forked from luck/tmp_suning_uos_patched
fffe3ae0ee
16 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Wei Yang
|
2406b76fe8 |
mm/swap_slots.c: assign|reset cache slot by value directly
Currently we use a tmp pointer, pentry, to transfer and reset swap cache slot, which is a little redundant. Swap cache slot stores the entry value directly, assign and reset it by value would be straight forward. Also this patch merges the else and if, since this is the only case we refill and repeat swap cache. Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Link: http://lkml.kernel.org/r/20200311055352.50574-1-richard.weiyang@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
5d5e8f1954 |
mm, swap, get_swap_pages: use entry_size instead of cluster in parameter
As suggested by Matthew Wilcox, it is better to use "int entry_size" instead of "bool cluster" as parameter to specify whether to operate for huge or normal swap entries. Because this improve the flexibility to support other swap entry size. And Dave Hansen thinks that this improves code readability too. So in this patch, the "bool cluster" parameter of get_swap_pages() is replaced by "int entry_size". And nr_swap_entries() trick is used to reduce the binary size when !CONFIG_TRANSPARENT_HUGE_PAGE. text data bss dec hex filename base 24215 2028 340 26583 67d7 mm/swapfile.o head 24123 2004 340 26467 6763 mm/swapfile.o Link: http://lkml.kernel.org/r/20180720071845.17920-7-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Colin Ian King
|
31f21da181 |
mm/swap_slots.c: make swap_slots_cache_mutex and swap_slots_cache_enable_mutex static
The mutexes swap_slots_cache_mutex and swap_slots_cache_enable_mutex are local to the source and do not need to be in global scope, so make them static. Cleans up sparse warnings: symbol 'swap_slots_cache_mutex' was not declared. Should it be static? symbol 'swap_slots_cache_enable_mutex' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20180624182536.4937-1-colin.king@canonical.com Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
778e1cdd81 |
treewide: kvzalloc() -> kvcalloc()
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This patch replaces cases of: kvzalloc(a * b, gfp) with: kvcalloc(a * b, gfp) as well as handling cases of: kvzalloc(a * b * c, gfp) with: kvzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvcalloc(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(char) * COUNT + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvzalloc + kvcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvzalloc(C1 * C2 * C3, ...) | kvzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvzalloc(sizeof(THING) * C2, ...) | kvzalloc(sizeof(TYPE) * C2, ...) | kvzalloc(C1 * C2 * C3, ...) | kvzalloc(C1 * C2, ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - (E1) * E2 + E1, E2 , ...) | - kvzalloc + kvcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kvzalloc + kvcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
||
Tejun Heo
|
bb98f2c5ac |
mm, memcontrol: move swap charge handling into get_swap_page()
Patch series "mm, memcontrol: Implement memory.swap.events", v2. This patchset implements memory.swap.events which contains max and fail events so that userland can monitor and respond to swap running out. This patch (of 2): get_swap_page() is always followed by mem_cgroup_try_charge_swap(). This patch moves mem_cgroup_try_charge_swap() into get_swap_page() and makes get_swap_page() call the function even after swap allocation failure. This simplifies the callers and consolidates memcg related logic and will ease adding swap related memcg events. Link: http://lkml.kernel.org/r/20180416230934.GH1911913@devbig577.frc2.facebook.com Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
8e7a0c9100 |
mm/swap_slots.c: use conditional compilation
For mm/swap_slots.c, use the traditional Linux method of conditional compilation and linking instead of always compiling it by using #ifdef CONFIG_SWAP and #endif for the entire source file (excluding header files). Link: http://lkml.kernel.org/r/c2a47015-0b5a-d0d9-8bc7-9984c049df20@infradead.org Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tim Chen
|
a2e1673172 |
mm/swap_slots.c: fix race conditions in swap_slots cache init
Memory allocations can happen before the swap_slots cache initialization is completed during cpu bring up. If we are low on memory, we could call get_swap_page() and access swap_slots_cache before it is fully initialized. Add a check in get_swap_page() for initialized swap_slots_cache to prevent this condition. Similar check already exists in free_swap_slot. Also annotate the checks to indicate the likely condition. We also added a memory barrier to make sure that the locks initialization are done before the assignment of cache->slots and cache->slots_ret pointers. This ensures the assumption that it is safe to acquire the slots cache locks and use the slots cache when the corresponding cache->slots or cache->slots_ret pointers are non null. [akpm@linux-foundation.org: tidy up comment] [akpm@linux-foundation.org: fix spello in comment] Link: http://lkml.kernel.org/r/65a9d0f133f63e66bba37b53b2fd0464b7cae771.1500677066.git.tim.c.chen@linux.intel.com Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Acked-by: Ying Huang <ying.huang@intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Sebastian Andrzej Siewior
|
f07e0f849a |
mm/swap_slots.c: don't disable preemption while taking the per-CPU cache
get_cpu_var() disables preemption and returns the per-CPU version of the variable. Disabling preemption is useful to ensure atomic access to the variable within the critical section. In this case however, after the per-CPU version of the variable is obtained the ->free_lock is acquired. For that reason it seems the raw accessor could be used. It only seems that ->slots_ret should be retested (because with disabled preemption this variable can not be set to NULL otherwise). This popped up during PREEMPT-RT testing because it tries to take spinlocks in a preempt disabled section. In RT, spinlocks can sleep. Link: http://lkml.kernel.org/r/20170623114755.2ebxdysacvgxzott@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ying Huang <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
38d8b4e6bd |
mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
54f180d3c1 |
mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures, such as swap cache, swap slots cache, cluster info, etc. Because the size may be too large on some system, so that normal kzalloc() may fail. But using kzalloc() has some advantages, for example, less memory fragmentation, less TLB pressure, etc. So change the data structure allocation in swap code to use kvzalloc() which will try kzalloc() firstly, and fallback to vzalloc() if kzalloc() failed. In general, although kmalloc() will reduce the number of high-order pages in short term, vmalloc() will cause more pain for memory fragmentation in the long term. And the swap data structure allocation that is changed in this patch is expected to be long term allocation. From Dave Hansen: "for example, we have a two-page data structure. vmalloc() takes two effectively random order-0 pages, probably from two different 2M pages and pins them. That "kills" two 2M pages. kmalloc(), allocating two *contiguous* pages, will not cross a 2M boundary. That means it will only "kill" the possibility of a single 2M page. More 2M pages == less fragmentation. The allocation in this patch occurs during swap on time, which is usually done during system boot, so usually we have high opportunity to allocate the contiguous pages successfully. The allocation for swap_map[] in struct swap_info_struct is not changed, because that is usually quite large and vmalloc_to_page() is used for it. That makes it a little harder to change. Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Tim Chen <tim.c.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tim Chen
|
9b7a814327 |
mm/swap_slots.c: add warning if swap slots cache failed to initialize
Add a warning diagnostics to user if we failed to allocate swap slots cache and use it. [akpm@linux-foundation.org: use WARN_ONCE return value, fix grammar in message] Link: http://lkml.kernel.org/r/20170328234827.GA10107@linux.intel.com Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
093b995e3b |
mm, swap: Remove WARN_ON_ONCE() in free_swap_slot()
Before commit |
||
Linus Torvalds
|
452b94b8c8 |
mm/swap: don't BUG_ON() due to uninitialized swap slot cache
This BUG_ON() triggered for me once at shutdown, and I don't see a reason for the check. The code correctly checks whether the swap slot cache is usable or not, so an uninitialized swap slot cache is not actually problematic afaik. I've temporarily just switched the BUG_ON() to a WARN_ON_ONCE(), since I'm not sure why that seemingly pointless check was there. I suspect the real fix is to just remove it entirely, but for now we'll warn about it but not bring the machine down. Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
ba81f83842 |
mm/swap: skip readahead only when swap slot cache is enabled
Because during swap off, a swap entry may have swap_map[] == SWAP_HAS_CACHE (for example, just allocated). If we return NULL in __read_swap_cache_async(), the swap off will abort. So when swap slot cache is disabled, (for swap off), we will wait for page to be put into swap cache in such race condition. This should not be a problem for swap slot cache, because swap slot cache should be drained after clearing swap_slot_cache_enabled. [ying.huang@intel.com: fix memory leak in __read_swap_cache_async()] Link: http://lkml.kernel.org/r/874lzt6znd.fsf@yhuang-dev.intel.com Link: http://lkml.kernel.org/r/5e2c5f6abe8e6eb0797408897b1bba80938e9b9d.1484082593.git.tim.c.chen@linux.intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> escreveu: Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tim Chen
|
67afa38e01 |
mm/swap: add cache for swap slots allocation
We add per cpu caches for swap slots that can be allocated and freed quickly without the need to touch the swap info lock. Two separate caches are maintained for swap slots allocated and swap slots returned. This is to allow the swap slots to be returned to the global pool in a batch so they will have a chance to be coaelesced with other slots in a cluster. We do not reuse the slots that are returned right away, as it may increase fragmentation of the slots. The swap allocation cache is protected by a mutex as we may sleep when searching for empty slots in cache. The swap free cache is protected by a spin lock as we cannot sleep in the free path. We refill the swap slots cache when we run out of slots, and we disable the swap slots cache and drain the slots if the global number of slots fall below a low watermark threshold. We re-enable the cache agian when the slots available are above a high watermark. [ying.huang@intel.com: use raw_cpu_ptr over this_cpu_ptr for swap slots access] [tim.c.chen@linux.intel.com: add comments on locks in swap_slots.h] Link: http://lkml.kernel.org/r/20170118180327.GA24225@linux.intel.com Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> escreveu: Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |