#ifdef CONFIG_SMP #include "sched-pelt.h" int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); #ifdef CONFIG_SCHED_THERMAL_PRESSURE int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); static inline u64 thermal_load_avg(struct rq *rq) { return READ_ONCE(rq->avg_thermal.load_avg); } #else static inline int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) { return 0; } static inline u64 thermal_load_avg(struct rq *rq) { return 0; } #endif #ifdef CONFIG_HAVE_SCHED_AVG_IRQ int update_irq_load_avg(struct rq *rq, u64 running); #else static inline int update_irq_load_avg(struct rq *rq, u64 running) { return 0; } #endif static inline u32 get_pelt_divider(struct sched_avg *avg) { return LOAD_AVG_MAX - 1024 + avg->period_contrib; } static inline void cfs_se_util_change(struct sched_avg *avg) { unsigned int enqueued; if (!sched_feat(UTIL_EST)) return; /* Avoid store if the flag has been already reset */ enqueued = avg->util_est.enqueued; if (!(enqueued & UTIL_AVG_UNCHANGED)) return; /* Reset flag to report util_avg has been updated */ enqueued &= ~UTIL_AVG_UNCHANGED; WRITE_ONCE(avg->util_est.enqueued, enqueued); } /* * The clock_pelt scales the time to reflect the effective amount of * computation done during the running delta time but then sync back to * clock_task when rq is idle. * * * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 * @ max capacity ------******---------------******--------------- * @ half capacity ------************---------************--------- * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 * */ static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) { if (unlikely(is_idle_task(rq->curr))) { /* The rq is idle, we can sync to clock_task */ rq->clock_pelt = rq_clock_task(rq); return; } /* * When a rq runs at a lower compute capacity, it will need * more time to do the same amount of work than at max * capacity. In order to be invariant, we scale the delta to * reflect how much work has been really done. * Running longer results in stealing idle time that will * disturb the load signal compared to max capacity. This * stolen idle time will be automatically reflected when the * rq will be idle and the clock will be synced with * rq_clock_task. */ /* * Scale the elapsed time to reflect the real amount of * computation */ delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); rq->clock_pelt += delta; } /* * When rq becomes idle, we have to check if it has lost idle time * because it was fully busy. A rq is fully used when the /Sum util_sum * is greater or equal to: * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; * For optimization and computing rounding purpose, we don't take into account * the position in the current window (period_contrib) and we use the higher * bound of util_sum to decide. */ static inline void update_idle_rq_clock_pelt(struct rq *rq) { u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; u32 util_sum = rq->cfs.avg.util_sum; util_sum += rq->avg_rt.util_sum; util_sum += rq->avg_dl.util_sum; /* * Reflecting stolen time makes sense only if the idle * phase would be present at max capacity. As soon as the * utilization of a rq has reached the maximum value, it is * considered as an always runnig rq without idle time to * steal. This potential idle time is considered as lost in * this case. We keep track of this lost idle time compare to * rq's clock_task. */ if (util_sum >= divider) rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; } static inline u64 rq_clock_pelt(struct rq *rq) { lockdep_assert_held(&rq->lock); assert_clock_updated(rq); return rq->clock_pelt - rq->lost_idle_time; } #ifdef CONFIG_CFS_BANDWIDTH /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { if (unlikely(cfs_rq->throttle_count)) return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; } #else static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { return rq_clock_pelt(rq_of(cfs_rq)); } #endif #else static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) { return 0; } static inline int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) { return 0; } static inline int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) { return 0; } static inline int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) { return 0; } static inline u64 thermal_load_avg(struct rq *rq) { return 0; } static inline int update_irq_load_avg(struct rq *rq, u64 running) { return 0; } static inline u64 rq_clock_pelt(struct rq *rq) { return rq_clock_task(rq); } static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) { } static inline void update_idle_rq_clock_pelt(struct rq *rq) { } #endif