// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com * Copyright (c) 2016 Facebook */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace_probe.h" #include "trace.h" #define CREATE_TRACE_POINTS #include "bpf_trace.h" #define bpf_event_rcu_dereference(p) \ rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex)) #ifdef CONFIG_MODULES struct bpf_trace_module { struct module *module; struct list_head list; }; static LIST_HEAD(bpf_trace_modules); static DEFINE_MUTEX(bpf_module_mutex); static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) { struct bpf_raw_event_map *btp, *ret = NULL; struct bpf_trace_module *btm; unsigned int i; mutex_lock(&bpf_module_mutex); list_for_each_entry(btm, &bpf_trace_modules, list) { for (i = 0; i < btm->module->num_bpf_raw_events; ++i) { btp = &btm->module->bpf_raw_events[i]; if (!strcmp(btp->tp->name, name)) { if (try_module_get(btm->module)) ret = btp; goto out; } } } out: mutex_unlock(&bpf_module_mutex); return ret; } #else static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name) { return NULL; } #endif /* CONFIG_MODULES */ u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags, const struct btf **btf, s32 *btf_id); /** * trace_call_bpf - invoke BPF program * @call: tracepoint event * @ctx: opaque context pointer * * kprobe handlers execute BPF programs via this helper. * Can be used from static tracepoints in the future. * * Return: BPF programs always return an integer which is interpreted by * kprobe handler as: * 0 - return from kprobe (event is filtered out) * 1 - store kprobe event into ring buffer * Other values are reserved and currently alias to 1 */ unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx) { unsigned int ret; cant_sleep(); if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) { /* * since some bpf program is already running on this cpu, * don't call into another bpf program (same or different) * and don't send kprobe event into ring-buffer, * so return zero here */ ret = 0; goto out; } /* * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock * to all call sites, we did a bpf_prog_array_valid() there to check * whether call->prog_array is empty or not, which is * a heurisitc to speed up execution. * * If bpf_prog_array_valid() fetched prog_array was * non-NULL, we go into trace_call_bpf() and do the actual * proper rcu_dereference() under RCU lock. * If it turns out that prog_array is NULL then, we bail out. * For the opposite, if the bpf_prog_array_valid() fetched pointer * was NULL, you'll skip the prog_array with the risk of missing * out of events when it was updated in between this and the * rcu_dereference() which is accepted risk. */ ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN); out: __this_cpu_dec(bpf_prog_active); return ret; } #ifdef CONFIG_BPF_KPROBE_OVERRIDE BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc) { regs_set_return_value(regs, rc); override_function_with_return(regs); return 0; } static const struct bpf_func_proto bpf_override_return_proto = { .func = bpf_override_return, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; #endif static __always_inline int bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr) { int ret; ret = copy_from_user_nofault(dst, unsafe_ptr, size); if (unlikely(ret < 0)) memset(dst, 0, size); return ret; } BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size, const void __user *, unsafe_ptr) { return bpf_probe_read_user_common(dst, size, unsafe_ptr); } const struct bpf_func_proto bpf_probe_read_user_proto = { .func = bpf_probe_read_user, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static __always_inline int bpf_probe_read_user_str_common(void *dst, u32 size, const void __user *unsafe_ptr) { int ret; /* * NB: We rely on strncpy_from_user() not copying junk past the NUL * terminator into `dst`. * * strncpy_from_user() does long-sized strides in the fast path. If the * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`, * then there could be junk after the NUL in `dst`. If user takes `dst` * and keys a hash map with it, then semantically identical strings can * occupy multiple entries in the map. */ ret = strncpy_from_user_nofault(dst, unsafe_ptr, size); if (unlikely(ret < 0)) memset(dst, 0, size); return ret; } BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size, const void __user *, unsafe_ptr) { return bpf_probe_read_user_str_common(dst, size, unsafe_ptr); } const struct bpf_func_proto bpf_probe_read_user_str_proto = { .func = bpf_probe_read_user_str, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static __always_inline int bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) { int ret; ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); if (unlikely(ret < 0)) memset(dst, 0, size); return ret; } BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, const void *, unsafe_ptr) { return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); } const struct bpf_func_proto bpf_probe_read_kernel_proto = { .func = bpf_probe_read_kernel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static __always_inline int bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr) { int ret; /* * The strncpy_from_kernel_nofault() call will likely not fill the * entire buffer, but that's okay in this circumstance as we're probing * arbitrary memory anyway similar to bpf_probe_read_*() and might * as well probe the stack. Thus, memory is explicitly cleared * only in error case, so that improper users ignoring return * code altogether don't copy garbage; otherwise length of string * is returned that can be used for bpf_perf_event_output() et al. */ ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size); if (unlikely(ret < 0)) memset(dst, 0, size); return ret; } BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size, const void *, unsafe_ptr) { return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); } const struct bpf_func_proto bpf_probe_read_kernel_str_proto = { .func = bpf_probe_read_kernel_str, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size, const void *, unsafe_ptr) { if ((unsigned long)unsafe_ptr < TASK_SIZE) { return bpf_probe_read_user_common(dst, size, (__force void __user *)unsafe_ptr); } return bpf_probe_read_kernel_common(dst, size, unsafe_ptr); } static const struct bpf_func_proto bpf_probe_read_compat_proto = { .func = bpf_probe_read_compat, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size, const void *, unsafe_ptr) { if ((unsigned long)unsafe_ptr < TASK_SIZE) { return bpf_probe_read_user_str_common(dst, size, (__force void __user *)unsafe_ptr); } return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr); } static const struct bpf_func_proto bpf_probe_read_compat_str_proto = { .func = bpf_probe_read_compat_str, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */ BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src, u32, size) { /* * Ensure we're in user context which is safe for the helper to * run. This helper has no business in a kthread. * * access_ok() should prevent writing to non-user memory, but in * some situations (nommu, temporary switch, etc) access_ok() does * not provide enough validation, hence the check on KERNEL_DS. * * nmi_uaccess_okay() ensures the probe is not run in an interim * state, when the task or mm are switched. This is specifically * required to prevent the use of temporary mm. */ if (unlikely(in_interrupt() || current->flags & (PF_KTHREAD | PF_EXITING))) return -EPERM; if (unlikely(uaccess_kernel())) return -EPERM; if (unlikely(!nmi_uaccess_okay())) return -EPERM; return copy_to_user_nofault(unsafe_ptr, src, size); } static const struct bpf_func_proto bpf_probe_write_user_proto = { .func = bpf_probe_write_user, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto *bpf_get_probe_write_proto(void) { if (!capable(CAP_SYS_ADMIN)) return NULL; pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!", current->comm, task_pid_nr(current)); return &bpf_probe_write_user_proto; } static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) { strncpy_from_user_nofault(buf, user_ptr, bufsz); break; } fallthrough; #endif case 'k': strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); break; case 'u': strncpy_from_user_nofault(buf, user_ptr, bufsz); break; } } static DEFINE_RAW_SPINLOCK(trace_printk_lock); #define BPF_TRACE_PRINTK_SIZE 1024 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...) { static char buf[BPF_TRACE_PRINTK_SIZE]; unsigned long flags; va_list ap; int ret; raw_spin_lock_irqsave(&trace_printk_lock, flags); va_start(ap, fmt); ret = vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); /* vsnprintf() will not append null for zero-length strings */ if (ret == 0) buf[0] = '\0'; trace_bpf_trace_printk(buf); raw_spin_unlock_irqrestore(&trace_printk_lock, flags); return ret; } /* * Only limited trace_printk() conversion specifiers allowed: * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s */ BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1, u64, arg2, u64, arg3) { int i, mod[3] = {}, fmt_cnt = 0; char buf[64], fmt_ptype; void *unsafe_ptr = NULL; bool str_seen = false; /* * bpf_check()->check_func_arg()->check_stack_boundary() * guarantees that fmt points to bpf program stack, * fmt_size bytes of it were initialized and fmt_size > 0 */ if (fmt[--fmt_size] != 0) return -EINVAL; /* check format string for allowed specifiers */ for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) return -EINVAL; if (fmt[i] != '%') continue; if (fmt_cnt >= 3) return -EINVAL; /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ i++; if (fmt[i] == 'l') { mod[fmt_cnt]++; i++; } else if (fmt[i] == 'p') { mod[fmt_cnt]++; if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 'B') { i++; goto fmt_next; } /* disallow any further format extensions */ if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) return -EINVAL; goto fmt_next; } else if (fmt[i] == 's') { mod[fmt_cnt]++; fmt_ptype = fmt[i]; fmt_str: if (str_seen) /* allow only one '%s' per fmt string */ return -EINVAL; str_seen = true; if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) return -EINVAL; switch (fmt_cnt) { case 0: unsafe_ptr = (void *)(long)arg1; arg1 = (long)buf; break; case 1: unsafe_ptr = (void *)(long)arg2; arg2 = (long)buf; break; case 2: unsafe_ptr = (void *)(long)arg3; arg3 = (long)buf; break; } bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype, sizeof(buf)); goto fmt_next; } if (fmt[i] == 'l') { mod[fmt_cnt]++; i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x') return -EINVAL; fmt_next: fmt_cnt++; } /* Horrid workaround for getting va_list handling working with different * argument type combinations generically for 32 and 64 bit archs. */ #define __BPF_TP_EMIT() __BPF_ARG3_TP() #define __BPF_TP(...) \ bpf_do_trace_printk(fmt, ##__VA_ARGS__) #define __BPF_ARG1_TP(...) \ ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \ ? __BPF_TP(arg1, ##__VA_ARGS__) \ : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \ ? __BPF_TP((long)arg1, ##__VA_ARGS__) \ : __BPF_TP((u32)arg1, ##__VA_ARGS__))) #define __BPF_ARG2_TP(...) \ ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \ ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \ : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \ ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \ : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__))) #define __BPF_ARG3_TP(...) \ ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \ ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \ : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \ ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \ : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__))) return __BPF_TP_EMIT(); } static const struct bpf_func_proto bpf_trace_printk_proto = { .func = bpf_trace_printk, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM, .arg2_type = ARG_CONST_SIZE, }; const struct bpf_func_proto *bpf_get_trace_printk_proto(void) { /* * This program might be calling bpf_trace_printk, * so enable the associated bpf_trace/bpf_trace_printk event. * Repeat this each time as it is possible a user has * disabled bpf_trace_printk events. By loading a program * calling bpf_trace_printk() however the user has expressed * the intent to see such events. */ if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1)) pr_warn_ratelimited("could not enable bpf_trace_printk events"); return &bpf_trace_printk_proto; } #define MAX_SEQ_PRINTF_VARARGS 12 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6 #define MAX_SEQ_PRINTF_STR_LEN 128 struct bpf_seq_printf_buf { char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN]; }; static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf); static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used); BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size, const void *, data, u32, data_len) { int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0; int i, buf_used, copy_size, num_args; u64 params[MAX_SEQ_PRINTF_VARARGS]; struct bpf_seq_printf_buf *bufs; const u64 *args = data; buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used); if (WARN_ON_ONCE(buf_used > 1)) { err = -EBUSY; goto out; } bufs = this_cpu_ptr(&bpf_seq_printf_buf); /* * bpf_check()->check_func_arg()->check_stack_boundary() * guarantees that fmt points to bpf program stack, * fmt_size bytes of it were initialized and fmt_size > 0 */ if (fmt[--fmt_size] != 0) goto out; if (data_len & 7) goto out; for (i = 0; i < fmt_size; i++) { if (fmt[i] == '%') { if (fmt[i + 1] == '%') i++; else if (!data || !data_len) goto out; } } num_args = data_len / 8; /* check format string for allowed specifiers */ for (i = 0; i < fmt_size; i++) { /* only printable ascii for now. */ if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) { err = -E2BIG; goto out; } if (fmt_cnt >= num_args) { err = -EINVAL; goto out; } /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */ i++; /* skip optional "[0 +-][num]" width formating field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 's') { void *unsafe_ptr; /* try our best to copy */ if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { err = -E2BIG; goto out; } unsafe_ptr = (void *)(long)args[fmt_cnt]; err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt], unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN); if (err < 0) bufs->buf[memcpy_cnt][0] = '\0'; params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; fmt_cnt++; memcpy_cnt++; continue; } if (fmt[i] == 'p') { if (fmt[i + 1] == 0 || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 'B') { /* just kernel pointers */ params[fmt_cnt] = args[fmt_cnt]; fmt_cnt++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') { err = -EINVAL; goto out; } if (fmt[i + 2] != '4' && fmt[i + 2] != '6') { err = -EINVAL; goto out; } if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) { err = -E2BIG; goto out; } copy_size = (fmt[i + 2] == '4') ? 4 : 16; err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt], (void *) (long) args[fmt_cnt], copy_size); if (err < 0) memset(bufs->buf[memcpy_cnt], 0, copy_size); params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt]; i += 2; fmt_cnt++; memcpy_cnt++; continue; } if (fmt[i] == 'l') { i++; if (fmt[i] == 'l') i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } params[fmt_cnt] = args[fmt_cnt]; fmt_cnt++; } /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give * all of them to seq_printf(). */ seq_printf(m, fmt, params[0], params[1], params[2], params[3], params[4], params[5], params[6], params[7], params[8], params[9], params[10], params[11]); err = seq_has_overflowed(m) ? -EOVERFLOW : 0; out: this_cpu_dec(bpf_seq_printf_buf_used); return err; } BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file) static const struct bpf_func_proto bpf_seq_printf_proto = { .func = bpf_seq_printf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &btf_seq_file_ids[0], .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_PTR_TO_MEM_OR_NULL, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len) { return seq_write(m, data, len) ? -EOVERFLOW : 0; } static const struct bpf_func_proto bpf_seq_write_proto = { .func = bpf_seq_write, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &btf_seq_file_ids[0], .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr, u32, btf_ptr_size, u64, flags) { const struct btf *btf; s32 btf_id; int ret; ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); if (ret) return ret; return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags); } static const struct bpf_func_proto bpf_seq_printf_btf_proto = { .func = bpf_seq_printf_btf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &btf_seq_file_ids[0], .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; static __always_inline int get_map_perf_counter(struct bpf_map *map, u64 flags, u64 *value, u64 *enabled, u64 *running) { struct bpf_array *array = container_of(map, struct bpf_array, map); unsigned int cpu = smp_processor_id(); u64 index = flags & BPF_F_INDEX_MASK; struct bpf_event_entry *ee; if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; if (index == BPF_F_CURRENT_CPU) index = cpu; if (unlikely(index >= array->map.max_entries)) return -E2BIG; ee = READ_ONCE(array->ptrs[index]); if (!ee) return -ENOENT; return perf_event_read_local(ee->event, value, enabled, running); } BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags) { u64 value = 0; int err; err = get_map_perf_counter(map, flags, &value, NULL, NULL); /* * this api is ugly since we miss [-22..-2] range of valid * counter values, but that's uapi */ if (err) return err; return value; } static const struct bpf_func_proto bpf_perf_event_read_proto = { .func = bpf_perf_event_read, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags, struct bpf_perf_event_value *, buf, u32, size) { int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_perf_event_value))) goto clear; err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled, &buf->running); if (unlikely(err)) goto clear; return 0; clear: memset(buf, 0, size); return err; } static const struct bpf_func_proto bpf_perf_event_read_value_proto = { .func = bpf_perf_event_read_value, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static __always_inline u64 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map, u64 flags, struct perf_sample_data *sd) { struct bpf_array *array = container_of(map, struct bpf_array, map); unsigned int cpu = smp_processor_id(); u64 index = flags & BPF_F_INDEX_MASK; struct bpf_event_entry *ee; struct perf_event *event; if (index == BPF_F_CURRENT_CPU) index = cpu; if (unlikely(index >= array->map.max_entries)) return -E2BIG; ee = READ_ONCE(array->ptrs[index]); if (!ee) return -ENOENT; event = ee->event; if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE || event->attr.config != PERF_COUNT_SW_BPF_OUTPUT)) return -EINVAL; if (unlikely(event->oncpu != cpu)) return -EOPNOTSUPP; return perf_event_output(event, sd, regs); } /* * Support executing tracepoints in normal, irq, and nmi context that each call * bpf_perf_event_output */ struct bpf_trace_sample_data { struct perf_sample_data sds[3]; }; static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds); static DEFINE_PER_CPU(int, bpf_trace_nest_level); BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map, u64, flags, void *, data, u64, size) { struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds); int nest_level = this_cpu_inc_return(bpf_trace_nest_level); struct perf_raw_record raw = { .frag = { .size = size, .data = data, }, }; struct perf_sample_data *sd; int err; if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) { err = -EBUSY; goto out; } sd = &sds->sds[nest_level - 1]; if (unlikely(flags & ~(BPF_F_INDEX_MASK))) { err = -EINVAL; goto out; } perf_sample_data_init(sd, 0, 0); sd->raw = &raw; err = __bpf_perf_event_output(regs, map, flags, sd); out: this_cpu_dec(bpf_trace_nest_level); return err; } static const struct bpf_func_proto bpf_perf_event_output_proto = { .func = bpf_perf_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; static DEFINE_PER_CPU(int, bpf_event_output_nest_level); struct bpf_nested_pt_regs { struct pt_regs regs[3]; }; static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs); static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds); u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) { int nest_level = this_cpu_inc_return(bpf_event_output_nest_level); struct perf_raw_frag frag = { .copy = ctx_copy, .size = ctx_size, .data = ctx, }; struct perf_raw_record raw = { .frag = { { .next = ctx_size ? &frag : NULL, }, .size = meta_size, .data = meta, }, }; struct perf_sample_data *sd; struct pt_regs *regs; u64 ret; if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) { ret = -EBUSY; goto out; } sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]); regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]); perf_fetch_caller_regs(regs); perf_sample_data_init(sd, 0, 0); sd->raw = &raw; ret = __bpf_perf_event_output(regs, map, flags, sd); out: this_cpu_dec(bpf_event_output_nest_level); return ret; } BPF_CALL_0(bpf_get_current_task) { return (long) current; } const struct bpf_func_proto bpf_get_current_task_proto = { .func = bpf_get_current_task, .gpl_only = true, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct cgroup *cgrp; if (unlikely(idx >= array->map.max_entries)) return -E2BIG; cgrp = READ_ONCE(array->ptrs[idx]); if (unlikely(!cgrp)) return -EAGAIN; return task_under_cgroup_hierarchy(current, cgrp); } static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { .func = bpf_current_task_under_cgroup, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; struct send_signal_irq_work { struct irq_work irq_work; struct task_struct *task; u32 sig; enum pid_type type; }; static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work); static void do_bpf_send_signal(struct irq_work *entry) { struct send_signal_irq_work *work; work = container_of(entry, struct send_signal_irq_work, irq_work); group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type); } static int bpf_send_signal_common(u32 sig, enum pid_type type) { struct send_signal_irq_work *work = NULL; /* Similar to bpf_probe_write_user, task needs to be * in a sound condition and kernel memory access be * permitted in order to send signal to the current * task. */ if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING))) return -EPERM; if (unlikely(uaccess_kernel())) return -EPERM; if (unlikely(!nmi_uaccess_okay())) return -EPERM; if (irqs_disabled()) { /* Do an early check on signal validity. Otherwise, * the error is lost in deferred irq_work. */ if (unlikely(!valid_signal(sig))) return -EINVAL; work = this_cpu_ptr(&send_signal_work); if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) return -EBUSY; /* Add the current task, which is the target of sending signal, * to the irq_work. The current task may change when queued * irq works get executed. */ work->task = current; work->sig = sig; work->type = type; irq_work_queue(&work->irq_work); return 0; } return group_send_sig_info(sig, SEND_SIG_PRIV, current, type); } BPF_CALL_1(bpf_send_signal, u32, sig) { return bpf_send_signal_common(sig, PIDTYPE_TGID); } static const struct bpf_func_proto bpf_send_signal_proto = { .func = bpf_send_signal, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_send_signal_thread, u32, sig) { return bpf_send_signal_common(sig, PIDTYPE_PID); } static const struct bpf_func_proto bpf_send_signal_thread_proto = { .func = bpf_send_signal_thread, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz) { long len; char *p; if (!sz) return 0; p = d_path(path, buf, sz); if (IS_ERR(p)) { len = PTR_ERR(p); } else { len = buf + sz - p; memmove(buf, p, len); } return len; } BTF_SET_START(btf_allowlist_d_path) #ifdef CONFIG_SECURITY BTF_ID(func, security_file_permission) BTF_ID(func, security_inode_getattr) BTF_ID(func, security_file_open) #endif #ifdef CONFIG_SECURITY_PATH BTF_ID(func, security_path_truncate) #endif BTF_ID(func, vfs_truncate) BTF_ID(func, vfs_fallocate) BTF_ID(func, dentry_open) BTF_ID(func, vfs_getattr) BTF_ID(func, filp_close) BTF_SET_END(btf_allowlist_d_path) static bool bpf_d_path_allowed(const struct bpf_prog *prog) { return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id); } BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path) static const struct bpf_func_proto bpf_d_path_proto = { .func = bpf_d_path, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_d_path_btf_ids[0], .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .allowed = bpf_d_path_allowed, }; #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \ BTF_F_PTR_RAW | BTF_F_ZERO) static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags, const struct btf **btf, s32 *btf_id) { const struct btf_type *t; if (unlikely(flags & ~(BTF_F_ALL))) return -EINVAL; if (btf_ptr_size != sizeof(struct btf_ptr)) return -EINVAL; *btf = bpf_get_btf_vmlinux(); if (IS_ERR_OR_NULL(*btf)) return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL; if (ptr->type_id > 0) *btf_id = ptr->type_id; else return -EINVAL; if (*btf_id > 0) t = btf_type_by_id(*btf, *btf_id); if (*btf_id <= 0 || !t) return -ENOENT; return 0; } BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr, u32, btf_ptr_size, u64, flags) { const struct btf *btf; s32 btf_id; int ret; ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id); if (ret) return ret; return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size, flags); } const struct bpf_func_proto bpf_snprintf_btf_proto = { .func = bpf_snprintf_btf, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; const struct bpf_func_proto * bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_get_current_comm: return &bpf_get_current_comm_proto; case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_perf_event_read: return &bpf_perf_event_read_proto; case BPF_FUNC_probe_write_user: return bpf_get_probe_write_proto(); case BPF_FUNC_current_task_under_cgroup: return &bpf_current_task_under_cgroup_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE case BPF_FUNC_probe_read: return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? NULL : &bpf_probe_read_compat_proto; case BPF_FUNC_probe_read_str: return security_locked_down(LOCKDOWN_BPF_READ) < 0 ? NULL : &bpf_probe_read_compat_str_proto; #endif #ifdef CONFIG_CGROUPS case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; #endif case BPF_FUNC_send_signal: return &bpf_send_signal_proto; case BPF_FUNC_send_signal_thread: return &bpf_send_signal_thread_proto; case BPF_FUNC_perf_event_read_value: return &bpf_perf_event_read_value_proto; case BPF_FUNC_get_ns_current_pid_tgid: return &bpf_get_ns_current_pid_tgid_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_get_task_stack: return &bpf_get_task_stack_proto; case BPF_FUNC_copy_from_user: return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; default: return NULL; } } static const struct bpf_func_proto * kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_perf_event_output_proto; case BPF_FUNC_get_stackid: return &bpf_get_stackid_proto; case BPF_FUNC_get_stack: return &bpf_get_stack_proto; #ifdef CONFIG_BPF_KPROBE_OVERRIDE case BPF_FUNC_override_return: return &bpf_override_return_proto; #endif default: return bpf_tracing_func_proto(func_id, prog); } } /* bpf+kprobe programs can access fields of 'struct pt_regs' */ static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(struct pt_regs)) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; /* * Assertion for 32 bit to make sure last 8 byte access * (BPF_DW) to the last 4 byte member is disallowed. */ if (off + size > sizeof(struct pt_regs)) return false; return true; } const struct bpf_verifier_ops kprobe_verifier_ops = { .get_func_proto = kprobe_prog_func_proto, .is_valid_access = kprobe_prog_is_valid_access, }; const struct bpf_prog_ops kprobe_prog_ops = { }; BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map, u64, flags, void *, data, u64, size) { struct pt_regs *regs = *(struct pt_regs **)tp_buff; /* * r1 points to perf tracepoint buffer where first 8 bytes are hidden * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it * from there and call the same bpf_perf_event_output() helper inline. */ return ____bpf_perf_event_output(regs, map, flags, data, size); } static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { .func = bpf_perf_event_output_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, u64, flags) { struct pt_regs *regs = *(struct pt_regs **)tp_buff; /* * Same comment as in bpf_perf_event_output_tp(), only that this time * the other helper's function body cannot be inlined due to being * external, thus we need to call raw helper function. */ return bpf_get_stackid((unsigned long) regs, (unsigned long) map, flags, 0, 0); } static const struct bpf_func_proto bpf_get_stackid_proto_tp = { .func = bpf_get_stackid_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size, u64, flags) { struct pt_regs *regs = *(struct pt_regs **)tp_buff; return bpf_get_stack((unsigned long) regs, (unsigned long) buf, (unsigned long) size, flags, 0); } static const struct bpf_func_proto bpf_get_stack_proto_tp = { .func = bpf_get_stack_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; static const struct bpf_func_proto * tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_perf_event_output_proto_tp; case BPF_FUNC_get_stackid: return &bpf_get_stackid_proto_tp; case BPF_FUNC_get_stack: return &bpf_get_stack_proto_tp; default: return bpf_tracing_func_proto(func_id, prog); } } static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); return true; } const struct bpf_verifier_ops tracepoint_verifier_ops = { .get_func_proto = tp_prog_func_proto, .is_valid_access = tp_prog_is_valid_access, }; const struct bpf_prog_ops tracepoint_prog_ops = { }; BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx, struct bpf_perf_event_value *, buf, u32, size) { int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_perf_event_value))) goto clear; err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled, &buf->running); if (unlikely(err)) goto clear; return 0; clear: memset(buf, 0, size); return err; } static const struct bpf_func_proto bpf_perf_prog_read_value_proto = { .func = bpf_perf_prog_read_value, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, }; BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx, void *, buf, u32, size, u64, flags) { #ifndef CONFIG_X86 return -ENOENT; #else static const u32 br_entry_size = sizeof(struct perf_branch_entry); struct perf_branch_stack *br_stack = ctx->data->br_stack; u32 to_copy; if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE)) return -EINVAL; if (unlikely(!br_stack)) return -EINVAL; if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE) return br_stack->nr * br_entry_size; if (!buf || (size % br_entry_size != 0)) return -EINVAL; to_copy = min_t(u32, br_stack->nr * br_entry_size, size); memcpy(buf, br_stack->entries, to_copy); return to_copy; #endif } static const struct bpf_func_proto bpf_read_branch_records_proto = { .func = bpf_read_branch_records, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM_OR_NULL, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; static const struct bpf_func_proto * pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_perf_event_output_proto_tp; case BPF_FUNC_get_stackid: return &bpf_get_stackid_proto_pe; case BPF_FUNC_get_stack: return &bpf_get_stack_proto_pe; case BPF_FUNC_perf_prog_read_value: return &bpf_perf_prog_read_value_proto; case BPF_FUNC_read_branch_records: return &bpf_read_branch_records_proto; default: return bpf_tracing_func_proto(func_id, prog); } } /* * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp * to avoid potential recursive reuse issue when/if tracepoints are added * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack. * * Since raw tracepoints run despite bpf_prog_active, support concurrent usage * in normal, irq, and nmi context. */ struct bpf_raw_tp_regs { struct pt_regs regs[3]; }; static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs); static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level); static struct pt_regs *get_bpf_raw_tp_regs(void) { struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs); int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level); if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) { this_cpu_dec(bpf_raw_tp_nest_level); return ERR_PTR(-EBUSY); } return &tp_regs->regs[nest_level - 1]; } static void put_bpf_raw_tp_regs(void) { this_cpu_dec(bpf_raw_tp_nest_level); } BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args, struct bpf_map *, map, u64, flags, void *, data, u64, size) { struct pt_regs *regs = get_bpf_raw_tp_regs(); int ret; if (IS_ERR(regs)) return PTR_ERR(regs); perf_fetch_caller_regs(regs); ret = ____bpf_perf_event_output(regs, map, flags, data, size); put_bpf_raw_tp_regs(); return ret; } static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = { .func = bpf_perf_event_output_raw_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; extern const struct bpf_func_proto bpf_skb_output_proto; extern const struct bpf_func_proto bpf_xdp_output_proto; BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args, struct bpf_map *, map, u64, flags) { struct pt_regs *regs = get_bpf_raw_tp_regs(); int ret; if (IS_ERR(regs)) return PTR_ERR(regs); perf_fetch_caller_regs(regs); /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */ ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map, flags, 0, 0); put_bpf_raw_tp_regs(); return ret; } static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = { .func = bpf_get_stackid_raw_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args, void *, buf, u32, size, u64, flags) { struct pt_regs *regs = get_bpf_raw_tp_regs(); int ret; if (IS_ERR(regs)) return PTR_ERR(regs); perf_fetch_caller_regs(regs); ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf, (unsigned long) size, flags, 0); put_bpf_raw_tp_regs(); return ret; } static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = { .func = bpf_get_stack_raw_tp, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; static const struct bpf_func_proto * raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_perf_event_output_proto_raw_tp; case BPF_FUNC_get_stackid: return &bpf_get_stackid_proto_raw_tp; case BPF_FUNC_get_stack: return &bpf_get_stack_proto_raw_tp; default: return bpf_tracing_func_proto(func_id, prog); } } const struct bpf_func_proto * tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { #ifdef CONFIG_NET case BPF_FUNC_skb_output: return &bpf_skb_output_proto; case BPF_FUNC_xdp_output: return &bpf_xdp_output_proto; case BPF_FUNC_skc_to_tcp6_sock: return &bpf_skc_to_tcp6_sock_proto; case BPF_FUNC_skc_to_tcp_sock: return &bpf_skc_to_tcp_sock_proto; case BPF_FUNC_skc_to_tcp_timewait_sock: return &bpf_skc_to_tcp_timewait_sock_proto; case BPF_FUNC_skc_to_tcp_request_sock: return &bpf_skc_to_tcp_request_sock_proto; case BPF_FUNC_skc_to_udp6_sock: return &bpf_skc_to_udp6_sock_proto; #endif case BPF_FUNC_seq_printf: return prog->expected_attach_type == BPF_TRACE_ITER ? &bpf_seq_printf_proto : NULL; case BPF_FUNC_seq_write: return prog->expected_attach_type == BPF_TRACE_ITER ? &bpf_seq_write_proto : NULL; case BPF_FUNC_seq_printf_btf: return prog->expected_attach_type == BPF_TRACE_ITER ? &bpf_seq_printf_btf_proto : NULL; case BPF_FUNC_d_path: return &bpf_d_path_proto; default: return raw_tp_prog_func_proto(func_id, prog); } } static bool raw_tp_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; return true; } static bool tracing_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; return btf_ctx_access(off, size, type, prog, info); } int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } const struct bpf_verifier_ops raw_tracepoint_verifier_ops = { .get_func_proto = raw_tp_prog_func_proto, .is_valid_access = raw_tp_prog_is_valid_access, }; const struct bpf_prog_ops raw_tracepoint_prog_ops = { #ifdef CONFIG_NET .test_run = bpf_prog_test_run_raw_tp, #endif }; const struct bpf_verifier_ops tracing_verifier_ops = { .get_func_proto = tracing_prog_func_proto, .is_valid_access = tracing_prog_is_valid_access, }; const struct bpf_prog_ops tracing_prog_ops = { .test_run = bpf_prog_test_run_tracing, }; static bool raw_tp_writable_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off == 0) { if (size != sizeof(u64) || type != BPF_READ) return false; info->reg_type = PTR_TO_TP_BUFFER; } return raw_tp_prog_is_valid_access(off, size, type, prog, info); } const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = { .get_func_proto = raw_tp_prog_func_proto, .is_valid_access = raw_tp_writable_prog_is_valid_access, }; const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = { }; static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_u64 = sizeof(u64); if (off < 0 || off >= sizeof(struct bpf_perf_event_data)) return false; if (type != BPF_READ) return false; if (off % size != 0) { if (sizeof(unsigned long) != 4) return false; if (size != 8) return false; if (off % size != 4) return false; } switch (off) { case bpf_ctx_range(struct bpf_perf_event_data, sample_period): bpf_ctx_record_field_size(info, size_u64); if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) return false; break; case bpf_ctx_range(struct bpf_perf_event_data, addr): bpf_ctx_record_field_size(info, size_u64); if (!bpf_ctx_narrow_access_ok(off, size, size_u64)) return false; break; default: if (size != sizeof(long)) return false; } return true; } static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct bpf_perf_event_data, sample_period): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, data), si->dst_reg, si->src_reg, offsetof(struct bpf_perf_event_data_kern, data)); *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, bpf_target_off(struct perf_sample_data, period, 8, target_size)); break; case offsetof(struct bpf_perf_event_data, addr): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, data), si->dst_reg, si->src_reg, offsetof(struct bpf_perf_event_data_kern, data)); *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, bpf_target_off(struct perf_sample_data, addr, 8, target_size)); break; default: *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, regs), si->dst_reg, si->src_reg, offsetof(struct bpf_perf_event_data_kern, regs)); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, si->off); break; } return insn - insn_buf; } const struct bpf_verifier_ops perf_event_verifier_ops = { .get_func_proto = pe_prog_func_proto, .is_valid_access = pe_prog_is_valid_access, .convert_ctx_access = pe_prog_convert_ctx_access, }; const struct bpf_prog_ops perf_event_prog_ops = { }; static DEFINE_MUTEX(bpf_event_mutex); #define BPF_TRACE_MAX_PROGS 64 int perf_event_attach_bpf_prog(struct perf_event *event, struct bpf_prog *prog) { struct bpf_prog_array *old_array; struct bpf_prog_array *new_array; int ret = -EEXIST; /* * Kprobe override only works if they are on the function entry, * and only if they are on the opt-in list. */ if (prog->kprobe_override && (!trace_kprobe_on_func_entry(event->tp_event) || !trace_kprobe_error_injectable(event->tp_event))) return -EINVAL; mutex_lock(&bpf_event_mutex); if (event->prog) goto unlock; old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); if (old_array && bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) { ret = -E2BIG; goto unlock; } ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array); if (ret < 0) goto unlock; /* set the new array to event->tp_event and set event->prog */ event->prog = prog; rcu_assign_pointer(event->tp_event->prog_array, new_array); bpf_prog_array_free(old_array); unlock: mutex_unlock(&bpf_event_mutex); return ret; } void perf_event_detach_bpf_prog(struct perf_event *event) { struct bpf_prog_array *old_array; struct bpf_prog_array *new_array; int ret; mutex_lock(&bpf_event_mutex); if (!event->prog) goto unlock; old_array = bpf_event_rcu_dereference(event->tp_event->prog_array); ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array); if (ret == -ENOENT) goto unlock; if (ret < 0) { bpf_prog_array_delete_safe(old_array, event->prog); } else { rcu_assign_pointer(event->tp_event->prog_array, new_array); bpf_prog_array_free(old_array); } bpf_prog_put(event->prog); event->prog = NULL; unlock: mutex_unlock(&bpf_event_mutex); } int perf_event_query_prog_array(struct perf_event *event, void __user *info) { struct perf_event_query_bpf __user *uquery = info; struct perf_event_query_bpf query = {}; struct bpf_prog_array *progs; u32 *ids, prog_cnt, ids_len; int ret; if (!perfmon_capable()) return -EPERM; if (event->attr.type != PERF_TYPE_TRACEPOINT) return -EINVAL; if (copy_from_user(&query, uquery, sizeof(query))) return -EFAULT; ids_len = query.ids_len; if (ids_len > BPF_TRACE_MAX_PROGS) return -E2BIG; ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN); if (!ids) return -ENOMEM; /* * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which * is required when user only wants to check for uquery->prog_cnt. * There is no need to check for it since the case is handled * gracefully in bpf_prog_array_copy_info. */ mutex_lock(&bpf_event_mutex); progs = bpf_event_rcu_dereference(event->tp_event->prog_array); ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt); mutex_unlock(&bpf_event_mutex); if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) || copy_to_user(uquery->ids, ids, ids_len * sizeof(u32))) ret = -EFAULT; kfree(ids); return ret; } extern struct bpf_raw_event_map __start__bpf_raw_tp[]; extern struct bpf_raw_event_map __stop__bpf_raw_tp[]; struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name) { struct bpf_raw_event_map *btp = __start__bpf_raw_tp; for (; btp < __stop__bpf_raw_tp; btp++) { if (!strcmp(btp->tp->name, name)) return btp; } return bpf_get_raw_tracepoint_module(name); } void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp) { struct module *mod; preempt_disable(); mod = __module_address((unsigned long)btp); module_put(mod); preempt_enable(); } static __always_inline void __bpf_trace_run(struct bpf_prog *prog, u64 *args) { cant_sleep(); rcu_read_lock(); (void) BPF_PROG_RUN(prog, args); rcu_read_unlock(); } #define UNPACK(...) __VA_ARGS__ #define REPEAT_1(FN, DL, X, ...) FN(X) #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__) #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__) #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__) #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__) #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__) #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__) #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__) #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__) #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__) #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__) #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__) #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__) #define SARG(X) u64 arg##X #define COPY(X) args[X] = arg##X #define __DL_COM (,) #define __DL_SEM (;) #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 #define BPF_TRACE_DEFN_x(x) \ void bpf_trace_run##x(struct bpf_prog *prog, \ REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \ { \ u64 args[x]; \ REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \ __bpf_trace_run(prog, args); \ } \ EXPORT_SYMBOL_GPL(bpf_trace_run##x) BPF_TRACE_DEFN_x(1); BPF_TRACE_DEFN_x(2); BPF_TRACE_DEFN_x(3); BPF_TRACE_DEFN_x(4); BPF_TRACE_DEFN_x(5); BPF_TRACE_DEFN_x(6); BPF_TRACE_DEFN_x(7); BPF_TRACE_DEFN_x(8); BPF_TRACE_DEFN_x(9); BPF_TRACE_DEFN_x(10); BPF_TRACE_DEFN_x(11); BPF_TRACE_DEFN_x(12); static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) { struct tracepoint *tp = btp->tp; /* * check that program doesn't access arguments beyond what's * available in this tracepoint */ if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64)) return -EINVAL; if (prog->aux->max_tp_access > btp->writable_size) return -EINVAL; return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, prog); } int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog) { return __bpf_probe_register(btp, prog); } int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog) { return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog); } int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id, u32 *fd_type, const char **buf, u64 *probe_offset, u64 *probe_addr) { bool is_tracepoint, is_syscall_tp; struct bpf_prog *prog; int flags, err = 0; prog = event->prog; if (!prog) return -ENOENT; /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */ if (prog->type == BPF_PROG_TYPE_PERF_EVENT) return -EOPNOTSUPP; *prog_id = prog->aux->id; flags = event->tp_event->flags; is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT; is_syscall_tp = is_syscall_trace_event(event->tp_event); if (is_tracepoint || is_syscall_tp) { *buf = is_tracepoint ? event->tp_event->tp->name : event->tp_event->name; *fd_type = BPF_FD_TYPE_TRACEPOINT; *probe_offset = 0x0; *probe_addr = 0x0; } else { /* kprobe/uprobe */ err = -EOPNOTSUPP; #ifdef CONFIG_KPROBE_EVENTS if (flags & TRACE_EVENT_FL_KPROBE) err = bpf_get_kprobe_info(event, fd_type, buf, probe_offset, probe_addr, event->attr.type == PERF_TYPE_TRACEPOINT); #endif #ifdef CONFIG_UPROBE_EVENTS if (flags & TRACE_EVENT_FL_UPROBE) err = bpf_get_uprobe_info(event, fd_type, buf, probe_offset, event->attr.type == PERF_TYPE_TRACEPOINT); #endif } return err; } static int __init send_signal_irq_work_init(void) { int cpu; struct send_signal_irq_work *work; for_each_possible_cpu(cpu) { work = per_cpu_ptr(&send_signal_work, cpu); init_irq_work(&work->irq_work, do_bpf_send_signal); } return 0; } subsys_initcall(send_signal_irq_work_init); #ifdef CONFIG_MODULES static int bpf_event_notify(struct notifier_block *nb, unsigned long op, void *module) { struct bpf_trace_module *btm, *tmp; struct module *mod = module; int ret = 0; if (mod->num_bpf_raw_events == 0 || (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) goto out; mutex_lock(&bpf_module_mutex); switch (op) { case MODULE_STATE_COMING: btm = kzalloc(sizeof(*btm), GFP_KERNEL); if (btm) { btm->module = module; list_add(&btm->list, &bpf_trace_modules); } else { ret = -ENOMEM; } break; case MODULE_STATE_GOING: list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) { if (btm->module == module) { list_del(&btm->list); kfree(btm); break; } } break; } mutex_unlock(&bpf_module_mutex); out: return notifier_from_errno(ret); } static struct notifier_block bpf_module_nb = { .notifier_call = bpf_event_notify, }; static int __init bpf_event_init(void) { register_module_notifier(&bpf_module_nb); return 0; } fs_initcall(bpf_event_init); #endif /* CONFIG_MODULES */