#ifndef DEF_RDMAVT_INCQP_H #define DEF_RDMAVT_INCQP_H /* * Copyright(c) 2016 - 2018 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include /* * Atomic bit definitions for r_aflags. */ #define RVT_R_WRID_VALID 0 #define RVT_R_REWIND_SGE 1 /* * Bit definitions for r_flags. */ #define RVT_R_REUSE_SGE 0x01 #define RVT_R_RDMAR_SEQ 0x02 #define RVT_R_RSP_NAK 0x04 #define RVT_R_RSP_SEND 0x08 #define RVT_R_COMM_EST 0x10 /* * Bit definitions for s_flags. * * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled * RVT_S_BUSY - send tasklet is processing the QP * RVT_S_TIMER - the RC retry timer is active * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs * before processing the next SWQE * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete * before processing the next SWQE * RVT_S_WAIT_RNR - waiting for RNR timeout * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating * next send completion entry not via send DMA * RVT_S_WAIT_PIO - waiting for a send buffer to be available * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available * RVT_S_WAIT_KMEM - waiting for kernel memory to be available * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK * RVT_S_ECN - a BECN was queued to the send engine * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt */ #define RVT_S_SIGNAL_REQ_WR 0x0001 #define RVT_S_BUSY 0x0002 #define RVT_S_TIMER 0x0004 #define RVT_S_RESP_PENDING 0x0008 #define RVT_S_ACK_PENDING 0x0010 #define RVT_S_WAIT_FENCE 0x0020 #define RVT_S_WAIT_RDMAR 0x0040 #define RVT_S_WAIT_RNR 0x0080 #define RVT_S_WAIT_SSN_CREDIT 0x0100 #define RVT_S_WAIT_DMA 0x0200 #define RVT_S_WAIT_PIO 0x0400 #define RVT_S_WAIT_TX 0x0800 #define RVT_S_WAIT_DMA_DESC 0x1000 #define RVT_S_WAIT_KMEM 0x2000 #define RVT_S_WAIT_PSN 0x4000 #define RVT_S_WAIT_ACK 0x8000 #define RVT_S_SEND_ONE 0x10000 #define RVT_S_UNLIMITED_CREDIT 0x20000 #define RVT_S_ECN 0x40000 #define RVT_S_MAX_BIT_MASK 0x800000 /* * Drivers should use s_flags starting with bit 31 down to the bit next to * RVT_S_MAX_BIT_MASK */ /* * Wait flags that would prevent any packet type from being sent. */ #define RVT_S_ANY_WAIT_IO \ (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \ RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM) /* * Wait flags that would prevent send work requests from making progress. */ #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \ RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \ RVT_S_WAIT_PSN | RVT_S_WAIT_ACK) #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND) /* Number of bits to pay attention to in the opcode for checking qp type */ #define RVT_OPCODE_QP_MASK 0xE0 /* Flags for checking QP state (see ib_rvt_state_ops[]) */ #define RVT_POST_SEND_OK 0x01 #define RVT_POST_RECV_OK 0x02 #define RVT_PROCESS_RECV_OK 0x04 #define RVT_PROCESS_SEND_OK 0x08 #define RVT_PROCESS_NEXT_SEND_OK 0x10 #define RVT_FLUSH_SEND 0x20 #define RVT_FLUSH_RECV 0x40 #define RVT_PROCESS_OR_FLUSH_SEND \ (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND) #define RVT_SEND_OR_FLUSH_OR_RECV_OK \ (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK) /* * Internal send flags */ #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1) /* * Send work request queue entry. * The size of the sg_list is determined when the QP is created and stored * in qp->s_max_sge. */ struct rvt_swqe { union { struct ib_send_wr wr; /* don't use wr.sg_list */ struct ib_ud_wr ud_wr; struct ib_reg_wr reg_wr; struct ib_rdma_wr rdma_wr; struct ib_atomic_wr atomic_wr; }; u32 psn; /* first packet sequence number */ u32 lpsn; /* last packet sequence number */ u32 ssn; /* send sequence number */ u32 length; /* total length of data in sg_list */ void *priv; /* driver dependent field */ struct rvt_sge sg_list[0]; }; /** * struct rvt_krwq - kernel struct receive work request * @p_lock: lock to protect producer of the kernel buffer * @head: index of next entry to fill * @c_lock:lock to protect consumer of the kernel buffer * @tail: index of next entry to pull * @count: count is aproximate of total receive enteries posted * @rvt_rwqe: struct of receive work request queue entry * * This structure is used to contain the head pointer, * tail pointer and receive work queue entries for kernel * mode user. */ struct rvt_krwq { spinlock_t p_lock; /* protect producer */ u32 head; /* new work requests posted to the head */ /* protect consumer */ spinlock_t c_lock ____cacheline_aligned_in_smp; u32 tail; /* receives pull requests from here. */ u32 count; /* approx count of receive entries posted */ struct rvt_rwqe *curr_wq; struct rvt_rwqe wq[]; }; struct rvt_rq { struct rvt_rwq *wq; struct rvt_krwq *kwq; u32 size; /* size of RWQE array */ u8 max_sge; /* protect changes in this struct */ spinlock_t lock ____cacheline_aligned_in_smp; }; /* * This structure holds the information that the send tasklet needs * to send a RDMA read response or atomic operation. */ struct rvt_ack_entry { struct rvt_sge rdma_sge; u64 atomic_data; u32 psn; u32 lpsn; u8 opcode; u8 sent; void *priv; }; #define RC_QP_SCALING_INTERVAL 5 #define RVT_OPERATION_PRIV 0x00000001 #define RVT_OPERATION_ATOMIC 0x00000002 #define RVT_OPERATION_ATOMIC_SGE 0x00000004 #define RVT_OPERATION_LOCAL 0x00000008 #define RVT_OPERATION_USE_RESERVE 0x00000010 #define RVT_OPERATION_IGN_RNR_CNT 0x00000020 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1) /** * rvt_operation_params - op table entry * @length - the length to copy into the swqe entry * @qpt_support - a bit mask indicating QP type support * @flags - RVT_OPERATION flags (see above) * * This supports table driven post send so that * the driver can have differing an potentially * different sets of operations. * **/ struct rvt_operation_params { size_t length; u32 qpt_support; u32 flags; }; /* * Common variables are protected by both r_rq.lock and s_lock in that order * which only happens in modify_qp() or changing the QP 'state'. */ struct rvt_qp { struct ib_qp ibqp; void *priv; /* Driver private data */ /* read mostly fields above and below */ struct rdma_ah_attr remote_ah_attr; struct rdma_ah_attr alt_ah_attr; struct rvt_qp __rcu *next; /* link list for QPN hash table */ struct rvt_swqe *s_wq; /* send work queue */ struct rvt_mmap_info *ip; unsigned long timeout_jiffies; /* computed from timeout */ int srate_mbps; /* s_srate (below) converted to Mbit/s */ pid_t pid; /* pid for user mode QPs */ u32 remote_qpn; u32 qkey; /* QKEY for this QP (for UD or RD) */ u32 s_size; /* send work queue size */ u16 pmtu; /* decoded from path_mtu */ u8 log_pmtu; /* shift for pmtu */ u8 state; /* QP state */ u8 allowed_ops; /* high order bits of allowed opcodes */ u8 qp_access_flags; u8 alt_timeout; /* Alternate path timeout for this QP */ u8 timeout; /* Timeout for this QP */ u8 s_srate; u8 s_mig_state; u8 port_num; u8 s_pkey_index; /* PKEY index to use */ u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ u8 s_retry_cnt; /* number of times to retry */ u8 s_rnr_retry_cnt; u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ u8 s_max_sge; /* size of s_wq->sg_list */ u8 s_draining; /* start of read/write fields */ atomic_t refcount ____cacheline_aligned_in_smp; wait_queue_head_t wait; struct rvt_ack_entry *s_ack_queue; struct rvt_sge_state s_rdma_read_sge; spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ u32 r_psn; /* expected rcv packet sequence number */ unsigned long r_aflags; u64 r_wr_id; /* ID for current receive WQE */ u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ u32 r_len; /* total length of r_sge */ u32 r_rcv_len; /* receive data len processed */ u32 r_msn; /* message sequence number */ u8 r_state; /* opcode of last packet received */ u8 r_flags; u8 r_head_ack_queue; /* index into s_ack_queue[] */ u8 r_adefered; /* defered ack count */ struct list_head rspwait; /* link for waiting to respond */ struct rvt_sge_state r_sge; /* current receive data */ struct rvt_rq r_rq; /* receive work queue */ /* post send line */ spinlock_t s_hlock ____cacheline_aligned_in_smp; u32 s_head; /* new entries added here */ u32 s_next_psn; /* PSN for next request */ u32 s_avail; /* number of entries avail */ u32 s_ssn; /* SSN of tail entry */ atomic_t s_reserved_used; /* reserved entries in use */ spinlock_t s_lock ____cacheline_aligned_in_smp; u32 s_flags; struct rvt_sge_state *s_cur_sge; struct rvt_swqe *s_wqe; struct rvt_sge_state s_sge; /* current send request data */ struct rvt_mregion *s_rdma_mr; u32 s_len; /* total length of s_sge */ u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ u32 s_last_psn; /* last response PSN processed */ u32 s_sending_psn; /* lowest PSN that is being sent */ u32 s_sending_hpsn; /* highest PSN that is being sent */ u32 s_psn; /* current packet sequence number */ u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ u32 s_tail; /* next entry to process */ u32 s_cur; /* current work queue entry */ u32 s_acked; /* last un-ACK'ed entry */ u32 s_last; /* last completed entry */ u32 s_lsn; /* limit sequence number (credit) */ u32 s_ahgpsn; /* set to the psn in the copy of the header */ u16 s_cur_size; /* size of send packet in bytes */ u16 s_rdma_ack_cnt; u8 s_hdrwords; /* size of s_hdr in 32 bit words */ s8 s_ahgidx; u8 s_state; /* opcode of last packet sent */ u8 s_ack_state; /* opcode of packet to ACK */ u8 s_nak_state; /* non-zero if NAK is pending */ u8 r_nak_state; /* non-zero if NAK is pending */ u8 s_retry; /* requester retry counter */ u8 s_rnr_retry; /* requester RNR retry counter */ u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ u8 s_tail_ack_queue; /* index into s_ack_queue[] */ u8 s_acked_ack_queue; /* index into s_ack_queue[] */ struct rvt_sge_state s_ack_rdma_sge; struct timer_list s_timer; struct hrtimer s_rnr_timer; atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */ /* * This sge list MUST be last. Do not add anything below here. */ struct rvt_sge r_sg_list[0] /* verified SGEs */ ____cacheline_aligned_in_smp; }; struct rvt_srq { struct ib_srq ibsrq; struct rvt_rq rq; struct rvt_mmap_info *ip; /* send signal when number of RWQEs < limit */ u32 limit; }; static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq) { return container_of(ibsrq, struct rvt_srq, ibsrq); } static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp) { return container_of(ibqp, struct rvt_qp, ibqp); } #define RVT_QPN_MAX BIT(24) #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE) #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE) #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1) #define RVT_QPN_MASK IB_QPN_MASK /* * QPN-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way, * large bitmaps are not allocated unless large numbers of QPs are used. */ struct rvt_qpn_map { void *page; }; struct rvt_qpn_table { spinlock_t lock; /* protect changes to the qp table */ unsigned flags; /* flags for QP0/1 allocated for each port */ u32 last; /* last QP number allocated */ u32 nmaps; /* size of the map table */ u16 limit; u8 incr; /* bit map of free QP numbers other than 0/1 */ struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES]; }; struct rvt_qp_ibdev { u32 qp_table_size; u32 qp_table_bits; struct rvt_qp __rcu **qp_table; spinlock_t qpt_lock; /* qptable lock */ struct rvt_qpn_table qpn_table; }; /* * There is one struct rvt_mcast for each multicast GID. * All attached QPs are then stored as a list of * struct rvt_mcast_qp. */ struct rvt_mcast_qp { struct list_head list; struct rvt_qp *qp; }; struct rvt_mcast_addr { union ib_gid mgid; u16 lid; }; struct rvt_mcast { struct rb_node rb_node; struct rvt_mcast_addr mcast_addr; struct list_head qp_list; wait_queue_head_t wait; atomic_t refcount; int n_attached; }; /* * Since struct rvt_swqe is not a fixed size, we can't simply index into * struct rvt_qp.s_wq. This function does the array index computation. */ static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp, unsigned n) { return (struct rvt_swqe *)((char *)qp->s_wq + (sizeof(struct rvt_swqe) + qp->s_max_sge * sizeof(struct rvt_sge)) * n); } /* * Since struct rvt_rwqe is not a fixed size, we can't simply index into * struct rvt_rwq.wq. This function does the array index computation. */ static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n) { return (struct rvt_rwqe *) ((char *)rq->kwq->curr_wq + (sizeof(struct rvt_rwqe) + rq->max_sge * sizeof(struct ib_sge)) * n); } /** * rvt_is_user_qp - return if this is user mode QP * @qp - the target QP */ static inline bool rvt_is_user_qp(struct rvt_qp *qp) { return !!qp->pid; } /** * rvt_get_qp - get a QP reference * @qp - the QP to hold */ static inline void rvt_get_qp(struct rvt_qp *qp) { atomic_inc(&qp->refcount); } /** * rvt_put_qp - release a QP reference * @qp - the QP to release */ static inline void rvt_put_qp(struct rvt_qp *qp) { if (qp && atomic_dec_and_test(&qp->refcount)) wake_up(&qp->wait); } /** * rvt_put_swqe - drop mr refs held by swqe * @wqe - the send wqe * * This drops any mr references held by the swqe */ static inline void rvt_put_swqe(struct rvt_swqe *wqe) { int i; for (i = 0; i < wqe->wr.num_sge; i++) { struct rvt_sge *sge = &wqe->sg_list[i]; rvt_put_mr(sge->mr); } } /** * rvt_qp_wqe_reserve - reserve operation * @qp - the rvt qp * @wqe - the send wqe * * This routine used in post send to record * a wqe relative reserved operation use. */ static inline void rvt_qp_wqe_reserve( struct rvt_qp *qp, struct rvt_swqe *wqe) { atomic_inc(&qp->s_reserved_used); } /** * rvt_qp_wqe_unreserve - clean reserved operation * @qp - the rvt qp * @wqe - the send wqe * * This decrements the reserve use count. * * This call MUST precede the change to * s_last to insure that post send sees a stable * s_avail. * * An smp_mp__after_atomic() is used to insure * the compiler does not juggle the order of the s_last * ring index and the decrementing of s_reserved_used. */ static inline void rvt_qp_wqe_unreserve( struct rvt_qp *qp, struct rvt_swqe *wqe) { if (unlikely(wqe->wr.send_flags & RVT_SEND_RESERVE_USED)) { atomic_dec(&qp->s_reserved_used); /* insure no compiler re-order up to s_last change */ smp_mb__after_atomic(); } } extern const enum ib_wc_opcode ib_rvt_wc_opcode[]; /* * Compare the lower 24 bits of the msn values. * Returns an integer <, ==, or > than zero. */ static inline int rvt_cmp_msn(u32 a, u32 b) { return (((int)a) - ((int)b)) << 8; } /** * rvt_compute_aeth - compute the AETH (syndrome + MSN) * @qp: the queue pair to compute the AETH for * * Returns the AETH. */ __be32 rvt_compute_aeth(struct rvt_qp *qp); /** * rvt_get_credit - flush the send work queue of a QP * @qp: the qp who's send work queue to flush * @aeth: the Acknowledge Extended Transport Header * * The QP s_lock should be held. */ void rvt_get_credit(struct rvt_qp *qp, u32 aeth); /** * rvt_restart_sge - rewind the sge state for a wqe * @ss: the sge state pointer * @wqe: the wqe to rewind * @len: the data length from the start of the wqe in bytes * * Returns the remaining data length. */ u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len); /** * @qp - the qp pair * @len - the length * * Perform a shift based mtu round up divide */ static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len) { return (len + qp->pmtu - 1) >> qp->log_pmtu; } /** * @qp - the qp pair * @len - the length * * Perform a shift based mtu divide */ static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len) { return len >> qp->log_pmtu; } /** * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies * @timeout - timeout input(0 - 31). * * Return a timeout value in jiffies. */ static inline unsigned long rvt_timeout_to_jiffies(u8 timeout) { if (timeout > 31) timeout = 31; return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL; } /** * rvt_lookup_qpn - return the QP with the given QPN * @ibp: the ibport * @qpn: the QP number to look up * * The caller must hold the rcu_read_lock(), and keep the lock until * the returned qp is no longer in use. */ static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, u32 qpn) __must_hold(RCU) { struct rvt_qp *qp = NULL; if (unlikely(qpn <= 1)) { qp = rcu_dereference(rvp->qp[qpn]); } else { u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits); for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp; qp = rcu_dereference(qp->next)) if (qp->ibqp.qp_num == qpn) break; } return qp; } /** * rvt_mod_retry_timer - mod a retry timer * @qp - the QP * @shift - timeout shift to wait for multiple packets * Modify a potentially already running retry timer */ static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift) { struct ib_qp *ibqp = &qp->ibqp; struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); lockdep_assert_held(&qp->s_lock); qp->s_flags |= RVT_S_TIMER; /* 4.096 usec. * (1 << qp->timeout) */ mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies + (qp->timeout_jiffies << shift)); } static inline void rvt_mod_retry_timer(struct rvt_qp *qp) { return rvt_mod_retry_timer_ext(qp, 0); } /** * rvt_put_qp_swqe - drop refs held by swqe * @qp: the send qp * @wqe: the send wqe * * This drops any references held by the swqe */ static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) { rvt_put_swqe(wqe); if (qp->allowed_ops == IB_OPCODE_UD) atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount); } /** * rvt_qp_sqwe_incr - increment ring index * @qp: the qp * @val: the starting value * * Return: the new value wrapping as appropriate */ static inline u32 rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val) { if (++val >= qp->s_size) val = 0; return val; } int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err); /** * rvt_recv_cq - add a new entry to completion queue * by receive queue * @qp: receive queue * @wc: work completion entry to add * @solicited: true if @entry is solicited * * This is wrapper function for rvt_enter_cq function call by * receive queue. If rvt_cq_enter return false, it means cq is * full and the qp is put into error state. */ static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc, bool solicited) { struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq); if (unlikely(!rvt_cq_enter(cq, wc, solicited))) rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); } /** * rvt_send_cq - add a new entry to completion queue * by send queue * @qp: send queue * @wc: work completion entry to add * @solicited: true if @entry is solicited * * This is wrapper function for rvt_enter_cq function call by * send queue. If rvt_cq_enter return false, it means cq is * full and the qp is put into error state. */ static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc, bool solicited) { struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq); if (unlikely(!rvt_cq_enter(cq, wc, solicited))) rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); } /** * rvt_qp_complete_swqe - insert send completion * @qp - the qp * @wqe - the send wqe * @opcode - wc operation (driver dependent) * @status - completion status * * Update the s_last information, and then insert a send * completion into the completion * queue if the qp indicates it should be done. * * See IBTA 10.7.3.1 for info on completion * control. * * Return: new last */ static inline u32 rvt_qp_complete_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe, enum ib_wc_opcode opcode, enum ib_wc_status status) { bool need_completion; u64 wr_id; u32 byte_len, last; int flags = wqe->wr.send_flags; rvt_put_qp_swqe(qp, wqe); need_completion = !(flags & RVT_SEND_RESERVE_USED) && (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) || (flags & IB_SEND_SIGNALED) || status != IB_WC_SUCCESS); if (need_completion) { wr_id = wqe->wr.wr_id; byte_len = wqe->length; /* above fields required before writing s_last */ } last = rvt_qp_swqe_incr(qp, qp->s_last); /* see rvt_qp_is_avail() */ smp_store_release(&qp->s_last, last); if (need_completion) { struct ib_wc w = { .wr_id = wr_id, .status = status, .opcode = opcode, .qp = &qp->ibqp, .byte_len = byte_len, }; rvt_send_cq(qp, &w, status != IB_WC_SUCCESS); } return last; } extern const int ib_rvt_state_ops[]; struct rvt_dev_info; int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only); void rvt_comm_est(struct rvt_qp *qp); void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err); unsigned long rvt_rnr_tbl_to_usec(u32 index); enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t); void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth); void rvt_del_timers_sync(struct rvt_qp *qp); void rvt_stop_rc_timers(struct rvt_qp *qp); void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift); static inline void rvt_add_retry_timer(struct rvt_qp *qp) { rvt_add_retry_timer_ext(qp, 0); } void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, void *data, u32 length, bool release, bool copy_last); void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, enum ib_wc_status status); void rvt_ruc_loopback(struct rvt_qp *qp); /** * struct rvt_qp_iter - the iterator for QPs * @qp - the current QP * * This structure defines the current iterator * state for sequenced access to all QPs relative * to an rvt_dev_info. */ struct rvt_qp_iter { struct rvt_qp *qp; /* private: backpointer */ struct rvt_dev_info *rdi; /* private: callback routine */ void (*cb)(struct rvt_qp *qp, u64 v); /* private: for arg to callback routine */ u64 v; /* private: number of SMI,GSI QPs for device */ int specials; /* private: current iterator index */ int n; }; /** * ib_cq_tail - Return tail index of cq buffer * @send_cq - The cq for send * * This is called in qp_iter_print to get tail * of cq buffer. */ static inline u32 ib_cq_tail(struct ib_cq *send_cq) { struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); return ibcq_to_rvtcq(send_cq)->ip ? RDMA_READ_UAPI_ATOMIC(cq->queue->tail) : ibcq_to_rvtcq(send_cq)->kqueue->tail; } /** * ib_cq_head - Return head index of cq buffer * @send_cq - The cq for send * * This is called in qp_iter_print to get head * of cq buffer. */ static inline u32 ib_cq_head(struct ib_cq *send_cq) { struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); return ibcq_to_rvtcq(send_cq)->ip ? RDMA_READ_UAPI_ATOMIC(cq->queue->head) : ibcq_to_rvtcq(send_cq)->kqueue->head; } /** * rvt_free_rq - free memory allocated for rvt_rq struct * @rvt_rq: request queue data structure * * This function should only be called if the rvt_mmap_info() * has not succeeded. */ static inline void rvt_free_rq(struct rvt_rq *rq) { kvfree(rq->kwq); rq->kwq = NULL; vfree(rq->wq); rq->wq = NULL; } struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)); int rvt_qp_iter_next(struct rvt_qp_iter *iter); void rvt_qp_iter(struct rvt_dev_info *rdi, u64 v, void (*cb)(struct rvt_qp *qp, u64 v)); void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey); #endif /* DEF_RDMAVT_INCQP_H */