/* * kernel/cpuset.c * * Processor and Memory placement constraints for sets of tasks. * * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2007 Silicon Graphics, Inc. * Copyright (C) 2006 Google, Inc * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * 2006 Rework by Paul Menage to use generic cgroups * 2008 Rework of the scheduler domains and CPU hotplug handling * by Max Krasnyansky * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); /* See "Frequency meter" comments, below. */ struct fmeter { int cnt; /* unprocessed events count */ int val; /* most recent output value */ time64_t time; /* clock (secs) when val computed */ spinlock_t lock; /* guards read or write of above */ }; struct cpuset { struct cgroup_subsys_state css; unsigned long flags; /* "unsigned long" so bitops work */ /* * On default hierarchy: * * The user-configured masks can only be changed by writing to * cpuset.cpus and cpuset.mems, and won't be limited by the * parent masks. * * The effective masks is the real masks that apply to the tasks * in the cpuset. They may be changed if the configured masks are * changed or hotplug happens. * * effective_mask == configured_mask & parent's effective_mask, * and if it ends up empty, it will inherit the parent's mask. * * * On legacy hierachy: * * The user-configured masks are always the same with effective masks. */ /* user-configured CPUs and Memory Nodes allow to tasks */ cpumask_var_t cpus_allowed; nodemask_t mems_allowed; /* effective CPUs and Memory Nodes allow to tasks */ cpumask_var_t effective_cpus; nodemask_t effective_mems; /* * CPUs allocated to child sub-partitions (default hierarchy only) * - CPUs granted by the parent = effective_cpus U subparts_cpus * - effective_cpus and subparts_cpus are mutually exclusive. * * effective_cpus contains only onlined CPUs, but subparts_cpus * may have offlined ones. */ cpumask_var_t subparts_cpus; /* * This is old Memory Nodes tasks took on. * * - top_cpuset.old_mems_allowed is initialized to mems_allowed. * - A new cpuset's old_mems_allowed is initialized when some * task is moved into it. * - old_mems_allowed is used in cpuset_migrate_mm() when we change * cpuset.mems_allowed and have tasks' nodemask updated, and * then old_mems_allowed is updated to mems_allowed. */ nodemask_t old_mems_allowed; struct fmeter fmeter; /* memory_pressure filter */ /* * Tasks are being attached to this cpuset. Used to prevent * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). */ int attach_in_progress; /* partition number for rebuild_sched_domains() */ int pn; /* for custom sched domain */ int relax_domain_level; /* number of CPUs in subparts_cpus */ int nr_subparts_cpus; /* partition root state */ int partition_root_state; /* * Default hierarchy only: * use_parent_ecpus - set if using parent's effective_cpus * child_ecpus_count - # of children with use_parent_ecpus set */ int use_parent_ecpus; int child_ecpus_count; }; /* * Partition root states: * * 0 - not a partition root * * 1 - partition root * * -1 - invalid partition root * None of the cpus in cpus_allowed can be put into the parent's * subparts_cpus. In this case, the cpuset is not a real partition * root anymore. However, the CPU_EXCLUSIVE bit will still be set * and the cpuset can be restored back to a partition root if the * parent cpuset can give more CPUs back to this child cpuset. */ #define PRS_DISABLED 0 #define PRS_ENABLED 1 #define PRS_ERROR -1 /* * Temporary cpumasks for working with partitions that are passed among * functions to avoid memory allocation in inner functions. */ struct tmpmasks { cpumask_var_t addmask, delmask; /* For partition root */ cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ }; static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cpuset, css) : NULL; } /* Retrieve the cpuset for a task */ static inline struct cpuset *task_cs(struct task_struct *task) { return css_cs(task_css(task, cpuset_cgrp_id)); } static inline struct cpuset *parent_cs(struct cpuset *cs) { return css_cs(cs->css.parent); } /* bits in struct cpuset flags field */ typedef enum { CS_ONLINE, CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, CS_MEM_HARDWALL, CS_MEMORY_MIGRATE, CS_SCHED_LOAD_BALANCE, CS_SPREAD_PAGE, CS_SPREAD_SLAB, } cpuset_flagbits_t; /* convenient tests for these bits */ static inline bool is_cpuset_online(struct cpuset *cs) { return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); } static inline int is_cpu_exclusive(const struct cpuset *cs) { return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); } static inline int is_mem_exclusive(const struct cpuset *cs) { return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); } static inline int is_mem_hardwall(const struct cpuset *cs) { return test_bit(CS_MEM_HARDWALL, &cs->flags); } static inline int is_sched_load_balance(const struct cpuset *cs) { return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); } static inline int is_memory_migrate(const struct cpuset *cs) { return test_bit(CS_MEMORY_MIGRATE, &cs->flags); } static inline int is_spread_page(const struct cpuset *cs) { return test_bit(CS_SPREAD_PAGE, &cs->flags); } static inline int is_spread_slab(const struct cpuset *cs) { return test_bit(CS_SPREAD_SLAB, &cs->flags); } static inline int is_partition_root(const struct cpuset *cs) { return cs->partition_root_state > 0; } static struct cpuset top_cpuset = { .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), .partition_root_state = PRS_ENABLED, }; /** * cpuset_for_each_child - traverse online children of a cpuset * @child_cs: loop cursor pointing to the current child * @pos_css: used for iteration * @parent_cs: target cpuset to walk children of * * Walk @child_cs through the online children of @parent_cs. Must be used * with RCU read locked. */ #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ css_for_each_child((pos_css), &(parent_cs)->css) \ if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) /** * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants * @des_cs: loop cursor pointing to the current descendant * @pos_css: used for iteration * @root_cs: target cpuset to walk ancestor of * * Walk @des_cs through the online descendants of @root_cs. Must be used * with RCU read locked. The caller may modify @pos_css by calling * css_rightmost_descendant() to skip subtree. @root_cs is included in the * iteration and the first node to be visited. */ #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) /* * There are two global locks guarding cpuset structures - cpuset_mutex and * callback_lock. We also require taking task_lock() when dereferencing a * task's cpuset pointer. See "The task_lock() exception", at the end of this * comment. * * A task must hold both locks to modify cpusets. If a task holds * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it * is the only task able to also acquire callback_lock and be able to * modify cpusets. It can perform various checks on the cpuset structure * first, knowing nothing will change. It can also allocate memory while * just holding cpuset_mutex. While it is performing these checks, various * callback routines can briefly acquire callback_lock to query cpusets. * Once it is ready to make the changes, it takes callback_lock, blocking * everyone else. * * Calls to the kernel memory allocator can not be made while holding * callback_lock, as that would risk double tripping on callback_lock * from one of the callbacks into the cpuset code from within * __alloc_pages(). * * If a task is only holding callback_lock, then it has read-only * access to cpusets. * * Now, the task_struct fields mems_allowed and mempolicy may be changed * by other task, we use alloc_lock in the task_struct fields to protect * them. * * The cpuset_common_file_read() handlers only hold callback_lock across * small pieces of code, such as when reading out possibly multi-word * cpumasks and nodemasks. * * Accessing a task's cpuset should be done in accordance with the * guidelines for accessing subsystem state in kernel/cgroup.c */ static DEFINE_MUTEX(cpuset_mutex); static DEFINE_SPINLOCK(callback_lock); static struct workqueue_struct *cpuset_migrate_mm_wq; /* * CPU / memory hotplug is handled asynchronously. */ static void cpuset_hotplug_workfn(struct work_struct *work); static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); /* * Cgroup v2 behavior is used when on default hierarchy or the * cgroup_v2_mode flag is set. */ static inline bool is_in_v2_mode(void) { return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); } /* * This is ugly, but preserves the userspace API for existing cpuset * users. If someone tries to mount the "cpuset" filesystem, we * silently switch it to mount "cgroup" instead */ static int cpuset_get_tree(struct fs_context *fc) { struct file_system_type *cgroup_fs; struct fs_context *new_fc; int ret; cgroup_fs = get_fs_type("cgroup"); if (!cgroup_fs) return -ENODEV; new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags); if (IS_ERR(new_fc)) { ret = PTR_ERR(new_fc); } else { static const char agent_path[] = "/sbin/cpuset_release_agent"; ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0); if (!ret) ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0); if (!ret) ret = vfs_parse_fs_string(new_fc, "release_agent", agent_path, sizeof(agent_path) - 1); if (!ret) ret = vfs_get_tree(new_fc); if (!ret) { /* steal the result */ fc->root = new_fc->root; new_fc->root = NULL; } put_fs_context(new_fc); } put_filesystem(cgroup_fs); return ret; } static const struct fs_context_operations cpuset_fs_context_ops = { .get_tree = cpuset_get_tree, }; static int cpuset_init_fs_context(struct fs_context *fc) { fc->ops = &cpuset_fs_context_ops; return 0; } static struct file_system_type cpuset_fs_type = { .name = "cpuset", .init_fs_context = cpuset_init_fs_context, }; /* * Return in pmask the portion of a cpusets's cpus_allowed that * are online. If none are online, walk up the cpuset hierarchy * until we find one that does have some online cpus. * * One way or another, we guarantee to return some non-empty subset * of cpu_online_mask. * * Call with callback_lock or cpuset_mutex held. */ static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) { while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { cs = parent_cs(cs); if (unlikely(!cs)) { /* * The top cpuset doesn't have any online cpu as a * consequence of a race between cpuset_hotplug_work * and cpu hotplug notifier. But we know the top * cpuset's effective_cpus is on its way to to be * identical to cpu_online_mask. */ cpumask_copy(pmask, cpu_online_mask); return; } } cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); } /* * Return in *pmask the portion of a cpusets's mems_allowed that * are online, with memory. If none are online with memory, walk * up the cpuset hierarchy until we find one that does have some * online mems. The top cpuset always has some mems online. * * One way or another, we guarantee to return some non-empty subset * of node_states[N_MEMORY]. * * Call with callback_lock or cpuset_mutex held. */ static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) { while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) cs = parent_cs(cs); nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); } /* * update task's spread flag if cpuset's page/slab spread flag is set * * Call with callback_lock or cpuset_mutex held. */ static void cpuset_update_task_spread_flag(struct cpuset *cs, struct task_struct *tsk) { if (is_spread_page(cs)) task_set_spread_page(tsk); else task_clear_spread_page(tsk); if (is_spread_slab(cs)) task_set_spread_slab(tsk); else task_clear_spread_slab(tsk); } /* * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? * * One cpuset is a subset of another if all its allowed CPUs and * Memory Nodes are a subset of the other, and its exclusive flags * are only set if the other's are set. Call holding cpuset_mutex. */ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) { return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && nodes_subset(p->mems_allowed, q->mems_allowed) && is_cpu_exclusive(p) <= is_cpu_exclusive(q) && is_mem_exclusive(p) <= is_mem_exclusive(q); } /** * alloc_cpumasks - allocate three cpumasks for cpuset * @cs: the cpuset that have cpumasks to be allocated. * @tmp: the tmpmasks structure pointer * Return: 0 if successful, -ENOMEM otherwise. * * Only one of the two input arguments should be non-NULL. */ static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) { cpumask_var_t *pmask1, *pmask2, *pmask3; if (cs) { pmask1 = &cs->cpus_allowed; pmask2 = &cs->effective_cpus; pmask3 = &cs->subparts_cpus; } else { pmask1 = &tmp->new_cpus; pmask2 = &tmp->addmask; pmask3 = &tmp->delmask; } if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) goto free_one; if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) goto free_two; return 0; free_two: free_cpumask_var(*pmask2); free_one: free_cpumask_var(*pmask1); return -ENOMEM; } /** * free_cpumasks - free cpumasks in a tmpmasks structure * @cs: the cpuset that have cpumasks to be free. * @tmp: the tmpmasks structure pointer */ static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) { if (cs) { free_cpumask_var(cs->cpus_allowed); free_cpumask_var(cs->effective_cpus); free_cpumask_var(cs->subparts_cpus); } if (tmp) { free_cpumask_var(tmp->new_cpus); free_cpumask_var(tmp->addmask); free_cpumask_var(tmp->delmask); } } /** * alloc_trial_cpuset - allocate a trial cpuset * @cs: the cpuset that the trial cpuset duplicates */ static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) { struct cpuset *trial; trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); if (!trial) return NULL; if (alloc_cpumasks(trial, NULL)) { kfree(trial); return NULL; } cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); cpumask_copy(trial->effective_cpus, cs->effective_cpus); return trial; } /** * free_cpuset - free the cpuset * @cs: the cpuset to be freed */ static inline void free_cpuset(struct cpuset *cs) { free_cpumasks(cs, NULL); kfree(cs); } /* * validate_change() - Used to validate that any proposed cpuset change * follows the structural rules for cpusets. * * If we replaced the flag and mask values of the current cpuset * (cur) with those values in the trial cpuset (trial), would * our various subset and exclusive rules still be valid? Presumes * cpuset_mutex held. * * 'cur' is the address of an actual, in-use cpuset. Operations * such as list traversal that depend on the actual address of the * cpuset in the list must use cur below, not trial. * * 'trial' is the address of bulk structure copy of cur, with * perhaps one or more of the fields cpus_allowed, mems_allowed, * or flags changed to new, trial values. * * Return 0 if valid, -errno if not. */ static int validate_change(struct cpuset *cur, struct cpuset *trial) { struct cgroup_subsys_state *css; struct cpuset *c, *par; int ret; rcu_read_lock(); /* Each of our child cpusets must be a subset of us */ ret = -EBUSY; cpuset_for_each_child(c, css, cur) if (!is_cpuset_subset(c, trial)) goto out; /* Remaining checks don't apply to root cpuset */ ret = 0; if (cur == &top_cpuset) goto out; par = parent_cs(cur); /* On legacy hiearchy, we must be a subset of our parent cpuset. */ ret = -EACCES; if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) goto out; /* * If either I or some sibling (!= me) is exclusive, we can't * overlap */ ret = -EINVAL; cpuset_for_each_child(c, css, par) { if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && c != cur && cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) goto out; if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && c != cur && nodes_intersects(trial->mems_allowed, c->mems_allowed)) goto out; } /* * Cpusets with tasks - existing or newly being attached - can't * be changed to have empty cpus_allowed or mems_allowed. */ ret = -ENOSPC; if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { if (!cpumask_empty(cur->cpus_allowed) && cpumask_empty(trial->cpus_allowed)) goto out; if (!nodes_empty(cur->mems_allowed) && nodes_empty(trial->mems_allowed)) goto out; } /* * We can't shrink if we won't have enough room for SCHED_DEADLINE * tasks. */ ret = -EBUSY; if (is_cpu_exclusive(cur) && !cpuset_cpumask_can_shrink(cur->cpus_allowed, trial->cpus_allowed)) goto out; ret = 0; out: rcu_read_unlock(); return ret; } #ifdef CONFIG_SMP /* * Helper routine for generate_sched_domains(). * Do cpusets a, b have overlapping effective cpus_allowed masks? */ static int cpusets_overlap(struct cpuset *a, struct cpuset *b) { return cpumask_intersects(a->effective_cpus, b->effective_cpus); } static void update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) { if (dattr->relax_domain_level < c->relax_domain_level) dattr->relax_domain_level = c->relax_domain_level; return; } static void update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *root_cs) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { /* skip the whole subtree if @cp doesn't have any CPU */ if (cpumask_empty(cp->cpus_allowed)) { pos_css = css_rightmost_descendant(pos_css); continue; } if (is_sched_load_balance(cp)) update_domain_attr(dattr, cp); } rcu_read_unlock(); } /* Must be called with cpuset_mutex held. */ static inline int nr_cpusets(void) { /* jump label reference count + the top-level cpuset */ return static_key_count(&cpusets_enabled_key.key) + 1; } /* * generate_sched_domains() * * This function builds a partial partition of the systems CPUs * A 'partial partition' is a set of non-overlapping subsets whose * union is a subset of that set. * The output of this function needs to be passed to kernel/sched/core.c * partition_sched_domains() routine, which will rebuild the scheduler's * load balancing domains (sched domains) as specified by that partial * partition. * * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt * for a background explanation of this. * * Does not return errors, on the theory that the callers of this * routine would rather not worry about failures to rebuild sched * domains when operating in the severe memory shortage situations * that could cause allocation failures below. * * Must be called with cpuset_mutex held. * * The three key local variables below are: * cp - cpuset pointer, used (together with pos_css) to perform a * top-down scan of all cpusets. For our purposes, rebuilding * the schedulers sched domains, we can ignore !is_sched_load_ * balance cpusets. * csa - (for CpuSet Array) Array of pointers to all the cpusets * that need to be load balanced, for convenient iterative * access by the subsequent code that finds the best partition, * i.e the set of domains (subsets) of CPUs such that the * cpus_allowed of every cpuset marked is_sched_load_balance * is a subset of one of these domains, while there are as * many such domains as possible, each as small as possible. * doms - Conversion of 'csa' to an array of cpumasks, for passing to * the kernel/sched/core.c routine partition_sched_domains() in a * convenient format, that can be easily compared to the prior * value to determine what partition elements (sched domains) * were changed (added or removed.) * * Finding the best partition (set of domains): * The triple nested loops below over i, j, k scan over the * load balanced cpusets (using the array of cpuset pointers in * csa[]) looking for pairs of cpusets that have overlapping * cpus_allowed, but which don't have the same 'pn' partition * number and gives them in the same partition number. It keeps * looping on the 'restart' label until it can no longer find * any such pairs. * * The union of the cpus_allowed masks from the set of * all cpusets having the same 'pn' value then form the one * element of the partition (one sched domain) to be passed to * partition_sched_domains(). */ static int generate_sched_domains(cpumask_var_t **domains, struct sched_domain_attr **attributes) { struct cpuset *cp; /* top-down scan of cpusets */ struct cpuset **csa; /* array of all cpuset ptrs */ int csn; /* how many cpuset ptrs in csa so far */ int i, j, k; /* indices for partition finding loops */ cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ struct sched_domain_attr *dattr; /* attributes for custom domains */ int ndoms = 0; /* number of sched domains in result */ int nslot; /* next empty doms[] struct cpumask slot */ struct cgroup_subsys_state *pos_css; bool root_load_balance = is_sched_load_balance(&top_cpuset); doms = NULL; dattr = NULL; csa = NULL; /* Special case for the 99% of systems with one, full, sched domain */ if (root_load_balance && !top_cpuset.nr_subparts_cpus) { ndoms = 1; doms = alloc_sched_domains(ndoms); if (!doms) goto done; dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); if (dattr) { *dattr = SD_ATTR_INIT; update_domain_attr_tree(dattr, &top_cpuset); } cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN)); goto done; } csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); if (!csa) goto done; csn = 0; rcu_read_lock(); if (root_load_balance) csa[csn++] = &top_cpuset; cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { if (cp == &top_cpuset) continue; /* * Continue traversing beyond @cp iff @cp has some CPUs and * isn't load balancing. The former is obvious. The * latter: All child cpusets contain a subset of the * parent's cpus, so just skip them, and then we call * update_domain_attr_tree() to calc relax_domain_level of * the corresponding sched domain. * * If root is load-balancing, we can skip @cp if it * is a subset of the root's effective_cpus. */ if (!cpumask_empty(cp->cpus_allowed) && !(is_sched_load_balance(cp) && cpumask_intersects(cp->cpus_allowed, housekeeping_cpumask(HK_FLAG_DOMAIN)))) continue; if (root_load_balance && cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) continue; if (is_sched_load_balance(cp)) csa[csn++] = cp; /* skip @cp's subtree if not a partition root */ if (!is_partition_root(cp)) pos_css = css_rightmost_descendant(pos_css); } rcu_read_unlock(); for (i = 0; i < csn; i++) csa[i]->pn = i; ndoms = csn; restart: /* Find the best partition (set of sched domains) */ for (i = 0; i < csn; i++) { struct cpuset *a = csa[i]; int apn = a->pn; for (j = 0; j < csn; j++) { struct cpuset *b = csa[j]; int bpn = b->pn; if (apn != bpn && cpusets_overlap(a, b)) { for (k = 0; k < csn; k++) { struct cpuset *c = csa[k]; if (c->pn == bpn) c->pn = apn; } ndoms--; /* one less element */ goto restart; } } } /* * Now we know how many domains to create. * Convert to and populate cpu masks. */ doms = alloc_sched_domains(ndoms); if (!doms) goto done; /* * The rest of the code, including the scheduler, can deal with * dattr==NULL case. No need to abort if alloc fails. */ dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), GFP_KERNEL); for (nslot = 0, i = 0; i < csn; i++) { struct cpuset *a = csa[i]; struct cpumask *dp; int apn = a->pn; if (apn < 0) { /* Skip completed partitions */ continue; } dp = doms[nslot]; if (nslot == ndoms) { static int warnings = 10; if (warnings) { pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", nslot, ndoms, csn, i, apn); warnings--; } continue; } cpumask_clear(dp); if (dattr) *(dattr + nslot) = SD_ATTR_INIT; for (j = i; j < csn; j++) { struct cpuset *b = csa[j]; if (apn == b->pn) { cpumask_or(dp, dp, b->effective_cpus); cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); if (dattr) update_domain_attr_tree(dattr + nslot, b); /* Done with this partition */ b->pn = -1; } } nslot++; } BUG_ON(nslot != ndoms); done: kfree(csa); /* * Fallback to the default domain if kmalloc() failed. * See comments in partition_sched_domains(). */ if (doms == NULL) ndoms = 1; *domains = doms; *attributes = dattr; return ndoms; } /* * Rebuild scheduler domains. * * If the flag 'sched_load_balance' of any cpuset with non-empty * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset * which has that flag enabled, or if any cpuset with a non-empty * 'cpus' is removed, then call this routine to rebuild the * scheduler's dynamic sched domains. * * Call with cpuset_mutex held. Takes get_online_cpus(). */ static void rebuild_sched_domains_locked(void) { struct sched_domain_attr *attr; cpumask_var_t *doms; int ndoms; lockdep_assert_held(&cpuset_mutex); get_online_cpus(); /* * We have raced with CPU hotplug. Don't do anything to avoid * passing doms with offlined cpu to partition_sched_domains(). * Anyways, hotplug work item will rebuild sched domains. */ if (!top_cpuset.nr_subparts_cpus && !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) goto out; if (top_cpuset.nr_subparts_cpus && !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) goto out; /* Generate domain masks and attrs */ ndoms = generate_sched_domains(&doms, &attr); /* Have scheduler rebuild the domains */ partition_sched_domains(ndoms, doms, attr); out: put_online_cpus(); } #else /* !CONFIG_SMP */ static void rebuild_sched_domains_locked(void) { } #endif /* CONFIG_SMP */ void rebuild_sched_domains(void) { mutex_lock(&cpuset_mutex); rebuild_sched_domains_locked(); mutex_unlock(&cpuset_mutex); } /** * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed * * Iterate through each task of @cs updating its cpus_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. */ static void update_tasks_cpumask(struct cpuset *cs) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) set_cpus_allowed_ptr(task, cs->effective_cpus); css_task_iter_end(&it); } /** * compute_effective_cpumask - Compute the effective cpumask of the cpuset * @new_cpus: the temp variable for the new effective_cpus mask * @cs: the cpuset the need to recompute the new effective_cpus mask * @parent: the parent cpuset * * If the parent has subpartition CPUs, include them in the list of * allowable CPUs in computing the new effective_cpus mask. Since offlined * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask * to mask those out. */ static void compute_effective_cpumask(struct cpumask *new_cpus, struct cpuset *cs, struct cpuset *parent) { if (parent->nr_subparts_cpus) { cpumask_or(new_cpus, parent->effective_cpus, parent->subparts_cpus); cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); cpumask_and(new_cpus, new_cpus, cpu_active_mask); } else { cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); } } /* * Commands for update_parent_subparts_cpumask */ enum subparts_cmd { partcmd_enable, /* Enable partition root */ partcmd_disable, /* Disable partition root */ partcmd_update, /* Update parent's subparts_cpus */ }; /** * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset * @cpuset: The cpuset that requests change in partition root state * @cmd: Partition root state change command * @newmask: Optional new cpumask for partcmd_update * @tmp: Temporary addmask and delmask * Return: 0, 1 or an error code * * For partcmd_enable, the cpuset is being transformed from a non-partition * root to a partition root. The cpus_allowed mask of the given cpuset will * be put into parent's subparts_cpus and taken away from parent's * effective_cpus. The function will return 0 if all the CPUs listed in * cpus_allowed can be granted or an error code will be returned. * * For partcmd_disable, the cpuset is being transofrmed from a partition * root back to a non-partition root. any CPUs in cpus_allowed that are in * parent's subparts_cpus will be taken away from that cpumask and put back * into parent's effective_cpus. 0 should always be returned. * * For partcmd_update, if the optional newmask is specified, the cpu * list is to be changed from cpus_allowed to newmask. Otherwise, * cpus_allowed is assumed to remain the same. The cpuset should either * be a partition root or an invalid partition root. The partition root * state may change if newmask is NULL and none of the requested CPUs can * be granted by the parent. The function will return 1 if changes to * parent's subparts_cpus and effective_cpus happen or 0 otherwise. * Error code should only be returned when newmask is non-NULL. * * The partcmd_enable and partcmd_disable commands are used by * update_prstate(). The partcmd_update command is used by * update_cpumasks_hier() with newmask NULL and update_cpumask() with * newmask set. * * The checking is more strict when enabling partition root than the * other two commands. * * Because of the implicit cpu exclusive nature of a partition root, * cpumask changes that violates the cpu exclusivity rule will not be * permitted when checked by validate_change(). The validate_change() * function will also prevent any changes to the cpu list if it is not * a superset of children's cpu lists. */ static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, struct cpumask *newmask, struct tmpmasks *tmp) { struct cpuset *parent = parent_cs(cpuset); int adding; /* Moving cpus from effective_cpus to subparts_cpus */ int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ bool part_error = false; /* Partition error? */ lockdep_assert_held(&cpuset_mutex); /* * The parent must be a partition root. * The new cpumask, if present, or the current cpus_allowed must * not be empty. */ if (!is_partition_root(parent) || (newmask && cpumask_empty(newmask)) || (!newmask && cpumask_empty(cpuset->cpus_allowed))) return -EINVAL; /* * Enabling/disabling partition root is not allowed if there are * online children. */ if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) return -EBUSY; /* * Enabling partition root is not allowed if not all the CPUs * can be granted from parent's effective_cpus or at least one * CPU will be left after that. */ if ((cmd == partcmd_enable) && (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) return -EINVAL; /* * A cpumask update cannot make parent's effective_cpus become empty. */ adding = deleting = false; if (cmd == partcmd_enable) { cpumask_copy(tmp->addmask, cpuset->cpus_allowed); adding = true; } else if (cmd == partcmd_disable) { deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, parent->subparts_cpus); } else if (newmask) { /* * partcmd_update with newmask: * * delmask = cpus_allowed & ~newmask & parent->subparts_cpus * addmask = newmask & parent->effective_cpus * & ~parent->subparts_cpus */ cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); deleting = cpumask_and(tmp->delmask, tmp->delmask, parent->subparts_cpus); cpumask_and(tmp->addmask, newmask, parent->effective_cpus); adding = cpumask_andnot(tmp->addmask, tmp->addmask, parent->subparts_cpus); /* * Return error if the new effective_cpus could become empty. */ if (adding && cpumask_equal(parent->effective_cpus, tmp->addmask)) { if (!deleting) return -EINVAL; /* * As some of the CPUs in subparts_cpus might have * been offlined, we need to compute the real delmask * to confirm that. */ if (!cpumask_and(tmp->addmask, tmp->delmask, cpu_active_mask)) return -EINVAL; cpumask_copy(tmp->addmask, parent->effective_cpus); } } else { /* * partcmd_update w/o newmask: * * addmask = cpus_allowed & parent->effectiveb_cpus * * Note that parent's subparts_cpus may have been * pre-shrunk in case there is a change in the cpu list. * So no deletion is needed. */ adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, parent->effective_cpus); part_error = cpumask_equal(tmp->addmask, parent->effective_cpus); } if (cmd == partcmd_update) { int prev_prs = cpuset->partition_root_state; /* * Check for possible transition between PRS_ENABLED * and PRS_ERROR. */ switch (cpuset->partition_root_state) { case PRS_ENABLED: if (part_error) cpuset->partition_root_state = PRS_ERROR; break; case PRS_ERROR: if (!part_error) cpuset->partition_root_state = PRS_ENABLED; break; } /* * Set part_error if previously in invalid state. */ part_error = (prev_prs == PRS_ERROR); } if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) return 0; /* Nothing need to be done */ if (cpuset->partition_root_state == PRS_ERROR) { /* * Remove all its cpus from parent's subparts_cpus. */ adding = false; deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, parent->subparts_cpus); } if (!adding && !deleting) return 0; /* * Change the parent's subparts_cpus. * Newly added CPUs will be removed from effective_cpus and * newly deleted ones will be added back to effective_cpus. */ spin_lock_irq(&callback_lock); if (adding) { cpumask_or(parent->subparts_cpus, parent->subparts_cpus, tmp->addmask); cpumask_andnot(parent->effective_cpus, parent->effective_cpus, tmp->addmask); } if (deleting) { cpumask_andnot(parent->subparts_cpus, parent->subparts_cpus, tmp->delmask); /* * Some of the CPUs in subparts_cpus might have been offlined. */ cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); cpumask_or(parent->effective_cpus, parent->effective_cpus, tmp->delmask); } parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); spin_unlock_irq(&callback_lock); return cmd == partcmd_update; } /* * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree * @cs: the cpuset to consider * @tmp: temp variables for calculating effective_cpus & partition setup * * When congifured cpumask is changed, the effective cpumasks of this cpuset * and all its descendants need to be updated. * * On legacy hierachy, effective_cpus will be the same with cpu_allowed. * * Called with cpuset_mutex held */ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; bool need_rebuild_sched_domains = false; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); compute_effective_cpumask(tmp->new_cpus, cp, parent); /* * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some CPUs. */ if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { cpumask_copy(tmp->new_cpus, parent->effective_cpus); if (!cp->use_parent_ecpus) { cp->use_parent_ecpus = true; parent->child_ecpus_count++; } } else if (cp->use_parent_ecpus) { cp->use_parent_ecpus = false; WARN_ON_ONCE(!parent->child_ecpus_count); parent->child_ecpus_count--; } /* * Skip the whole subtree if the cpumask remains the same * and has no partition root state. */ if (!cp->partition_root_state && cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { pos_css = css_rightmost_descendant(pos_css); continue; } /* * update_parent_subparts_cpumask() should have been called * for cs already in update_cpumask(). We should also call * update_tasks_cpumask() again for tasks in the parent * cpuset if the parent's subparts_cpus changes. */ if ((cp != cs) && cp->partition_root_state) { switch (parent->partition_root_state) { case PRS_DISABLED: /* * If parent is not a partition root or an * invalid partition root, clear the state * state and the CS_CPU_EXCLUSIVE flag. */ WARN_ON_ONCE(cp->partition_root_state != PRS_ERROR); cp->partition_root_state = 0; /* * clear_bit() is an atomic operation and * readers aren't interested in the state * of CS_CPU_EXCLUSIVE anyway. So we can * just update the flag without holding * the callback_lock. */ clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); break; case PRS_ENABLED: if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) update_tasks_cpumask(parent); break; case PRS_ERROR: /* * When parent is invalid, it has to be too. */ cp->partition_root_state = PRS_ERROR; if (cp->nr_subparts_cpus) { cp->nr_subparts_cpus = 0; cpumask_clear(cp->subparts_cpus); } break; } } if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); spin_lock_irq(&callback_lock); cpumask_copy(cp->effective_cpus, tmp->new_cpus); if (cp->nr_subparts_cpus && (cp->partition_root_state != PRS_ENABLED)) { cp->nr_subparts_cpus = 0; cpumask_clear(cp->subparts_cpus); } else if (cp->nr_subparts_cpus) { /* * Make sure that effective_cpus & subparts_cpus * are mutually exclusive. * * In the unlikely event that effective_cpus * becomes empty. we clear cp->nr_subparts_cpus and * let its child partition roots to compete for * CPUs again. */ cpumask_andnot(cp->effective_cpus, cp->effective_cpus, cp->subparts_cpus); if (cpumask_empty(cp->effective_cpus)) { cpumask_copy(cp->effective_cpus, tmp->new_cpus); cpumask_clear(cp->subparts_cpus); cp->nr_subparts_cpus = 0; } else if (!cpumask_subset(cp->subparts_cpus, tmp->new_cpus)) { cpumask_andnot(cp->subparts_cpus, cp->subparts_cpus, tmp->new_cpus); cp->nr_subparts_cpus = cpumask_weight(cp->subparts_cpus); } } spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); update_tasks_cpumask(cp); /* * On legacy hierarchy, if the effective cpumask of any non- * empty cpuset is changed, we need to rebuild sched domains. * On default hierarchy, the cpuset needs to be a partition * root as well. */ if (!cpumask_empty(cp->cpus_allowed) && is_sched_load_balance(cp) && (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || is_partition_root(cp))) need_rebuild_sched_domains = true; rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); if (need_rebuild_sched_domains) rebuild_sched_domains_locked(); } /** * update_sibling_cpumasks - Update siblings cpumasks * @parent: Parent cpuset * @cs: Current cpuset * @tmp: Temp variables */ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, struct tmpmasks *tmp) { struct cpuset *sibling; struct cgroup_subsys_state *pos_css; /* * Check all its siblings and call update_cpumasks_hier() * if their use_parent_ecpus flag is set in order for them * to use the right effective_cpus value. */ rcu_read_lock(); cpuset_for_each_child(sibling, pos_css, parent) { if (sibling == cs) continue; if (!sibling->use_parent_ecpus) continue; update_cpumasks_hier(sibling, tmp); } rcu_read_unlock(); } /** * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it * @cs: the cpuset to consider * @trialcs: trial cpuset * @buf: buffer of cpu numbers written to this cpuset */ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; struct tmpmasks tmp; /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ if (cs == &top_cpuset) return -EACCES; /* * An empty cpus_allowed is ok only if the cpuset has no tasks. * Since cpulist_parse() fails on an empty mask, we special case * that parsing. The validate_change() call ensures that cpusets * with tasks have cpus. */ if (!*buf) { cpumask_clear(trialcs->cpus_allowed); } else { retval = cpulist_parse(buf, trialcs->cpus_allowed); if (retval < 0) return retval; if (!cpumask_subset(trialcs->cpus_allowed, top_cpuset.cpus_allowed)) return -EINVAL; } /* Nothing to do if the cpus didn't change */ if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) return 0; retval = validate_change(cs, trialcs); if (retval < 0) return retval; #ifdef CONFIG_CPUMASK_OFFSTACK /* * Use the cpumasks in trialcs for tmpmasks when they are pointers * to allocated cpumasks. */ tmp.addmask = trialcs->subparts_cpus; tmp.delmask = trialcs->effective_cpus; tmp.new_cpus = trialcs->cpus_allowed; #endif if (cs->partition_root_state) { /* Cpumask of a partition root cannot be empty */ if (cpumask_empty(trialcs->cpus_allowed)) return -EINVAL; if (update_parent_subparts_cpumask(cs, partcmd_update, trialcs->cpus_allowed, &tmp) < 0) return -EINVAL; } spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); /* * Make sure that subparts_cpus is a subset of cpus_allowed. */ if (cs->nr_subparts_cpus) { cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed); cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); } spin_unlock_irq(&callback_lock); update_cpumasks_hier(cs, &tmp); if (cs->partition_root_state) { struct cpuset *parent = parent_cs(cs); /* * For partition root, update the cpumasks of sibling * cpusets if they use parent's effective_cpus. */ if (parent->child_ecpus_count) update_sibling_cpumasks(parent, cs, &tmp); } return 0; } /* * Migrate memory region from one set of nodes to another. This is * performed asynchronously as it can be called from process migration path * holding locks involved in process management. All mm migrations are * performed in the queued order and can be waited for by flushing * cpuset_migrate_mm_wq. */ struct cpuset_migrate_mm_work { struct work_struct work; struct mm_struct *mm; nodemask_t from; nodemask_t to; }; static void cpuset_migrate_mm_workfn(struct work_struct *work) { struct cpuset_migrate_mm_work *mwork = container_of(work, struct cpuset_migrate_mm_work, work); /* on a wq worker, no need to worry about %current's mems_allowed */ do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); mmput(mwork->mm); kfree(mwork); } static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to) { struct cpuset_migrate_mm_work *mwork; mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); if (mwork) { mwork->mm = mm; mwork->from = *from; mwork->to = *to; INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); queue_work(cpuset_migrate_mm_wq, &mwork->work); } else { mmput(mm); } } static void cpuset_post_attach(void) { flush_workqueue(cpuset_migrate_mm_wq); } /* * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy * @tsk: the task to change * @newmems: new nodes that the task will be set * * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed * and rebind an eventual tasks' mempolicy. If the task is allocating in * parallel, it might temporarily see an empty intersection, which results in * a seqlock check and retry before OOM or allocation failure. */ static void cpuset_change_task_nodemask(struct task_struct *tsk, nodemask_t *newmems) { task_lock(tsk); local_irq_disable(); write_seqcount_begin(&tsk->mems_allowed_seq); nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); mpol_rebind_task(tsk, newmems); tsk->mems_allowed = *newmems; write_seqcount_end(&tsk->mems_allowed_seq); local_irq_enable(); task_unlock(tsk); } static void *cpuset_being_rebound; /** * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed * * Iterate through each task of @cs updating its mems_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. */ static void update_tasks_nodemask(struct cpuset *cs) { static nodemask_t newmems; /* protected by cpuset_mutex */ struct css_task_iter it; struct task_struct *task; cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ guarantee_online_mems(cs, &newmems); /* * The mpol_rebind_mm() call takes mmap_sem, which we couldn't * take while holding tasklist_lock. Forks can happen - the * mpol_dup() cpuset_being_rebound check will catch such forks, * and rebind their vma mempolicies too. Because we still hold * the global cpuset_mutex, we know that no other rebind effort * will be contending for the global variable cpuset_being_rebound. * It's ok if we rebind the same mm twice; mpol_rebind_mm() * is idempotent. Also migrate pages in each mm to new nodes. */ css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) { struct mm_struct *mm; bool migrate; cpuset_change_task_nodemask(task, &newmems); mm = get_task_mm(task); if (!mm) continue; migrate = is_memory_migrate(cs); mpol_rebind_mm(mm, &cs->mems_allowed); if (migrate) cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); else mmput(mm); } css_task_iter_end(&it); /* * All the tasks' nodemasks have been updated, update * cs->old_mems_allowed. */ cs->old_mems_allowed = newmems; /* We're done rebinding vmas to this cpuset's new mems_allowed. */ cpuset_being_rebound = NULL; } /* * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree * @cs: the cpuset to consider * @new_mems: a temp variable for calculating new effective_mems * * When configured nodemask is changed, the effective nodemasks of this cpuset * and all its descendants need to be updated. * * On legacy hiearchy, effective_mems will be the same with mems_allowed. * * Called with cpuset_mutex held */ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) { struct cpuset *cp; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); /* * If it becomes empty, inherit the effective mask of the * parent, which is guaranteed to have some MEMs. */ if (is_in_v2_mode() && nodes_empty(*new_mems)) *new_mems = parent->effective_mems; /* Skip the whole subtree if the nodemask remains the same. */ if (nodes_equal(*new_mems, cp->effective_mems)) { pos_css = css_rightmost_descendant(pos_css); continue; } if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); spin_lock_irq(&callback_lock); cp->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); WARN_ON(!is_in_v2_mode() && !nodes_equal(cp->mems_allowed, cp->effective_mems)); update_tasks_nodemask(cp); rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); } /* * Handle user request to change the 'mems' memory placement * of a cpuset. Needs to validate the request, update the * cpusets mems_allowed, and for each task in the cpuset, * update mems_allowed and rebind task's mempolicy and any vma * mempolicies and if the cpuset is marked 'memory_migrate', * migrate the tasks pages to the new memory. * * Call with cpuset_mutex held. May take callback_lock during call. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, * lock each such tasks mm->mmap_sem, scan its vma's and rebind * their mempolicies to the cpusets new mems_allowed. */ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, const char *buf) { int retval; /* * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; * it's read-only */ if (cs == &top_cpuset) { retval = -EACCES; goto done; } /* * An empty mems_allowed is ok iff there are no tasks in the cpuset. * Since nodelist_parse() fails on an empty mask, we special case * that parsing. The validate_change() call ensures that cpusets * with tasks have memory. */ if (!*buf) { nodes_clear(trialcs->mems_allowed); } else { retval = nodelist_parse(buf, trialcs->mems_allowed); if (retval < 0) goto done; if (!nodes_subset(trialcs->mems_allowed, top_cpuset.mems_allowed)) { retval = -EINVAL; goto done; } } if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { retval = 0; /* Too easy - nothing to do */ goto done; } retval = validate_change(cs, trialcs); if (retval < 0) goto done; spin_lock_irq(&callback_lock); cs->mems_allowed = trialcs->mems_allowed; spin_unlock_irq(&callback_lock); /* use trialcs->mems_allowed as a temp variable */ update_nodemasks_hier(cs, &trialcs->mems_allowed); done: return retval; } bool current_cpuset_is_being_rebound(void) { bool ret; rcu_read_lock(); ret = task_cs(current) == cpuset_being_rebound; rcu_read_unlock(); return ret; } static int update_relax_domain_level(struct cpuset *cs, s64 val) { #ifdef CONFIG_SMP if (val < -1 || val >= sched_domain_level_max) return -EINVAL; #endif if (val != cs->relax_domain_level) { cs->relax_domain_level = val; if (!cpumask_empty(cs->cpus_allowed) && is_sched_load_balance(cs)) rebuild_sched_domains_locked(); } return 0; } /** * update_tasks_flags - update the spread flags of tasks in the cpuset. * @cs: the cpuset in which each task's spread flags needs to be changed * * Iterate through each task of @cs updating its spread flags. As this * function is called with cpuset_mutex held, cpuset membership stays * stable. */ static void update_tasks_flags(struct cpuset *cs) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&cs->css, 0, &it); while ((task = css_task_iter_next(&it))) cpuset_update_task_spread_flag(cs, task); css_task_iter_end(&it); } /* * update_flag - read a 0 or a 1 in a file and update associated flag * bit: the bit to update (see cpuset_flagbits_t) * cs: the cpuset to update * turning_on: whether the flag is being set or cleared * * Call with cpuset_mutex held. */ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on) { struct cpuset *trialcs; int balance_flag_changed; int spread_flag_changed; int err; trialcs = alloc_trial_cpuset(cs); if (!trialcs) return -ENOMEM; if (turning_on) set_bit(bit, &trialcs->flags); else clear_bit(bit, &trialcs->flags); err = validate_change(cs, trialcs); if (err < 0) goto out; balance_flag_changed = (is_sched_load_balance(cs) != is_sched_load_balance(trialcs)); spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) || (is_spread_page(cs) != is_spread_page(trialcs))); spin_lock_irq(&callback_lock); cs->flags = trialcs->flags; spin_unlock_irq(&callback_lock); if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) rebuild_sched_domains_locked(); if (spread_flag_changed) update_tasks_flags(cs); out: free_cpuset(trialcs); return err; } /* * update_prstate - update partititon_root_state * cs: the cpuset to update * val: 0 - disabled, 1 - enabled * * Call with cpuset_mutex held. */ static int update_prstate(struct cpuset *cs, int val) { int err; struct cpuset *parent = parent_cs(cs); struct tmpmasks tmp; if ((val != 0) && (val != 1)) return -EINVAL; if (val == cs->partition_root_state) return 0; /* * Cannot force a partial or invalid partition root to a full * partition root. */ if (val && cs->partition_root_state) return -EINVAL; if (alloc_cpumasks(NULL, &tmp)) return -ENOMEM; err = -EINVAL; if (!cs->partition_root_state) { /* * Turning on partition root requires setting the * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed * cannot be NULL. */ if (cpumask_empty(cs->cpus_allowed)) goto out; err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); if (err) goto out; err = update_parent_subparts_cpumask(cs, partcmd_enable, NULL, &tmp); if (err) { update_flag(CS_CPU_EXCLUSIVE, cs, 0); goto out; } cs->partition_root_state = PRS_ENABLED; } else { /* * Turning off partition root will clear the * CS_CPU_EXCLUSIVE bit. */ if (cs->partition_root_state == PRS_ERROR) { cs->partition_root_state = 0; update_flag(CS_CPU_EXCLUSIVE, cs, 0); err = 0; goto out; } err = update_parent_subparts_cpumask(cs, partcmd_disable, NULL, &tmp); if (err) goto out; cs->partition_root_state = 0; /* Turning off CS_CPU_EXCLUSIVE will not return error */ update_flag(CS_CPU_EXCLUSIVE, cs, 0); } /* * Update cpumask of parent's tasks except when it is the top * cpuset as some system daemons cannot be mapped to other CPUs. */ if (parent != &top_cpuset) update_tasks_cpumask(parent); if (parent->child_ecpus_count) update_sibling_cpumasks(parent, cs, &tmp); rebuild_sched_domains_locked(); out: free_cpumasks(NULL, &tmp); return err; } /* * Frequency meter - How fast is some event occurring? * * These routines manage a digitally filtered, constant time based, * event frequency meter. There are four routines: * fmeter_init() - initialize a frequency meter. * fmeter_markevent() - called each time the event happens. * fmeter_getrate() - returns the recent rate of such events. * fmeter_update() - internal routine used to update fmeter. * * A common data structure is passed to each of these routines, * which is used to keep track of the state required to manage the * frequency meter and its digital filter. * * The filter works on the number of events marked per unit time. * The filter is single-pole low-pass recursive (IIR). The time unit * is 1 second. Arithmetic is done using 32-bit integers scaled to * simulate 3 decimal digits of precision (multiplied by 1000). * * With an FM_COEF of 933, and a time base of 1 second, the filter * has a half-life of 10 seconds, meaning that if the events quit * happening, then the rate returned from the fmeter_getrate() * will be cut in half each 10 seconds, until it converges to zero. * * It is not worth doing a real infinitely recursive filter. If more * than FM_MAXTICKS ticks have elapsed since the last filter event, * just compute FM_MAXTICKS ticks worth, by which point the level * will be stable. * * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid * arithmetic overflow in the fmeter_update() routine. * * Given the simple 32 bit integer arithmetic used, this meter works * best for reporting rates between one per millisecond (msec) and * one per 32 (approx) seconds. At constant rates faster than one * per msec it maxes out at values just under 1,000,000. At constant * rates between one per msec, and one per second it will stabilize * to a value N*1000, where N is the rate of events per second. * At constant rates between one per second and one per 32 seconds, * it will be choppy, moving up on the seconds that have an event, * and then decaying until the next event. At rates slower than * about one in 32 seconds, it decays all the way back to zero between * each event. */ #define FM_COEF 933 /* coefficient for half-life of 10 secs */ #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ #define FM_SCALE 1000 /* faux fixed point scale */ /* Initialize a frequency meter */ static void fmeter_init(struct fmeter *fmp) { fmp->cnt = 0; fmp->val = 0; fmp->time = 0; spin_lock_init(&fmp->lock); } /* Internal meter update - process cnt events and update value */ static void fmeter_update(struct fmeter *fmp) { time64_t now; u32 ticks; now = ktime_get_seconds(); ticks = now - fmp->time; if (ticks == 0) return; ticks = min(FM_MAXTICKS, ticks); while (ticks-- > 0) fmp->val = (FM_COEF * fmp->val) / FM_SCALE; fmp->time = now; fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; fmp->cnt = 0; } /* Process any previous ticks, then bump cnt by one (times scale). */ static void fmeter_markevent(struct fmeter *fmp) { spin_lock(&fmp->lock); fmeter_update(fmp); fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); spin_unlock(&fmp->lock); } /* Process any previous ticks, then return current value. */ static int fmeter_getrate(struct fmeter *fmp) { int val; spin_lock(&fmp->lock); fmeter_update(fmp); val = fmp->val; spin_unlock(&fmp->lock); return val; } static struct cpuset *cpuset_attach_old_cs; /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ static int cpuset_can_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct cpuset *cs; struct task_struct *task; int ret; /* used later by cpuset_attach() */ cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); cs = css_cs(css); mutex_lock(&cpuset_mutex); /* allow moving tasks into an empty cpuset if on default hierarchy */ ret = -ENOSPC; if (!is_in_v2_mode() && (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) goto out_unlock; cgroup_taskset_for_each(task, css, tset) { ret = task_can_attach(task, cs->cpus_allowed); if (ret) goto out_unlock; ret = security_task_setscheduler(task); if (ret) goto out_unlock; } /* * Mark attach is in progress. This makes validate_change() fail * changes which zero cpus/mems_allowed. */ cs->attach_in_progress++; ret = 0; out_unlock: mutex_unlock(&cpuset_mutex); return ret; } static void cpuset_cancel_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; cgroup_taskset_first(tset, &css); mutex_lock(&cpuset_mutex); css_cs(css)->attach_in_progress--; mutex_unlock(&cpuset_mutex); } /* * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() * but we can't allocate it dynamically there. Define it global and * allocate from cpuset_init(). */ static cpumask_var_t cpus_attach; static void cpuset_attach(struct cgroup_taskset *tset) { /* static buf protected by cpuset_mutex */ static nodemask_t cpuset_attach_nodemask_to; struct task_struct *task; struct task_struct *leader; struct cgroup_subsys_state *css; struct cpuset *cs; struct cpuset *oldcs = cpuset_attach_old_cs; cgroup_taskset_first(tset, &css); cs = css_cs(css); mutex_lock(&cpuset_mutex); /* prepare for attach */ if (cs == &top_cpuset) cpumask_copy(cpus_attach, cpu_possible_mask); else guarantee_online_cpus(cs, cpus_attach); guarantee_online_mems(cs, &cpuset_attach_nodemask_to); cgroup_taskset_for_each(task, css, tset) { /* * can_attach beforehand should guarantee that this doesn't * fail. TODO: have a better way to handle failure here */ WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); cpuset_update_task_spread_flag(cs, task); } /* * Change mm for all threadgroup leaders. This is expensive and may * sleep and should be moved outside migration path proper. */ cpuset_attach_nodemask_to = cs->effective_mems; cgroup_taskset_for_each_leader(leader, css, tset) { struct mm_struct *mm = get_task_mm(leader); if (mm) { mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); /* * old_mems_allowed is the same with mems_allowed * here, except if this task is being moved * automatically due to hotplug. In that case * @mems_allowed has been updated and is empty, so * @old_mems_allowed is the right nodesets that we * migrate mm from. */ if (is_memory_migrate(cs)) cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, &cpuset_attach_nodemask_to); else mmput(mm); } } cs->old_mems_allowed = cpuset_attach_nodemask_to; cs->attach_in_progress--; if (!cs->attach_in_progress) wake_up(&cpuset_attach_wq); mutex_unlock(&cpuset_mutex); } /* The various types of files and directories in a cpuset file system */ typedef enum { FILE_MEMORY_MIGRATE, FILE_CPULIST, FILE_MEMLIST, FILE_EFFECTIVE_CPULIST, FILE_EFFECTIVE_MEMLIST, FILE_SUBPARTS_CPULIST, FILE_CPU_EXCLUSIVE, FILE_MEM_EXCLUSIVE, FILE_MEM_HARDWALL, FILE_SCHED_LOAD_BALANCE, FILE_PARTITION_ROOT, FILE_SCHED_RELAX_DOMAIN_LEVEL, FILE_MEMORY_PRESSURE_ENABLED, FILE_MEMORY_PRESSURE, FILE_SPREAD_PAGE, FILE_SPREAD_SLAB, } cpuset_filetype_t; static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; int retval = 0; mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) { retval = -ENODEV; goto out_unlock; } switch (type) { case FILE_CPU_EXCLUSIVE: retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); break; case FILE_MEM_EXCLUSIVE: retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); break; case FILE_MEM_HARDWALL: retval = update_flag(CS_MEM_HARDWALL, cs, val); break; case FILE_SCHED_LOAD_BALANCE: retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); break; case FILE_MEMORY_MIGRATE: retval = update_flag(CS_MEMORY_MIGRATE, cs, val); break; case FILE_MEMORY_PRESSURE_ENABLED: cpuset_memory_pressure_enabled = !!val; break; case FILE_SPREAD_PAGE: retval = update_flag(CS_SPREAD_PAGE, cs, val); break; case FILE_SPREAD_SLAB: retval = update_flag(CS_SPREAD_SLAB, cs, val); break; default: retval = -EINVAL; break; } out_unlock: mutex_unlock(&cpuset_mutex); return retval; } static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, s64 val) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; int retval = -ENODEV; mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: retval = update_relax_domain_level(cs, val); break; default: retval = -EINVAL; break; } out_unlock: mutex_unlock(&cpuset_mutex); return retval; } /* * Common handling for a write to a "cpus" or "mems" file. */ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); struct cpuset *trialcs; int retval = -ENODEV; buf = strstrip(buf); /* * CPU or memory hotunplug may leave @cs w/o any execution * resources, in which case the hotplug code asynchronously updates * configuration and transfers all tasks to the nearest ancestor * which can execute. * * As writes to "cpus" or "mems" may restore @cs's execution * resources, wait for the previously scheduled operations before * proceeding, so that we don't end up keep removing tasks added * after execution capability is restored. * * cpuset_hotplug_work calls back into cgroup core via * cgroup_transfer_tasks() and waiting for it from a cgroupfs * operation like this one can lead to a deadlock through kernfs * active_ref protection. Let's break the protection. Losing the * protection is okay as we check whether @cs is online after * grabbing cpuset_mutex anyway. This only happens on the legacy * hierarchies. */ css_get(&cs->css); kernfs_break_active_protection(of->kn); flush_work(&cpuset_hotplug_work); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; trialcs = alloc_trial_cpuset(cs); if (!trialcs) { retval = -ENOMEM; goto out_unlock; } switch (of_cft(of)->private) { case FILE_CPULIST: retval = update_cpumask(cs, trialcs, buf); break; case FILE_MEMLIST: retval = update_nodemask(cs, trialcs, buf); break; default: retval = -EINVAL; break; } free_cpuset(trialcs); out_unlock: mutex_unlock(&cpuset_mutex); kernfs_unbreak_active_protection(of->kn); css_put(&cs->css); flush_workqueue(cpuset_migrate_mm_wq); return retval ?: nbytes; } /* * These ascii lists should be read in a single call, by using a user * buffer large enough to hold the entire map. If read in smaller * chunks, there is no guarantee of atomicity. Since the display format * used, list of ranges of sequential numbers, is variable length, * and since these maps can change value dynamically, one could read * gibberish by doing partial reads while a list was changing. */ static int cpuset_common_seq_show(struct seq_file *sf, void *v) { struct cpuset *cs = css_cs(seq_css(sf)); cpuset_filetype_t type = seq_cft(sf)->private; int ret = 0; spin_lock_irq(&callback_lock); switch (type) { case FILE_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); break; case FILE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); break; case FILE_EFFECTIVE_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); break; case FILE_EFFECTIVE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); break; case FILE_SUBPARTS_CPULIST: seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); break; default: ret = -EINVAL; } spin_unlock_irq(&callback_lock); return ret; } static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_CPU_EXCLUSIVE: return is_cpu_exclusive(cs); case FILE_MEM_EXCLUSIVE: return is_mem_exclusive(cs); case FILE_MEM_HARDWALL: return is_mem_hardwall(cs); case FILE_SCHED_LOAD_BALANCE: return is_sched_load_balance(cs); case FILE_MEMORY_MIGRATE: return is_memory_migrate(cs); case FILE_MEMORY_PRESSURE_ENABLED: return cpuset_memory_pressure_enabled; case FILE_MEMORY_PRESSURE: return fmeter_getrate(&cs->fmeter); case FILE_SPREAD_PAGE: return is_spread_page(cs); case FILE_SPREAD_SLAB: return is_spread_slab(cs); default: BUG(); } /* Unreachable but makes gcc happy */ return 0; } static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { struct cpuset *cs = css_cs(css); cpuset_filetype_t type = cft->private; switch (type) { case FILE_SCHED_RELAX_DOMAIN_LEVEL: return cs->relax_domain_level; default: BUG(); } /* Unrechable but makes gcc happy */ return 0; } static int sched_partition_show(struct seq_file *seq, void *v) { struct cpuset *cs = css_cs(seq_css(seq)); switch (cs->partition_root_state) { case PRS_ENABLED: seq_puts(seq, "root\n"); break; case PRS_DISABLED: seq_puts(seq, "member\n"); break; case PRS_ERROR: seq_puts(seq, "root invalid\n"); break; } return 0; } static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); int val; int retval = -ENODEV; buf = strstrip(buf); /* * Convert "root" to ENABLED, and convert "member" to DISABLED. */ if (!strcmp(buf, "root")) val = PRS_ENABLED; else if (!strcmp(buf, "member")) val = PRS_DISABLED; else return -EINVAL; css_get(&cs->css); mutex_lock(&cpuset_mutex); if (!is_cpuset_online(cs)) goto out_unlock; retval = update_prstate(cs, val); out_unlock: mutex_unlock(&cpuset_mutex); css_put(&cs->css); return retval ?: nbytes; } /* * for the common functions, 'private' gives the type of file */ static struct cftype legacy_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, }, { .name = "mems", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, }, { .name = "effective_cpus", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { .name = "effective_mems", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { .name = "cpu_exclusive", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_CPU_EXCLUSIVE, }, { .name = "mem_exclusive", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEM_EXCLUSIVE, }, { .name = "mem_hardwall", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEM_HARDWALL, }, { .name = "sched_load_balance", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SCHED_LOAD_BALANCE, }, { .name = "sched_relax_domain_level", .read_s64 = cpuset_read_s64, .write_s64 = cpuset_write_s64, .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, }, { .name = "memory_migrate", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEMORY_MIGRATE, }, { .name = "memory_pressure", .read_u64 = cpuset_read_u64, .private = FILE_MEMORY_PRESSURE, }, { .name = "memory_spread_page", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SPREAD_PAGE, }, { .name = "memory_spread_slab", .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_SPREAD_SLAB, }, { .name = "memory_pressure_enabled", .flags = CFTYPE_ONLY_ON_ROOT, .read_u64 = cpuset_read_u64, .write_u64 = cpuset_write_u64, .private = FILE_MEMORY_PRESSURE_ENABLED, }, { } /* terminate */ }; /* * This is currently a minimal set for the default hierarchy. It can be * expanded later on by migrating more features and control files from v1. */ static struct cftype dfl_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "mems", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "cpus.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { .name = "mems.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { .name = "cpus.partition", .seq_show = sched_partition_show, .write = sched_partition_write, .private = FILE_PARTITION_ROOT, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "cpus.subpartitions", .seq_show = cpuset_common_seq_show, .private = FILE_SUBPARTS_CPULIST, .flags = CFTYPE_DEBUG, }, { } /* terminate */ }; /* * cpuset_css_alloc - allocate a cpuset css * cgrp: control group that the new cpuset will be part of */ static struct cgroup_subsys_state * cpuset_css_alloc(struct cgroup_subsys_state *parent_css) { struct cpuset *cs; if (!parent_css) return &top_cpuset.css; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); if (alloc_cpumasks(cs, NULL)) { kfree(cs); return ERR_PTR(-ENOMEM); } set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); nodes_clear(cs->mems_allowed); nodes_clear(cs->effective_mems); fmeter_init(&cs->fmeter); cs->relax_domain_level = -1; return &cs->css; } static int cpuset_css_online(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); struct cpuset *parent = parent_cs(cs); struct cpuset *tmp_cs; struct cgroup_subsys_state *pos_css; if (!parent) return 0; mutex_lock(&cpuset_mutex); set_bit(CS_ONLINE, &cs->flags); if (is_spread_page(parent)) set_bit(CS_SPREAD_PAGE, &cs->flags); if (is_spread_slab(parent)) set_bit(CS_SPREAD_SLAB, &cs->flags); cpuset_inc(); spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; cs->use_parent_ecpus = true; parent->child_ecpus_count++; } spin_unlock_irq(&callback_lock); if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) goto out_unlock; /* * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is * set. This flag handling is implemented in cgroup core for * histrical reasons - the flag may be specified during mount. * * Currently, if any sibling cpusets have exclusive cpus or mem, we * refuse to clone the configuration - thereby refusing the task to * be entered, and as a result refusing the sys_unshare() or * clone() which initiated it. If this becomes a problem for some * users who wish to allow that scenario, then this could be * changed to grant parent->cpus_allowed-sibling_cpus_exclusive * (and likewise for mems) to the new cgroup. */ rcu_read_lock(); cpuset_for_each_child(tmp_cs, pos_css, parent) { if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { rcu_read_unlock(); goto out_unlock; } } rcu_read_unlock(); spin_lock_irq(&callback_lock); cs->mems_allowed = parent->mems_allowed; cs->effective_mems = parent->mems_allowed; cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); cpumask_copy(cs->effective_cpus, parent->cpus_allowed); spin_unlock_irq(&callback_lock); out_unlock: mutex_unlock(&cpuset_mutex); return 0; } /* * If the cpuset being removed has its flag 'sched_load_balance' * enabled, then simulate turning sched_load_balance off, which * will call rebuild_sched_domains_locked(). That is not needed * in the default hierarchy where only changes in partition * will cause repartitioning. * * If the cpuset has the 'sched.partition' flag enabled, simulate * turning 'sched.partition" off. */ static void cpuset_css_offline(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); mutex_lock(&cpuset_mutex); if (is_partition_root(cs)) update_prstate(cs, 0); if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && is_sched_load_balance(cs)) update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); if (cs->use_parent_ecpus) { struct cpuset *parent = parent_cs(cs); cs->use_parent_ecpus = false; parent->child_ecpus_count--; } cpuset_dec(); clear_bit(CS_ONLINE, &cs->flags); mutex_unlock(&cpuset_mutex); } static void cpuset_css_free(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); free_cpuset(cs); } static void cpuset_bind(struct cgroup_subsys_state *root_css) { mutex_lock(&cpuset_mutex); spin_lock_irq(&callback_lock); if (is_in_v2_mode()) { cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); top_cpuset.mems_allowed = node_possible_map; } else { cpumask_copy(top_cpuset.cpus_allowed, top_cpuset.effective_cpus); top_cpuset.mems_allowed = top_cpuset.effective_mems; } spin_unlock_irq(&callback_lock); mutex_unlock(&cpuset_mutex); } /* * Make sure the new task conform to the current state of its parent, * which could have been changed by cpuset just after it inherits the * state from the parent and before it sits on the cgroup's task list. */ static void cpuset_fork(struct task_struct *task) { if (task_css_is_root(task, cpuset_cgrp_id)) return; set_cpus_allowed_ptr(task, current->cpus_ptr); task->mems_allowed = current->mems_allowed; } struct cgroup_subsys cpuset_cgrp_subsys = { .css_alloc = cpuset_css_alloc, .css_online = cpuset_css_online, .css_offline = cpuset_css_offline, .css_free = cpuset_css_free, .can_attach = cpuset_can_attach, .cancel_attach = cpuset_cancel_attach, .attach = cpuset_attach, .post_attach = cpuset_post_attach, .bind = cpuset_bind, .fork = cpuset_fork, .legacy_cftypes = legacy_files, .dfl_cftypes = dfl_files, .early_init = true, .threaded = true, }; /** * cpuset_init - initialize cpusets at system boot * * Description: Initialize top_cpuset and the cpuset internal file system, **/ int __init cpuset_init(void) { int err = 0; BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); cpumask_setall(top_cpuset.effective_cpus); nodes_setall(top_cpuset.effective_mems); fmeter_init(&top_cpuset.fmeter); set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); top_cpuset.relax_domain_level = -1; err = register_filesystem(&cpuset_fs_type); if (err < 0) return err; BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); return 0; } /* * If CPU and/or memory hotplug handlers, below, unplug any CPUs * or memory nodes, we need to walk over the cpuset hierarchy, * removing that CPU or node from all cpusets. If this removes the * last CPU or node from a cpuset, then move the tasks in the empty * cpuset to its next-highest non-empty parent. */ static void remove_tasks_in_empty_cpuset(struct cpuset *cs) { struct cpuset *parent; /* * Find its next-highest non-empty parent, (top cpuset * has online cpus, so can't be empty). */ parent = parent_cs(cs); while (cpumask_empty(parent->cpus_allowed) || nodes_empty(parent->mems_allowed)) parent = parent_cs(parent); if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { pr_err("cpuset: failed to transfer tasks out of empty cpuset "); pr_cont_cgroup_name(cs->css.cgroup); pr_cont("\n"); } } static void hotplug_update_tasks_legacy(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) { bool is_empty; spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, new_cpus); cpumask_copy(cs->effective_cpus, new_cpus); cs->mems_allowed = *new_mems; cs->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); /* * Don't call update_tasks_cpumask() if the cpuset becomes empty, * as the tasks will be migratecd to an ancestor. */ if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) update_tasks_cpumask(cs); if (mems_updated && !nodes_empty(cs->mems_allowed)) update_tasks_nodemask(cs); is_empty = cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed); mutex_unlock(&cpuset_mutex); /* * Move tasks to the nearest ancestor with execution resources, * This is full cgroup operation which will also call back into * cpuset. Should be done outside any lock. */ if (is_empty) remove_tasks_in_empty_cpuset(cs); mutex_lock(&cpuset_mutex); } static void hotplug_update_tasks(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) { if (cpumask_empty(new_cpus)) cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); if (nodes_empty(*new_mems)) *new_mems = parent_cs(cs)->effective_mems; spin_lock_irq(&callback_lock); cpumask_copy(cs->effective_cpus, new_cpus); cs->effective_mems = *new_mems; spin_unlock_irq(&callback_lock); if (cpus_updated) update_tasks_cpumask(cs); if (mems_updated) update_tasks_nodemask(cs); } static bool force_rebuild; void cpuset_force_rebuild(void) { force_rebuild = true; } /** * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug * @cs: cpuset in interest * @tmp: the tmpmasks structure pointer * * Compare @cs's cpu and mem masks against top_cpuset and if some have gone * offline, update @cs accordingly. If @cs ends up with no CPU or memory, * all its tasks are moved to the nearest ancestor with both resources. */ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated; bool mems_updated; struct cpuset *parent; retry: wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); mutex_lock(&cpuset_mutex); /* * We have raced with task attaching. We wait until attaching * is finished, so we won't attach a task to an empty cpuset. */ if (cs->attach_in_progress) { mutex_unlock(&cpuset_mutex); goto retry; } parent = parent_cs(cs); compute_effective_cpumask(&new_cpus, cs, parent); nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); if (cs->nr_subparts_cpus) /* * Make sure that CPUs allocated to child partitions * do not show up in effective_cpus. */ cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); if (!tmp || !cs->partition_root_state) goto update_tasks; /* * In the unlikely event that a partition root has empty * effective_cpus or its parent becomes erroneous, we have to * transition it to the erroneous state. */ if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || (parent->partition_root_state == PRS_ERROR))) { if (cs->nr_subparts_cpus) { cs->nr_subparts_cpus = 0; cpumask_clear(cs->subparts_cpus); compute_effective_cpumask(&new_cpus, cs, parent); } /* * If the effective_cpus is empty because the child * partitions take away all the CPUs, we can keep * the current partition and let the child partitions * fight for available CPUs. */ if ((parent->partition_root_state == PRS_ERROR) || cpumask_empty(&new_cpus)) { update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); cs->partition_root_state = PRS_ERROR; } cpuset_force_rebuild(); } /* * On the other hand, an erroneous partition root may be transitioned * back to a regular one or a partition root with no CPU allocated * from the parent may change to erroneous. */ if (is_partition_root(parent) && ((cs->partition_root_state == PRS_ERROR) || !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) cpuset_force_rebuild(); update_tasks: cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); mems_updated = !nodes_equal(new_mems, cs->effective_mems); if (is_in_v2_mode()) hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); else hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); mutex_unlock(&cpuset_mutex); } /** * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset * * This function is called after either CPU or memory configuration has * changed and updates cpuset accordingly. The top_cpuset is always * synchronized to cpu_active_mask and N_MEMORY, which is necessary in * order to make cpusets transparent (of no affect) on systems that are * actively using CPU hotplug but making no active use of cpusets. * * Non-root cpusets are only affected by offlining. If any CPUs or memory * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on * all descendants. * * Note that CPU offlining during suspend is ignored. We don't modify * cpusets across suspend/resume cycles at all. */ static void cpuset_hotplug_workfn(struct work_struct *work) { static cpumask_t new_cpus; static nodemask_t new_mems; bool cpus_updated, mems_updated; bool on_dfl = is_in_v2_mode(); struct tmpmasks tmp, *ptmp = NULL; if (on_dfl && !alloc_cpumasks(NULL, &tmp)) ptmp = &tmp; mutex_lock(&cpuset_mutex); /* fetch the available cpus/mems and find out which changed how */ cpumask_copy(&new_cpus, cpu_active_mask); new_mems = node_states[N_MEMORY]; /* * If subparts_cpus is populated, it is likely that the check below * will produce a false positive on cpus_updated when the cpu list * isn't changed. It is extra work, but it is better to be safe. */ cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); /* synchronize cpus_allowed to cpu_active_mask */ if (cpus_updated) { spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); /* * Make sure that CPUs allocated to child partitions * do not show up in effective_cpus. If no CPU is left, * we clear the subparts_cpus & let the child partitions * fight for the CPUs again. */ if (top_cpuset.nr_subparts_cpus) { if (cpumask_subset(&new_cpus, top_cpuset.subparts_cpus)) { top_cpuset.nr_subparts_cpus = 0; cpumask_clear(top_cpuset.subparts_cpus); } else { cpumask_andnot(&new_cpus, &new_cpus, top_cpuset.subparts_cpus); } } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); spin_unlock_irq(&callback_lock); /* we don't mess with cpumasks of tasks in top_cpuset */ } /* synchronize mems_allowed to N_MEMORY */ if (mems_updated) { spin_lock_irq(&callback_lock); if (!on_dfl) top_cpuset.mems_allowed = new_mems; top_cpuset.effective_mems = new_mems; spin_unlock_irq(&callback_lock); update_tasks_nodemask(&top_cpuset); } mutex_unlock(&cpuset_mutex); /* if cpus or mems changed, we need to propagate to descendants */ if (cpus_updated || mems_updated) { struct cpuset *cs; struct cgroup_subsys_state *pos_css; rcu_read_lock(); cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { if (cs == &top_cpuset || !css_tryget_online(&cs->css)) continue; rcu_read_unlock(); cpuset_hotplug_update_tasks(cs, ptmp); rcu_read_lock(); css_put(&cs->css); } rcu_read_unlock(); } /* rebuild sched domains if cpus_allowed has changed */ if (cpus_updated || force_rebuild) { force_rebuild = false; rebuild_sched_domains(); } free_cpumasks(NULL, ptmp); } void cpuset_update_active_cpus(void) { /* * We're inside cpu hotplug critical region which usually nests * inside cgroup synchronization. Bounce actual hotplug processing * to a work item to avoid reverse locking order. */ schedule_work(&cpuset_hotplug_work); } void cpuset_wait_for_hotplug(void) { flush_work(&cpuset_hotplug_work); } /* * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. * Call this routine anytime after node_states[N_MEMORY] changes. * See cpuset_update_active_cpus() for CPU hotplug handling. */ static int cpuset_track_online_nodes(struct notifier_block *self, unsigned long action, void *arg) { schedule_work(&cpuset_hotplug_work); return NOTIFY_OK; } static struct notifier_block cpuset_track_online_nodes_nb = { .notifier_call = cpuset_track_online_nodes, .priority = 10, /* ??! */ }; /** * cpuset_init_smp - initialize cpus_allowed * * Description: Finish top cpuset after cpu, node maps are initialized */ void __init cpuset_init_smp(void) { cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); top_cpuset.mems_allowed = node_states[N_MEMORY]; top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); top_cpuset.effective_mems = node_states[N_MEMORY]; register_hotmemory_notifier(&cpuset_track_online_nodes_nb); cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); BUG_ON(!cpuset_migrate_mm_wq); } /** * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. * * Description: Returns the cpumask_var_t cpus_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty * subset of cpu_online_mask, even if this means going outside the * tasks cpuset. **/ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) { unsigned long flags; spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); guarantee_online_cpus(task_cs(tsk), pmask); rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); } void cpuset_cpus_allowed_fallback(struct task_struct *tsk) { rcu_read_lock(); do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); rcu_read_unlock(); /* * We own tsk->cpus_allowed, nobody can change it under us. * * But we used cs && cs->cpus_allowed lockless and thus can * race with cgroup_attach_task() or update_cpumask() and get * the wrong tsk->cpus_allowed. However, both cases imply the * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() * which takes task_rq_lock(). * * If we are called after it dropped the lock we must see all * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary * set any mask even if it is not right from task_cs() pov, * the pending set_cpus_allowed_ptr() will fix things. * * select_fallback_rq() will fix things ups and set cpu_possible_mask * if required. */ } void __init cpuset_init_current_mems_allowed(void) { nodes_setall(current->mems_allowed); } /** * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. * * Description: Returns the nodemask_t mems_allowed of the cpuset * attached to the specified @tsk. Guaranteed to return some non-empty * subset of node_states[N_MEMORY], even if this means going outside the * tasks cpuset. **/ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) { nodemask_t mask; unsigned long flags; spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); guarantee_online_mems(task_cs(tsk), &mask); rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return mask; } /** * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed * @nodemask: the nodemask to be checked * * Are any of the nodes in the nodemask allowed in current->mems_allowed? */ int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) { return nodes_intersects(*nodemask, current->mems_allowed); } /* * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or * mem_hardwall ancestor to the specified cpuset. Call holding * callback_lock. If no ancestor is mem_exclusive or mem_hardwall * (an unusual configuration), then returns the root cpuset. */ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) { while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) cs = parent_cs(cs); return cs; } /** * cpuset_node_allowed - Can we allocate on a memory node? * @node: is this an allowed node? * @gfp_mask: memory allocation flags * * If we're in interrupt, yes, we can always allocate. If @node is set in * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, * yes. If current has access to memory reserves as an oom victim, yes. * Otherwise, no. * * GFP_USER allocations are marked with the __GFP_HARDWALL bit, * and do not allow allocations outside the current tasks cpuset * unless the task has been OOM killed. * GFP_KERNEL allocations are not so marked, so can escape to the * nearest enclosing hardwalled ancestor cpuset. * * Scanning up parent cpusets requires callback_lock. The * __alloc_pages() routine only calls here with __GFP_HARDWALL bit * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the * current tasks mems_allowed came up empty on the first pass over * the zonelist. So only GFP_KERNEL allocations, if all nodes in the * cpuset are short of memory, might require taking the callback_lock. * * The first call here from mm/page_alloc:get_page_from_freelist() * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, * so no allocation on a node outside the cpuset is allowed (unless * in interrupt, of course). * * The second pass through get_page_from_freelist() doesn't even call * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set * in alloc_flags. That logic and the checks below have the combined * affect that: * in_interrupt - any node ok (current task context irrelevant) * GFP_ATOMIC - any node ok * tsk_is_oom_victim - any node ok * GFP_KERNEL - any node in enclosing hardwalled cpuset ok * GFP_USER - only nodes in current tasks mems allowed ok. */ bool __cpuset_node_allowed(int node, gfp_t gfp_mask) { struct cpuset *cs; /* current cpuset ancestors */ int allowed; /* is allocation in zone z allowed? */ unsigned long flags; if (in_interrupt()) return true; if (node_isset(node, current->mems_allowed)) return true; /* * Allow tasks that have access to memory reserves because they have * been OOM killed to get memory anywhere. */ if (unlikely(tsk_is_oom_victim(current))) return true; if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ return false; if (current->flags & PF_EXITING) /* Let dying task have memory */ return true; /* Not hardwall and node outside mems_allowed: scan up cpusets */ spin_lock_irqsave(&callback_lock, flags); rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); allowed = node_isset(node, cs->mems_allowed); rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return allowed; } /** * cpuset_mem_spread_node() - On which node to begin search for a file page * cpuset_slab_spread_node() - On which node to begin search for a slab page * * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for * tasks in a cpuset with is_spread_page or is_spread_slab set), * and if the memory allocation used cpuset_mem_spread_node() * to determine on which node to start looking, as it will for * certain page cache or slab cache pages such as used for file * system buffers and inode caches, then instead of starting on the * local node to look for a free page, rather spread the starting * node around the tasks mems_allowed nodes. * * We don't have to worry about the returned node being offline * because "it can't happen", and even if it did, it would be ok. * * The routines calling guarantee_online_mems() are careful to * only set nodes in task->mems_allowed that are online. So it * should not be possible for the following code to return an * offline node. But if it did, that would be ok, as this routine * is not returning the node where the allocation must be, only * the node where the search should start. The zonelist passed to * __alloc_pages() will include all nodes. If the slab allocator * is passed an offline node, it will fall back to the local node. * See kmem_cache_alloc_node(). */ static int cpuset_spread_node(int *rotor) { return *rotor = next_node_in(*rotor, current->mems_allowed); } int cpuset_mem_spread_node(void) { if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) current->cpuset_mem_spread_rotor = node_random(¤t->mems_allowed); return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); } int cpuset_slab_spread_node(void) { if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) current->cpuset_slab_spread_rotor = node_random(¤t->mems_allowed); return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); } EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); /** * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? * @tsk1: pointer to task_struct of some task. * @tsk2: pointer to task_struct of some other task. * * Description: Return true if @tsk1's mems_allowed intersects the * mems_allowed of @tsk2. Used by the OOM killer to determine if * one of the task's memory usage might impact the memory available * to the other. **/ int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, const struct task_struct *tsk2) { return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); } /** * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed * * Description: Prints current's name, cpuset name, and cached copy of its * mems_allowed to the kernel log. */ void cpuset_print_current_mems_allowed(void) { struct cgroup *cgrp; rcu_read_lock(); cgrp = task_cs(current)->css.cgroup; pr_cont(",cpuset="); pr_cont_cgroup_name(cgrp); pr_cont(",mems_allowed=%*pbl", nodemask_pr_args(¤t->mems_allowed)); rcu_read_unlock(); } /* * Collection of memory_pressure is suppressed unless * this flag is enabled by writing "1" to the special * cpuset file 'memory_pressure_enabled' in the root cpuset. */ int cpuset_memory_pressure_enabled __read_mostly; /** * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. * * Keep a running average of the rate of synchronous (direct) * page reclaim efforts initiated by tasks in each cpuset. * * This represents the rate at which some task in the cpuset * ran low on memory on all nodes it was allowed to use, and * had to enter the kernels page reclaim code in an effort to * create more free memory by tossing clean pages or swapping * or writing dirty pages. * * Display to user space in the per-cpuset read-only file * "memory_pressure". Value displayed is an integer * representing the recent rate of entry into the synchronous * (direct) page reclaim by any task attached to the cpuset. **/ void __cpuset_memory_pressure_bump(void) { rcu_read_lock(); fmeter_markevent(&task_cs(current)->fmeter); rcu_read_unlock(); } #ifdef CONFIG_PROC_PID_CPUSET /* * proc_cpuset_show() * - Print tasks cpuset path into seq_file. * - Used for /proc//cpuset. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it * doesn't really matter if tsk->cpuset changes after we read it, * and we take cpuset_mutex, keeping cpuset_attach() from changing it * anyway. */ int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk) { char *buf; struct cgroup_subsys_state *css; int retval; retval = -ENOMEM; buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; css = task_get_css(tsk, cpuset_cgrp_id); retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, current->nsproxy->cgroup_ns); css_put(css); if (retval >= PATH_MAX) retval = -ENAMETOOLONG; if (retval < 0) goto out_free; seq_puts(m, buf); seq_putc(m, '\n'); retval = 0; out_free: kfree(buf); out: return retval; } #endif /* CONFIG_PROC_PID_CPUSET */ /* Display task mems_allowed in /proc//status file. */ void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { seq_printf(m, "Mems_allowed:\t%*pb\n", nodemask_pr_args(&task->mems_allowed)); seq_printf(m, "Mems_allowed_list:\t%*pbl\n", nodemask_pr_args(&task->mems_allowed)); }