add foo
ip link set can0 netns foo
ip netns delete foo
WARNING: CPU: 1 PID: 84 at net/core/dev.c:11030 ops_exit_list+0x38/0x60
CPU: 1 PID: 84 Comm: kworker/u4:2 Not tainted 5.10.19 #1
Workqueue: netns cleanup_net
[<c010e700>] (unwind_backtrace) from [<c010a1d8>] (show_stack+0x10/0x14)
[<c010a1d8>] (show_stack) from [<c086dc10>] (dump_stack+0x94/0xa8)
[<c086dc10>] (dump_stack) from [<c086b938>] (__warn+0xb8/0x114)
[<c086b938>] (__warn) from [<c086ba10>] (warn_slowpath_fmt+0x7c/0xac)
[<c086ba10>] (warn_slowpath_fmt) from [<c0629f20>] (ops_exit_list+0x38/0x60)
[<c0629f20>] (ops_exit_list) from [<c062a5c4>] (cleanup_net+0x230/0x380)
[<c062a5c4>] (cleanup_net) from [<c0142c20>] (process_one_work+0x1d8/0x438)
[<c0142c20>] (process_one_work) from [<c0142ee4>] (worker_thread+0x64/0x5a8)
[<c0142ee4>] (worker_thread) from [<c0148a98>] (kthread+0x148/0x14c)
[<c0148a98>] (kthread) from [<c0100148>] (ret_from_fork+0x14/0x2c)
To properly restore physical CAN devices to the initial netns on owning
netns exit, introduce a flag on rtnl_link_ops that can be set by drivers.
For CAN devices setting this flag, default_device_exit() considers them
non-virtual, applying the usual namespace move.
The issue was introduced in the commit mentioned below, as at that time
CAN devices did not have a dellink() operation.
Fixes:
|
||
Daniel Borkmann
|
0a245acbce |
net: Consolidate common blackhole dst ops
[ Upstream commit c4c877b2732466b4c63217baad05c96f775912c7 ] Move generic blackhole dst ops to the core and use them from both ipv4_dst_blackhole_ops and ip6_dst_blackhole_ops where possible. No functional change otherwise. We need these also in other locations and having to define them over and over again is not great. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Pablo Neira Ayuso
|
186d8dc40a |
netfilter: nftables: allow to update flowtable flags
[ Upstream commit 7b35582cd04ace2fd1807c1b624934e465cc939d ]
Honor flowtable flags from the control update path. Disallow disabling
to toggle hardware offload support though.
Fixes:
|
||
Alexander Ovechkin
|
63f2a9bd31 |
tcp: relookup sock for RST+ACK packets handled by obsolete req sock
[ Upstream commit 7233da86697efef41288f8b713c10c2499cffe85 ] Currently tcp_check_req can be called with obsolete req socket for which big socket have been already created (because of CPU race or early demux assigning req socket to multiple packets in gro batch). Commit |
||
Eric Dumazet
|
f642700279 |
net: sched: validate stab values
[ Upstream commit e323d865b36134e8c5c82c834df89109a5c60dab ]
iproute2 package is well behaved, but malicious user space can
provide illegal shift values and trigger UBSAN reports.
Add stab parameter to red_check_params() to validate user input.
syzbot reported:
UBSAN: shift-out-of-bounds in ./include/net/red.h:312:18
shift exponent 111 is too large for 64-bit type 'long unsigned int'
CPU: 1 PID: 14662 Comm: syz-executor.3 Not tainted 5.12.0-rc2-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x141/0x1d7 lib/dump_stack.c:120
ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
__ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327
red_calc_qavg_from_idle_time include/net/red.h:312 [inline]
red_calc_qavg include/net/red.h:353 [inline]
choke_enqueue.cold+0x18/0x3dd net/sched/sch_choke.c:221
__dev_xmit_skb net/core/dev.c:3837 [inline]
__dev_queue_xmit+0x1943/0x2e00 net/core/dev.c:4150
neigh_hh_output include/net/neighbour.h:499 [inline]
neigh_output include/net/neighbour.h:508 [inline]
ip6_finish_output2+0x911/0x1700 net/ipv6/ip6_output.c:117
__ip6_finish_output net/ipv6/ip6_output.c:182 [inline]
__ip6_finish_output+0x4c1/0xe10 net/ipv6/ip6_output.c:161
ip6_finish_output+0x35/0x200 net/ipv6/ip6_output.c:192
NF_HOOK_COND include/linux/netfilter.h:290 [inline]
ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:215
dst_output include/net/dst.h:448 [inline]
NF_HOOK include/linux/netfilter.h:301 [inline]
NF_HOOK include/linux/netfilter.h:295 [inline]
ip6_xmit+0x127e/0x1eb0 net/ipv6/ip6_output.c:320
inet6_csk_xmit+0x358/0x630 net/ipv6/inet6_connection_sock.c:135
dccp_transmit_skb+0x973/0x12c0 net/dccp/output.c:138
dccp_send_reset+0x21b/0x2b0 net/dccp/output.c:535
dccp_finish_passive_close net/dccp/proto.c:123 [inline]
dccp_finish_passive_close+0xed/0x140 net/dccp/proto.c:118
dccp_terminate_connection net/dccp/proto.c:958 [inline]
dccp_close+0xb3c/0xe60 net/dccp/proto.c:1028
inet_release+0x12e/0x280 net/ipv4/af_inet.c:431
inet6_release+0x4c/0x70 net/ipv6/af_inet6.c:478
__sock_release+0xcd/0x280 net/socket.c:599
sock_close+0x18/0x20 net/socket.c:1258
__fput+0x288/0x920 fs/file_table.c:280
task_work_run+0xdd/0x1a0 kernel/task_work.c:140
tracehook_notify_resume include/linux/tracehook.h:189 [inline]
Fixes:
|
||
Wei Wang
|
7f041ee8ef |
ipv6: fix suspecious RCU usage warning
[ Upstream commit 28259bac7f1dde06d8ba324e222bbec9d4e92f2b ]
Syzbot reported the suspecious RCU usage in nexthop_fib6_nh() when
called from ipv6_route_seq_show(). The reason is ipv6_route_seq_start()
calls rcu_read_lock_bh(), while nexthop_fib6_nh() calls
rcu_dereference_rtnl().
The fix proposed is to add a variant of nexthop_fib6_nh() to use
rcu_dereference_bh_rtnl() for ipv6_route_seq_show().
The reported trace is as follows:
./include/net/nexthop.h:416 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by syz-executor.0/17895:
at: seq_read+0x71/0x12a0 fs/seq_file.c:169
at: seq_file_net include/linux/seq_file_net.h:19 [inline]
at: ipv6_route_seq_start+0xaf/0x300 net/ipv6/ip6_fib.c:2616
stack backtrace:
CPU: 1 PID: 17895 Comm: syz-executor.0 Not tainted 4.15.0-syzkaller #0
Call Trace:
[<ffffffff849edf9e>] __dump_stack lib/dump_stack.c:17 [inline]
[<ffffffff849edf9e>] dump_stack+0xd8/0x147 lib/dump_stack.c:53
[<ffffffff8480b7fa>] lockdep_rcu_suspicious+0x153/0x15d kernel/locking/lockdep.c:5745
[<ffffffff8459ada6>] nexthop_fib6_nh include/net/nexthop.h:416 [inline]
[<ffffffff8459ada6>] ipv6_route_native_seq_show net/ipv6/ip6_fib.c:2488 [inline]
[<ffffffff8459ada6>] ipv6_route_seq_show+0x436/0x7a0 net/ipv6/ip6_fib.c:2673
[<ffffffff81c556df>] seq_read+0xccf/0x12a0 fs/seq_file.c:276
[<ffffffff81dbc62c>] proc_reg_read+0x10c/0x1d0 fs/proc/inode.c:231
[<ffffffff81bc28ae>] do_loop_readv_writev fs/read_write.c:714 [inline]
[<ffffffff81bc28ae>] do_loop_readv_writev fs/read_write.c:701 [inline]
[<ffffffff81bc28ae>] do_iter_read+0x49e/0x660 fs/read_write.c:935
[<ffffffff81bc81ab>] vfs_readv+0xfb/0x170 fs/read_write.c:997
[<ffffffff81c88847>] kernel_readv fs/splice.c:361 [inline]
[<ffffffff81c88847>] default_file_splice_read+0x487/0x9c0 fs/splice.c:416
[<ffffffff81c86189>] do_splice_to+0x129/0x190 fs/splice.c:879
[<ffffffff81c86f66>] splice_direct_to_actor+0x256/0x890 fs/splice.c:951
[<ffffffff81c8777d>] do_splice_direct+0x1dd/0x2b0 fs/splice.c:1060
[<ffffffff81bc4747>] do_sendfile+0x597/0xce0 fs/read_write.c:1459
[<ffffffff81bca205>] SYSC_sendfile64 fs/read_write.c:1520 [inline]
[<ffffffff81bca205>] SyS_sendfile64+0x155/0x170 fs/read_write.c:1506
[<ffffffff81015fcf>] do_syscall_64+0x1ff/0x310 arch/x86/entry/common.c:305
[<ffffffff84a00076>] entry_SYSCALL_64_after_hwframe+0x42/0xb7
Fixes:
|
||
Hans de Goede
|
05a524b97d |
Bluetooth: Add new HCI_QUIRK_NO_SUSPEND_NOTIFIER quirk
[ Upstream commit 219991e6be7f4a31d471611e265b72f75b2d0538 ] Some devices, e.g. the RTL8723BS bluetooth part, some USB attached devices, completely drop from the bus on a system-suspend. These devices will have their driver unbound and rebound on resume (when the dropping of the bus gets detected) and will show up as a new HCI after resume. These devices do not benefit from the suspend / resume handling work done by the hci_suspend_notifier. At best this unnecessarily adds some time to the suspend/resume time. But this may also actually cause problems, if the code doing the driver unbinding runs after the pm-notifier then the hci_suspend_notifier code will try to talk to a device which is now in an uninitialized state. This commit adds a new HCI_QUIRK_NO_SUSPEND_NOTIFIER quirk which allows drivers to opt-out of the hci_suspend_notifier when they know beforehand that their device will be fully re-initialized / reprobed on resume. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Reviewed-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Cong Wang
|
a3b6f3a375 |
net_sched: fix RTNL deadlock again caused by request_module()
commit d349f997686887906b1183b5be96933c5452362a upstream.
tcf_action_init_1() loads tc action modules automatically with
request_module() after parsing the tc action names, and it drops RTNL
lock and re-holds it before and after request_module(). This causes a
lot of troubles, as discovered by syzbot, because we can be in the
middle of batch initializations when we create an array of tc actions.
One of the problem is deadlock:
CPU 0 CPU 1
rtnl_lock();
for (...) {
tcf_action_init_1();
-> rtnl_unlock();
-> request_module();
rtnl_lock();
for (...) {
tcf_action_init_1();
-> tcf_idr_check_alloc();
// Insert one action into idr,
// but it is not committed until
// tcf_idr_insert_many(), then drop
// the RTNL lock in the _next_
// iteration
-> rtnl_unlock();
-> rtnl_lock();
-> a_o->init();
-> tcf_idr_check_alloc();
// Now waiting for the same index
// to be committed
-> request_module();
-> rtnl_lock()
// Now waiting for RTNL lock
}
rtnl_unlock();
}
rtnl_unlock();
This is not easy to solve, we can move the request_module() before
this loop and pre-load all the modules we need for this netlink
message and then do the rest initializations. So the loop breaks down
to two now:
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
struct tc_action_ops *a_o;
a_o = tc_action_load_ops(name, tb[i]...);
ops[i - 1] = a_o;
}
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
act = tcf_action_init_1(ops[i - 1]...);
}
Although this looks serious, it only has been reported by syzbot, so it
seems hard to trigger this by humans. And given the size of this patch,
I'd suggest to make it to net-next and not to backport to stable.
This patch has been tested by syzbot and tested with tdc.py by me.
Fixes:
|
||
Vlad Buslov
|
bba8ef2e97 |
net: sched: fix police ext initialization
commit 396d7f23adf9e8c436dd81a69488b5b6a865acf8 upstream.
When police action is created by cls API tcf_exts_validate() first
conditional that calls tcf_action_init_1() directly, the action idr is not
updated according to latest changes in action API that require caller to
commit newly created action to idr with tcf_idr_insert_many(). This results
such action not being accessible through act API and causes crash reported
by syzbot:
==================================================================
BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:71 [inline]
BUG: KASAN: null-ptr-deref in atomic_read include/asm-generic/atomic-instrumented.h:27 [inline]
BUG: KASAN: null-ptr-deref in __tcf_idr_release net/sched/act_api.c:178 [inline]
BUG: KASAN: null-ptr-deref in tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598
Read of size 4 at addr 0000000000000010 by task kworker/u4:5/204
CPU: 0 PID: 204 Comm: kworker/u4:5 Not tainted 5.11.0-rc7-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
__kasan_report mm/kasan/report.c:400 [inline]
kasan_report.cold+0x5f/0xd5 mm/kasan/report.c:413
check_memory_region_inline mm/kasan/generic.c:179 [inline]
check_memory_region+0x13d/0x180 mm/kasan/generic.c:185
instrument_atomic_read include/linux/instrumented.h:71 [inline]
atomic_read include/asm-generic/atomic-instrumented.h:27 [inline]
__tcf_idr_release net/sched/act_api.c:178 [inline]
tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598
tc_action_net_exit include/net/act_api.h:151 [inline]
police_exit_net+0x168/0x360 net/sched/act_police.c:390
ops_exit_list+0x10d/0x160 net/core/net_namespace.c:190
cleanup_net+0x4ea/0xb10 net/core/net_namespace.c:604
process_one_work+0x98d/0x15f0 kernel/workqueue.c:2275
worker_thread+0x64c/0x1120 kernel/workqueue.c:2421
kthread+0x3b1/0x4a0 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296
==================================================================
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 204 Comm: kworker/u4:5 Tainted: G B 5.11.0-rc7-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
panic+0x306/0x73d kernel/panic.c:231
end_report+0x58/0x5e mm/kasan/report.c:100
__kasan_report mm/kasan/report.c:403 [inline]
kasan_report.cold+0x67/0xd5 mm/kasan/report.c:413
check_memory_region_inline mm/kasan/generic.c:179 [inline]
check_memory_region+0x13d/0x180 mm/kasan/generic.c:185
instrument_atomic_read include/linux/instrumented.h:71 [inline]
atomic_read include/asm-generic/atomic-instrumented.h:27 [inline]
__tcf_idr_release net/sched/act_api.c:178 [inline]
tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598
tc_action_net_exit include/net/act_api.h:151 [inline]
police_exit_net+0x168/0x360 net/sched/act_police.c:390
ops_exit_list+0x10d/0x160 net/core/net_namespace.c:190
cleanup_net+0x4ea/0xb10 net/core/net_namespace.c:604
process_one_work+0x98d/0x15f0 kernel/workqueue.c:2275
worker_thread+0x64c/0x1120 kernel/workqueue.c:2421
kthread+0x3b1/0x4a0 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296
Kernel Offset: disabled
Fix the issue by calling tcf_idr_insert_many() after successful action
initialization.
Fixes:
|
||
Jason A. Donenfeld
|
ce4feb0111 |
net: icmp: pass zeroed opts from icmp{,v6}_ndo_send before sending
commit ee576c47db60432c37e54b1e2b43a8ca6d3a8dca upstream.
The icmp{,v6}_send functions make all sorts of use of skb->cb, casting
it with IPCB or IP6CB, assuming the skb to have come directly from the
inet layer. But when the packet comes from the ndo layer, especially
when forwarded, there's no telling what might be in skb->cb at that
point. As a result, the icmp sending code risks reading bogus memory
contents, which can result in nasty stack overflows such as this one
reported by a user:
panic+0x108/0x2ea
__stack_chk_fail+0x14/0x20
__icmp_send+0x5bd/0x5c0
icmp_ndo_send+0x148/0x160
In icmp_send, skb->cb is cast with IPCB and an ip_options struct is read
from it. The optlen parameter there is of particular note, as it can
induce writes beyond bounds. There are quite a few ways that can happen
in __ip_options_echo. For example:
// sptr/skb are attacker-controlled skb bytes
sptr = skb_network_header(skb);
// dptr/dopt points to stack memory allocated by __icmp_send
dptr = dopt->__data;
// sopt is the corrupt skb->cb in question
if (sopt->rr) {
optlen = sptr[sopt->rr+1]; // corrupt skb->cb + skb->data
soffset = sptr[sopt->rr+2]; // corrupt skb->cb + skb->data
// this now writes potentially attacker-controlled data, over
// flowing the stack:
memcpy(dptr, sptr+sopt->rr, optlen);
}
In the icmpv6_send case, the story is similar, but not as dire, as only
IP6CB(skb)->iif and IP6CB(skb)->dsthao are used. The dsthao case is
worse than the iif case, but it is passed to ipv6_find_tlv, which does
a bit of bounds checking on the value.
This is easy to simulate by doing a `memset(skb->cb, 0x41,
sizeof(skb->cb));` before calling icmp{,v6}_ndo_send, and it's only by
good fortune and the rarity of icmp sending from that context that we've
avoided reports like this until now. For example, in KASAN:
BUG: KASAN: stack-out-of-bounds in __ip_options_echo+0xa0e/0x12b0
Write of size 38 at addr ffff888006f1f80e by task ping/89
CPU: 2 PID: 89 Comm: ping Not tainted 5.10.0-rc7-debug+ #5
Call Trace:
dump_stack+0x9a/0xcc
print_address_description.constprop.0+0x1a/0x160
__kasan_report.cold+0x20/0x38
kasan_report+0x32/0x40
check_memory_region+0x145/0x1a0
memcpy+0x39/0x60
__ip_options_echo+0xa0e/0x12b0
__icmp_send+0x744/0x1700
Actually, out of the 4 drivers that do this, only gtp zeroed the cb for
the v4 case, while the rest did not. So this commit actually removes the
gtp-specific zeroing, while putting the code where it belongs in the
shared infrastructure of icmp{,v6}_ndo_send.
This commit fixes the issue by passing an empty IPCB or IP6CB along to
the functions that actually do the work. For the icmp_send, this was
already trivial, thanks to __icmp_send providing the plumbing function.
For icmpv6_send, this required a tiny bit of refactoring to make it
behave like the v4 case, after which it was straight forward.
Fixes:
|
||
Eric Dumazet
|
8e81baeb83 |
tcp: fix SO_RCVLOWAT related hangs under mem pressure
[ Upstream commit f969dc5a885736842c3511ecdea240fbb02d25d9 ] While commit |
||
Horatiu Vultur
|
ba3bcb35d7 |
switchdev: mrp: Remove SWITCHDEV_ATTR_ID_MRP_PORT_STAT
commit 059d2a1004981dce19f0127dabc1b4ec927d202a upstream.
Now that MRP started to use also SWITCHDEV_ATTR_ID_PORT_STP_STATE to
notify HW, then SWITCHDEV_ATTR_ID_MRP_PORT_STAT is not used anywhere
else, therefore we can remove it.
Fixes:
|
||
Alexander Ovechkin
|
0414bde779 |
net: sched: replaced invalid qdisc tree flush helper in qdisc_replace
commit 938e0fcd3253efdef8924714158911286d08cfe1 upstream. Commit |
||
Dongseok Yi
|
3d6df63a5c |
udp: ipv4: manipulate network header of NATed UDP GRO fraglist
commit c3df39ac9b0e3747bf8233ea9ce4ed5ceb3199d3 upstream.
UDP/IP header of UDP GROed frag_skbs are not updated even after NAT
forwarding. Only the header of head_skb from ip_finish_output_gso ->
skb_gso_segment is updated but following frag_skbs are not updated.
A call path skb_mac_gso_segment -> inet_gso_segment ->
udp4_ufo_fragment -> __udp_gso_segment -> __udp_gso_segment_list
does not try to update UDP/IP header of the segment list but copy
only the MAC header.
Update port, addr and check of each skb of the segment list in
__udp_gso_segment_list. It covers both SNAT and DNAT.
Fixes:
|
||
Pengcheng Yang
|
a9cd144eb7 |
tcp: fix TLP timer not set when CA_STATE changes from DISORDER to OPEN
commit 62d9f1a6945ba69c125e548e72a36d203b30596e upstream.
Upon receiving a cumulative ACK that changes the congestion state from
Disorder to Open, the TLP timer is not set. If the sender is app-limited,
it can only wait for the RTO timer to expire and retransmit.
The reason for this is that the TLP timer is set before the congestion
state changes in tcp_ack(), so we delay the time point of calling
tcp_set_xmit_timer() until after tcp_fastretrans_alert() returns and
remove the FLAG_SET_XMIT_TIMER from ack_flag when the RACK reorder timer
is set.
This commit has two additional benefits:
1) Make sure to reset RTO according to RFC6298 when receiving ACK, to
avoid spurious RTO caused by RTO timer early expires.
2) Reduce the xmit timer reschedule once per ACK when the RACK reorder
timer is set.
Fixes:
|
||
Enke Chen
|
011c3d9427 |
tcp: make TCP_USER_TIMEOUT accurate for zero window probes
commit 344db93ae3ee69fc137bd6ed89a8ff1bf5b0db08 upstream. The TCP_USER_TIMEOUT is checked by the 0-window probe timer. As the timer has backoff with a max interval of about two minutes, the actual timeout for TCP_USER_TIMEOUT can be off by up to two minutes. In this patch the TCP_USER_TIMEOUT is made more accurate by taking it into account when computing the timer value for the 0-window probes. This patch is similar to and builds on top of the one that made TCP_USER_TIMEOUT accurate for RTOs in commit |
||
Enke Chen
|
70746a4779 |
tcp: fix TCP_USER_TIMEOUT with zero window
commit 9d9b1ee0b2d1c9e02b2338c4a4b0a062d2d3edac upstream.
The TCP session does not terminate with TCP_USER_TIMEOUT when data
remain untransmitted due to zero window.
The number of unanswered zero-window probes (tcp_probes_out) is
reset to zero with incoming acks irrespective of the window size,
as described in tcp_probe_timer():
RFC 1122 4.2.2.17 requires the sender to stay open indefinitely
as long as the receiver continues to respond probes. We support
this by default and reset icsk_probes_out with incoming ACKs.
This counter, however, is the wrong one to be used in calculating the
duration that the window remains closed and data remain untransmitted.
Thanks to Jonathan Maxwell <jmaxwell37@gmail.com> for diagnosing the
actual issue.
In this patch a new timestamp is introduced for the socket in order to
track the elapsed time for the zero-window probes that have not been
answered with any non-zero window ack.
Fixes:
|
||
Yuchung Cheng
|
a6fc8314dc |
tcp: fix TCP socket rehash stats mis-accounting
commit 9c30ae8398b0813e237bde387d67a7f74ab2db2d upstream. The previous commit |
||
Magnus Karlsson
|
9ad0375ed2 |
xsk: Fix race in SKB mode transmit with shared cq
commit f09ced4053bc0a2094a12b60b646114c966ef4c6 upstream.
Fix a race when multiple sockets are simultaneously calling sendto()
when the completion ring is shared in the SKB case. This is the case
when you share the same netdev and queue id through the
XDP_SHARED_UMEM bind flag. The problem is that multiple processes can
be in xsk_generic_xmit() and call the backpressure mechanism in
xskq_prod_reserve(xs->pool->cq). As this is a shared resource in this
specific scenario, a race might occur since the rings are
single-producer single-consumer.
Fix this by moving the tx_completion_lock from the socket to the pool
as the pool is shared between the sockets that share the completion
ring. (The pool is not shared when this is not the case.) And then
protect the accesses to xskq_prod_reserve() with this lock. The
tx_completion_lock is renamed cq_lock to better reflect that it
protects accesses to the potentially shared completion ring.
Fixes:
|
||
Randy Dunlap
|
7a20969b87 |
net: sched: prevent invalid Scell_log shift count
[ Upstream commit bd1248f1ddbc48b0c30565fce897a3b6423313b8 ]
Check Scell_log shift size in red_check_params() and modify all callers
of red_check_params() to pass Scell_log.
This prevents a shift out-of-bounds as detected by UBSAN:
UBSAN: shift-out-of-bounds in ./include/net/red.h:252:22
shift exponent 72 is too large for 32-bit type 'int'
Fixes:
|
||
David S. Miller
|
d9838b1d39 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Alexei Starovoitov says: ==================== pull-request: bpf 2020-12-10 The following pull-request contains BPF updates for your *net* tree. We've added 21 non-merge commits during the last 12 day(s) which contain a total of 21 files changed, 163 insertions(+), 88 deletions(-). The main changes are: 1) Fix propagation of 32-bit signed bounds from 64-bit bounds, from Alexei. 2) Fix ring_buffer__poll() return value, from Andrii. 3) Fix race in lwt_bpf, from Cong. 4) Fix test_offload, from Toke. 5) Various xsk fixes. Please consider pulling these changes from: git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git Thanks a lot! Also thanks to reporters, reviewers and testers of commits in this pull-request: Cong Wang, Hulk Robot, Jakub Kicinski, Jean-Philippe Brucker, John Fastabend, Magnus Karlsson, Maxim Mikityanskiy, Yonghong Song ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David S. Miller
|
b7e4ba9a91 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
Pablo Neira Ayuso says: ==================== Netfilter fixes for net The following patchset contains Netfilter fixes for net: 1) Switch to RCU in x_tables to fix possible NULL pointer dereference, from Subash Abhinov Kasiviswanathan. 2) Fix netlink dump of dynset timeouts later than 23 days. 3) Add comment for the indirect serialization of the nft commit mutex with rtnl_mutex. 4) Remove bogus check for confirmed conntrack when matching on the conntrack ID, from Brett Mastbergen. ==================== Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Toke Høiland-Jørgensen
|
998f172962 |
xdp: Remove the xdp_attachment_flags_ok() callback
Since commit |