/* * Implementation of the kernel access vector cache (AVC). * * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> * James Morris <jmorris@redhat.com> * * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> * Replaced the avc_lock spinlock by RCU. * * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, * as published by the Free Software Foundation. */ #include <linux/types.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/dcache.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/percpu.h> #include <net/sock.h> #include <linux/un.h> #include <net/af_unix.h> #include <linux/ip.h> #include <linux/audit.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include "avc.h" #include "avc_ss.h" static const struct av_perm_to_string av_perm_to_string[] = { #define S_(c, v, s) { c, v, s }, #include "av_perm_to_string.h" #undef S_ }; static const char *class_to_string[] = { #define S_(s) s, #include "class_to_string.h" #undef S_ }; #define TB_(s) static const char * s [] = { #define TE_(s) }; #define S_(s) s, #include "common_perm_to_string.h" #undef TB_ #undef TE_ #undef S_ static const struct av_inherit av_inherit[] = { #define S_(c, i, b) { c, common_##i##_perm_to_string, b }, #include "av_inherit.h" #undef S_ }; const struct selinux_class_perm selinux_class_perm = { av_perm_to_string, ARRAY_SIZE(av_perm_to_string), class_to_string, ARRAY_SIZE(class_to_string), av_inherit, ARRAY_SIZE(av_inherit) }; #define AVC_CACHE_SLOTS 512 #define AVC_DEF_CACHE_THRESHOLD 512 #define AVC_CACHE_RECLAIM 16 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS #define avc_cache_stats_incr(field) \ do { \ per_cpu(avc_cache_stats, get_cpu()).field++; \ put_cpu(); \ } while (0) #else #define avc_cache_stats_incr(field) do {} while (0) #endif struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; atomic_t used; /* used recently */ }; struct avc_node { struct avc_entry ae; struct list_head list; struct rcu_head rhead; }; struct avc_cache { struct list_head slots[AVC_CACHE_SLOTS]; spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ atomic_t lru_hint; /* LRU hint for reclaim scan */ atomic_t active_nodes; u32 latest_notif; /* latest revocation notification */ }; struct avc_callback_node { int (*callback) (u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained); u32 events; u32 ssid; u32 tsid; u16 tclass; u32 perms; struct avc_callback_node *next; }; /* Exported via selinufs */ unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; #endif static struct avc_cache avc_cache; static struct avc_callback_node *avc_callbacks; static struct kmem_cache *avc_node_cachep; static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) { return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); } /** * avc_dump_av - Display an access vector in human-readable form. * @tclass: target security class * @av: access vector */ static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) { const char **common_pts = NULL; u32 common_base = 0; int i, i2, perm; if (av == 0) { audit_log_format(ab, " null"); return; } for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { if (av_inherit[i].tclass == tclass) { common_pts = av_inherit[i].common_pts; common_base = av_inherit[i].common_base; break; } } audit_log_format(ab, " {"); i = 0; perm = 1; while (perm < common_base) { if (perm & av) { audit_log_format(ab, " %s", common_pts[i]); av &= ~perm; } i++; perm <<= 1; } while (i < sizeof(av) * 8) { if (perm & av) { for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { if ((av_perm_to_string[i2].tclass == tclass) && (av_perm_to_string[i2].value == perm)) break; } if (i2 < ARRAY_SIZE(av_perm_to_string)) { audit_log_format(ab, " %s", av_perm_to_string[i2].name); av &= ~perm; } } i++; perm <<= 1; } if (av) audit_log_format(ab, " 0x%x", av); audit_log_format(ab, " }"); } /** * avc_dump_query - Display a SID pair and a class in human-readable form. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class */ static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) { int rc; char *scontext; u32 scontext_len; rc = security_sid_to_context(ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, "ssid=%d", ssid); else { audit_log_format(ab, "scontext=%s", scontext); kfree(scontext); } rc = security_sid_to_context(tsid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " tsid=%d", tsid); else { audit_log_format(ab, " tcontext=%s", scontext); kfree(scontext); } BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]); audit_log_format(ab, " tclass=%s", class_to_string[tclass]); } /** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */ void __init avc_init(void) { int i; for (i = 0; i < AVC_CACHE_SLOTS; i++) { INIT_LIST_HEAD(&avc_cache.slots[i]); spin_lock_init(&avc_cache.slots_lock[i]); } atomic_set(&avc_cache.active_nodes, 0); atomic_set(&avc_cache.lru_hint, 0); avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 0, SLAB_PANIC, NULL); audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); } int avc_get_hash_stats(char *page) { int i, chain_len, max_chain_len, slots_used; struct avc_node *node; rcu_read_lock(); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { if (!list_empty(&avc_cache.slots[i])) { slots_used++; chain_len = 0; list_for_each_entry_rcu(node, &avc_cache.slots[i], list) chain_len++; if (chain_len > max_chain_len) max_chain_len = chain_len; } } rcu_read_unlock(); return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", atomic_read(&avc_cache.active_nodes), slots_used, AVC_CACHE_SLOTS, max_chain_len); } static void avc_node_free(struct rcu_head *rhead) { struct avc_node *node = container_of(rhead, struct avc_node, rhead); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); } static void avc_node_delete(struct avc_node *node) { list_del_rcu(&node->list); call_rcu(&node->rhead, avc_node_free); atomic_dec(&avc_cache.active_nodes); } static void avc_node_kill(struct avc_node *node) { kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); atomic_dec(&avc_cache.active_nodes); } static void avc_node_replace(struct avc_node *new, struct avc_node *old) { list_replace_rcu(&old->list, &new->list); call_rcu(&old->rhead, avc_node_free); atomic_dec(&avc_cache.active_nodes); } static inline int avc_reclaim_node(void) { struct avc_node *node; int hvalue, try, ecx; unsigned long flags; for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) { hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags)) continue; list_for_each_entry(node, &avc_cache.slots[hvalue], list) { if (atomic_dec_and_test(&node->ae.used)) { /* Recently Unused */ avc_node_delete(node); avc_cache_stats_incr(reclaims); ecx++; if (ecx >= AVC_CACHE_RECLAIM) { spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); goto out; } } } spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); } out: return ecx; } static struct avc_node *avc_alloc_node(void) { struct avc_node *node; node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC); if (!node) goto out; INIT_RCU_HEAD(&node->rhead); INIT_LIST_HEAD(&node->list); atomic_set(&node->ae.used, 1); avc_cache_stats_incr(allocations); if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) avc_reclaim_node(); out: return node; } static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) { node->ae.ssid = ssid; node->ae.tsid = tsid; node->ae.tclass = tclass; memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd)); } static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node, *ret = NULL; int hvalue; hvalue = avc_hash(ssid, tsid, tclass); list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) { if (ssid == node->ae.ssid && tclass == node->ae.tclass && tsid == node->ae.tsid) { ret = node; break; } } if (ret == NULL) { /* cache miss */ goto out; } /* cache hit */ if (atomic_read(&ret->ae.used) != 1) atomic_set(&ret->ae.used, 1); out: return ret; } /** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * * Look up an AVC entry that is valid for the * @requested permissions between the SID pair * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function return the avc_node. * Otherwise, this function returns NULL. */ static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested) { struct avc_node *node; avc_cache_stats_incr(lookups); node = avc_search_node(ssid, tsid, tclass); if (node && ((node->ae.avd.decided & requested) == requested)) { avc_cache_stats_incr(hits); goto out; } node = NULL; avc_cache_stats_incr(misses); out: return node; } static int avc_latest_notif_update(int seqno, int is_insert) { int ret = 0; static DEFINE_SPINLOCK(notif_lock); unsigned long flag; spin_lock_irqsave(¬if_lock, flag); if (is_insert) { if (seqno < avc_cache.latest_notif) { printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n", seqno, avc_cache.latest_notif); ret = -EAGAIN; } } else { if (seqno > avc_cache.latest_notif) avc_cache.latest_notif = seqno; } spin_unlock_irqrestore(¬if_lock, flag); return ret; } /** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @ae: AVC entry * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @ae->avd.seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */ static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) { struct avc_node *pos, *node = NULL; int hvalue; unsigned long flag; if (avc_latest_notif_update(ae->avd.seqno, 1)) goto out; node = avc_alloc_node(); if (node) { hvalue = avc_hash(ssid, tsid, tclass); avc_node_populate(node, ssid, tsid, tclass, ae); spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { if (pos->ae.ssid == ssid && pos->ae.tsid == tsid && pos->ae.tclass == tclass) { avc_node_replace(node, pos); goto found; } } list_add_rcu(&node->list, &avc_cache.slots[hvalue]); found: spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); } out: return node; } static inline void avc_print_ipv6_addr(struct audit_buffer *ab, struct in6_addr *addr, __be16 port, char *name1, char *name2) { if (!ipv6_addr_any(addr)) audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr)); if (port) audit_log_format(ab, " %s=%d", name2, ntohs(port)); } static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr, __be16 port, char *name1, char *name2) { if (addr) audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr)); if (port) audit_log_format(ab, " %s=%d", name2, ntohs(port)); } /** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */ void avc_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct avc_audit_data *a) { struct task_struct *tsk = current; struct inode *inode = NULL; u32 denied, audited; struct audit_buffer *ab; denied = requested & ~avd->allowed; if (denied) { audited = denied; if (!(audited & avd->auditdeny)) return; } else if (result) { audited = denied = requested; } else { audited = requested; if (!(audited & avd->auditallow)) return; } ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC); if (!ab) return; /* audit_panic has been called */ audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted"); avc_dump_av(ab, tclass,audited); audit_log_format(ab, " for "); if (a && a->tsk) tsk = a->tsk; if (tsk && tsk->pid) { audit_log_format(ab, " pid=%d comm=", tsk->pid); audit_log_untrustedstring(ab, tsk->comm); } if (a) { switch (a->type) { case AVC_AUDIT_DATA_IPC: audit_log_format(ab, " key=%d", a->u.ipc_id); break; case AVC_AUDIT_DATA_CAP: audit_log_format(ab, " capability=%d", a->u.cap); break; case AVC_AUDIT_DATA_FS: if (a->u.fs.dentry) { struct dentry *dentry = a->u.fs.dentry; if (a->u.fs.mnt) { audit_log_d_path(ab, "path=", dentry, a->u.fs.mnt); } else { audit_log_format(ab, " name="); audit_log_untrustedstring(ab, dentry->d_name.name); } inode = dentry->d_inode; } else if (a->u.fs.inode) { struct dentry *dentry; inode = a->u.fs.inode; dentry = d_find_alias(inode); if (dentry) { audit_log_format(ab, " name="); audit_log_untrustedstring(ab, dentry->d_name.name); dput(dentry); } } if (inode) audit_log_format(ab, " dev=%s ino=%lu", inode->i_sb->s_id, inode->i_ino); break; case AVC_AUDIT_DATA_NET: if (a->u.net.sk) { struct sock *sk = a->u.net.sk; struct unix_sock *u; int len = 0; char *p = NULL; switch (sk->sk_family) { case AF_INET: { struct inet_sock *inet = inet_sk(sk); avc_print_ipv4_addr(ab, inet->rcv_saddr, inet->sport, "laddr", "lport"); avc_print_ipv4_addr(ab, inet->daddr, inet->dport, "faddr", "fport"); break; } case AF_INET6: { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *inet6 = inet6_sk(sk); avc_print_ipv6_addr(ab, &inet6->rcv_saddr, inet->sport, "laddr", "lport"); avc_print_ipv6_addr(ab, &inet6->daddr, inet->dport, "faddr", "fport"); break; } case AF_UNIX: u = unix_sk(sk); if (u->dentry) { audit_log_d_path(ab, "path=", u->dentry, u->mnt); break; } if (!u->addr) break; len = u->addr->len-sizeof(short); p = &u->addr->name->sun_path[0]; audit_log_format(ab, " path="); if (*p) audit_log_untrustedstring(ab, p); else audit_log_hex(ab, p, len); break; } } switch (a->u.net.family) { case AF_INET: avc_print_ipv4_addr(ab, a->u.net.v4info.saddr, a->u.net.sport, "saddr", "src"); avc_print_ipv4_addr(ab, a->u.net.v4info.daddr, a->u.net.dport, "daddr", "dest"); break; case AF_INET6: avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr, a->u.net.sport, "saddr", "src"); avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr, a->u.net.dport, "daddr", "dest"); break; } if (a->u.net.netif) audit_log_format(ab, " netif=%s", a->u.net.netif); break; } } audit_log_format(ab, " "); avc_dump_query(ab, ssid, tsid, tclass); audit_log_end(ab); } /** * avc_add_callback - Register a callback for security events. * @callback: callback function * @events: security events * @ssid: source security identifier or %SECSID_WILD * @tsid: target security identifier or %SECSID_WILD * @tclass: target security class * @perms: permissions * * Register a callback function for events in the set @events * related to the SID pair (@ssid, @tsid) and * and the permissions @perms, interpreting * @perms based on @tclass. Returns %0 on success or * -%ENOMEM if insufficient memory exists to add the callback. */ int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained), u32 events, u32 ssid, u32 tsid, u16 tclass, u32 perms) { struct avc_callback_node *c; int rc = 0; c = kmalloc(sizeof(*c), GFP_ATOMIC); if (!c) { rc = -ENOMEM; goto out; } c->callback = callback; c->events = events; c->ssid = ssid; c->tsid = tsid; c->perms = perms; c->next = avc_callbacks; avc_callbacks = c; out: return rc; } static inline int avc_sidcmp(u32 x, u32 y) { return (x == y || x == SECSID_WILD || y == SECSID_WILD); } /** * avc_update_node Update an AVC entry * @event : Updating event * @perms : Permission mask bits * @ssid,@tsid,@tclass : identifier of an AVC entry * * if a valid AVC entry doesn't exist,this function returns -ENOENT. * if kmalloc() called internal returns NULL, this function returns -ENOMEM. * otherwise, this function update the AVC entry. The original AVC-entry object * will release later by RCU. */ static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass) { int hvalue, rc = 0; unsigned long flag; struct avc_node *pos, *node, *orig = NULL; node = avc_alloc_node(); if (!node) { rc = -ENOMEM; goto out; } /* Lock the target slot */ hvalue = avc_hash(ssid, tsid, tclass); spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); list_for_each_entry(pos, &avc_cache.slots[hvalue], list){ if ( ssid==pos->ae.ssid && tsid==pos->ae.tsid && tclass==pos->ae.tclass ){ orig = pos; break; } } if (!orig) { rc = -ENOENT; avc_node_kill(node); goto out_unlock; } /* * Copy and replace original node. */ avc_node_populate(node, ssid, tsid, tclass, &orig->ae); switch (event) { case AVC_CALLBACK_GRANT: node->ae.avd.allowed |= perms; break; case AVC_CALLBACK_TRY_REVOKE: case AVC_CALLBACK_REVOKE: node->ae.avd.allowed &= ~perms; break; case AVC_CALLBACK_AUDITALLOW_ENABLE: node->ae.avd.auditallow |= perms; break; case AVC_CALLBACK_AUDITALLOW_DISABLE: node->ae.avd.auditallow &= ~perms; break; case AVC_CALLBACK_AUDITDENY_ENABLE: node->ae.avd.auditdeny |= perms; break; case AVC_CALLBACK_AUDITDENY_DISABLE: node->ae.avd.auditdeny &= ~perms; break; } avc_node_replace(node, orig); out_unlock: spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); out: return rc; } /** * avc_ss_reset - Flush the cache and revalidate migrated permissions. * @seqno: policy sequence number */ int avc_ss_reset(u32 seqno) { struct avc_callback_node *c; int i, rc = 0, tmprc; unsigned long flag; struct avc_node *node; for (i = 0; i < AVC_CACHE_SLOTS; i++) { spin_lock_irqsave(&avc_cache.slots_lock[i], flag); list_for_each_entry(node, &avc_cache.slots[i], list) avc_node_delete(node); spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); } for (c = avc_callbacks; c; c = c->next) { if (c->events & AVC_CALLBACK_RESET) { tmprc = c->callback(AVC_CALLBACK_RESET, 0, 0, 0, 0, NULL); /* save the first error encountered for the return value and continue processing the callbacks */ if (!rc) rc = tmprc; } } avc_latest_notif_update(seqno, 0); return rc; } /** * avc_has_perm_noaudit - Check permissions but perform no auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @flags: AVC_STRICT or 0 * @avd: access vector decisions * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Return a copy of the decisions * in @avd. Return %0 if all @requested permissions are granted, * -%EACCES if any permissions are denied, or another -errno upon * other errors. This function is typically called by avc_has_perm(), * but may also be called directly to separate permission checking from * auditing, e.g. in cases where a lock must be held for the check but * should be released for the auditing. */ int avc_has_perm_noaudit(u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned flags, struct av_decision *avd) { struct avc_node *node; struct avc_entry entry, *p_ae; int rc = 0; u32 denied; rcu_read_lock(); node = avc_lookup(ssid, tsid, tclass, requested); if (!node) { rcu_read_unlock(); rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd); if (rc) goto out; rcu_read_lock(); node = avc_insert(ssid,tsid,tclass,&entry); } p_ae = node ? &node->ae : &entry; if (avd) memcpy(avd, &p_ae->avd, sizeof(*avd)); denied = requested & ~(p_ae->avd.allowed); if (!requested || denied) { if (selinux_enforcing || (flags & AVC_STRICT)) rc = -EACCES; else if (node) avc_update_node(AVC_CALLBACK_GRANT,requested, ssid,tsid,tclass); } rcu_read_unlock(); out: return rc; } /** * avc_has_perm - Check permissions and perform any appropriate auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @auditdata: auxiliary audit data * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Audit the granting or denial of * permissions in accordance with the policy. Return %0 if all @requested * permissions are granted, -%EACCES if any permissions are denied, or * another -errno upon other errors. */ int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct avc_audit_data *auditdata) { struct av_decision avd; int rc; rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); return rc; }