kernel_optimize_test/include/asm-mips/io.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

631 lines
18 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994, 1995 Waldorf GmbH
* Copyright (C) 1994 - 2000 Ralf Baechle
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
* Author: Maciej W. Rozycki <macro@mips.com>
*/
#ifndef _ASM_IO_H
#define _ASM_IO_H
#include <linux/config.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/addrspace.h>
#include <asm/bug.h>
#include <asm/byteorder.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/page.h>
#include <asm/pgtable-bits.h>
#include <asm/processor.h>
#include <mangle-port.h>
/*
* Slowdown I/O port space accesses for antique hardware.
*/
#undef CONF_SLOWDOWN_IO
/*
* Raw operations are never swapped in software. Otoh values that raw
* operations are working on may or may not have been swapped by the bus
* hardware. An example use would be for flash memory that's used for
* execute in place.
*/
# define __raw_ioswabb(x) (x)
# define __raw_ioswabw(x) (x)
# define __raw_ioswabl(x) (x)
# define __raw_ioswabq(x) (x)
/*
* Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware;
* less sane hardware forces software to fiddle with this...
*/
#if defined(CONFIG_SWAP_IO_SPACE)
# define ioswabb(x) (x)
# ifdef CONFIG_SGI_IP22
/*
* IP22 seems braindead enough to swap 16bits values in hardware, but
* not 32bits. Go figure... Can't tell without documentation.
*/
# define ioswabw(x) (x)
# else
# define ioswabw(x) le16_to_cpu(x)
# endif
# define ioswabl(x) le32_to_cpu(x)
# define ioswabq(x) le64_to_cpu(x)
#else
# define ioswabb(x) (x)
# define ioswabw(x) (x)
# define ioswabl(x) (x)
# define ioswabq(x) (x)
#endif
/*
* Native bus accesses never swapped.
*/
#define bus_ioswabb(x) (x)
#define bus_ioswabw(x) (x)
#define bus_ioswabl(x) (x)
#define bus_ioswabq(x) (x)
#define __bus_ioswabq bus_ioswabq
#define IO_SPACE_LIMIT 0xffff
/*
* On MIPS I/O ports are memory mapped, so we access them using normal
* load/store instructions. mips_io_port_base is the virtual address to
* which all ports are being mapped. For sake of efficiency some code
* assumes that this is an address that can be loaded with a single lui
* instruction, so the lower 16 bits must be zero. Should be true on
* on any sane architecture; generic code does not use this assumption.
*/
extern const unsigned long mips_io_port_base;
#define set_io_port_base(base) \
do { * (unsigned long *) &mips_io_port_base = (base); } while (0)
/*
* Thanks to James van Artsdalen for a better timing-fix than
* the two short jumps: using outb's to a nonexistent port seems
* to guarantee better timings even on fast machines.
*
* On the other hand, I'd like to be sure of a non-existent port:
* I feel a bit unsafe about using 0x80 (should be safe, though)
*
* Linus
*
*/
#define __SLOW_DOWN_IO \
__asm__ __volatile__( \
"sb\t$0,0x80(%0)" \
: : "r" (mips_io_port_base));
#ifdef CONF_SLOWDOWN_IO
#ifdef REALLY_SLOW_IO
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
#else
#define SLOW_DOWN_IO __SLOW_DOWN_IO
#endif
#else
#define SLOW_DOWN_IO
#endif
/*
* virt_to_phys - map virtual addresses to physical
* @address: address to remap
*
* The returned physical address is the physical (CPU) mapping for
* the memory address given. It is only valid to use this function on
* addresses directly mapped or allocated via kmalloc.
*
* This function does not give bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline unsigned long virt_to_phys(volatile void * address)
{
return (unsigned long)address - PAGE_OFFSET;
}
/*
* phys_to_virt - map physical address to virtual
* @address: address to remap
*
* The returned virtual address is a current CPU mapping for
* the memory address given. It is only valid to use this function on
* addresses that have a kernel mapping
*
* This function does not handle bus mappings for DMA transfers. In
* almost all conceivable cases a device driver should not be using
* this function
*/
static inline void * phys_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET);
}
/*
* ISA I/O bus memory addresses are 1:1 with the physical address.
*/
static inline unsigned long isa_virt_to_bus(volatile void * address)
{
return (unsigned long)address - PAGE_OFFSET;
}
static inline void * isa_bus_to_virt(unsigned long address)
{
return (void *)(address + PAGE_OFFSET);
}
#define isa_page_to_bus page_to_phys
/*
* However PCI ones are not necessarily 1:1 and therefore these interfaces
* are forbidden in portable PCI drivers.
*
* Allow them for x86 for legacy drivers, though.
*/
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
/*
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
* for the processor. This implies the assumption that there is only
* one of these busses.
*/
extern unsigned long isa_slot_offset;
/*
* Change "struct page" to physical address.
*/
#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
extern void * __ioremap(phys_t offset, phys_t size, unsigned long flags);
extern void __iounmap(volatile void __iomem *addr);
static inline void * __ioremap_mode(phys_t offset, unsigned long size,
unsigned long flags)
{
if (cpu_has_64bit_addresses) {
u64 base = UNCAC_BASE;
/*
* R10000 supports a 2 bit uncached attribute therefore
* UNCAC_BASE may not equal IO_BASE.
*/
if (flags == _CACHE_UNCACHED)
base = (u64) IO_BASE;
return (void *) (unsigned long) (base + offset);
}
return __ioremap(offset, size, flags);
}
/*
* ioremap - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*/
#define ioremap(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
/*
* ioremap_nocache - map bus memory into CPU space
* @offset: bus address of the memory
* @size: size of the resource to map
*
* ioremap_nocache performs a platform specific sequence of operations to
* make bus memory CPU accessible via the readb/readw/readl/writeb/
* writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual
* address.
*
* This version of ioremap ensures that the memory is marked uncachable
* on the CPU as well as honouring existing caching rules from things like
* the PCI bus. Note that there are other caches and buffers on many
* busses. In paticular driver authors should read up on PCI writes
*
* It's useful if some control registers are in such an area and
* write combining or read caching is not desirable:
*/
#define ioremap_nocache(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED)
/*
* These two are MIPS specific ioremap variant. ioremap_cacheable_cow
* requests a cachable mapping, ioremap_uncached_accelerated requests a
* mapping using the uncached accelerated mode which isn't supported on
* all processors.
*/
#define ioremap_cacheable_cow(offset, size) \
__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
#define ioremap_uncached_accelerated(offset, size) \
__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
static inline void iounmap(volatile void __iomem *addr)
{
if (cpu_has_64bit_addresses)
return;
__iounmap(addr);
}
#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
\
static inline void pfx##write##bwlq(type val, \
volatile void __iomem *mem) \
{ \
volatile type *__mem; \
type __val; \
\
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
\
__val = pfx##ioswab##bwlq(val); \
\
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
*__mem = __val; \
else if (cpu_has_64bits) { \
unsigned long __flags; \
type __tmp; \
\
if (irq) \
local_irq_save(__flags); \
__asm__ __volatile__( \
".set mips3" "\t\t# __writeq""\n\t" \
"dsll32 %L0, %L0, 0" "\n\t" \
"dsrl32 %L0, %L0, 0" "\n\t" \
"dsll32 %M0, %M0, 0" "\n\t" \
"or %L0, %L0, %M0" "\n\t" \
"sd %L0, %2" "\n\t" \
".set mips0" "\n" \
: "=r" (__tmp) \
: "0" (__val), "m" (*__mem)); \
if (irq) \
local_irq_restore(__flags); \
} else \
BUG(); \
} \
\
static inline type pfx##read##bwlq(volatile void __iomem *mem) \
{ \
volatile type *__mem; \
type __val; \
\
__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
\
if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
__val = *__mem; \
else if (cpu_has_64bits) { \
unsigned long __flags; \
\
local_irq_save(__flags); \
__asm__ __volatile__( \
".set mips3" "\t\t# __readq" "\n\t" \
"ld %L0, %1" "\n\t" \
"dsra32 %M0, %L0, 0" "\n\t" \
"sll %L0, %L0, 0" "\n\t" \
".set mips0" "\n" \
: "=r" (__val) \
: "m" (*__mem)); \
local_irq_restore(__flags); \
} else { \
__val = 0; \
BUG(); \
} \
\
return pfx##ioswab##bwlq(__val); \
}
#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
\
static inline void pfx##out##bwlq##p(type val, unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
port = __swizzle_addr_##bwlq(port); \
__addr = (void *)(mips_io_port_base + port); \
\
__val = pfx##ioswab##bwlq(val); \
\
if (sizeof(type) != sizeof(u64)) { \
*__addr = __val; \
slow; \
} else \
BUILD_BUG(); \
} \
\
static inline type pfx##in##bwlq##p(unsigned long port) \
{ \
volatile type *__addr; \
type __val; \
\
port = __swizzle_addr_##bwlq(port); \
__addr = (void *)(mips_io_port_base + port); \
\
if (sizeof(type) != sizeof(u64)) { \
__val = *__addr; \
slow; \
} else { \
__val = 0; \
BUILD_BUG(); \
} \
\
return pfx##ioswab##bwlq(__val); \
}
#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
\
__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
\
__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
#define BUILDIO(bwlq, type) \
\
__BUILD_MEMORY_PFX(, bwlq, type) \
__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
__BUILD_MEMORY_PFX(bus_, bwlq, type) \
__BUILD_IOPORT_PFX(, bwlq, type) \
__BUILD_IOPORT_PFX(__raw_, bwlq, type)
#define __BUILDIO(bwlq, type) \
\
__BUILD_MEMORY_SINGLE(__bus_, bwlq, type, 0)
BUILDIO(b, u8)
BUILDIO(w, u16)
BUILDIO(l, u32)
BUILDIO(q, u64)
__BUILDIO(q, u64)
#define readb_relaxed readb
#define readw_relaxed readw
#define readl_relaxed readl
#define readq_relaxed readq
/*
* Some code tests for these symbols
*/
#define readq readq
#define writeq writeq
#define __BUILD_MEMORY_STRING(bwlq, type) \
\
static inline void writes##bwlq(volatile void __iomem *mem, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
__raw_write##bwlq(*__addr, mem); \
__addr++; \
} \
} \
\
static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
*__addr = __raw_read##bwlq(mem); \
__addr++; \
} \
}
#define __BUILD_IOPORT_STRING(bwlq, type) \
\
static inline void outs##bwlq(unsigned long port, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
__raw_out##bwlq(*__addr, port); \
__addr++; \
} \
} \
\
static inline void ins##bwlq(unsigned long port, void *addr, \
unsigned int count) \
{ \
volatile type *__addr = addr; \
\
while (count--) { \
*__addr = __raw_in##bwlq(port); \
__addr++; \
} \
}
#define BUILDSTRING(bwlq, type) \
\
__BUILD_MEMORY_STRING(bwlq, type) \
__BUILD_IOPORT_STRING(bwlq, type)
BUILDSTRING(b, u8)
BUILDSTRING(w, u16)
BUILDSTRING(l, u32)
BUILDSTRING(q, u64)
/* Depends on MIPS II instruction set */
#define mmiowb() asm volatile ("sync" ::: "memory")
#define memset_io(a,b,c) memset((void *)(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c))
#define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c))
/*
* Memory Mapped I/O
*/
#define ioread8(addr) readb(addr)
#define ioread16(addr) readw(addr)
#define ioread32(addr) readl(addr)
#define iowrite8(b,addr) writeb(b,addr)
#define iowrite16(w,addr) writew(w,addr)
#define iowrite32(l,addr) writel(l,addr)
#define ioread8_rep(a,b,c) readsb(a,b,c)
#define ioread16_rep(a,b,c) readsw(a,b,c)
#define ioread32_rep(a,b,c) readsl(a,b,c)
#define iowrite8_rep(a,b,c) writesb(a,b,c)
#define iowrite16_rep(a,b,c) writesw(a,b,c)
#define iowrite32_rep(a,b,c) writesl(a,b,c)
/* Create a virtual mapping cookie for an IO port range */
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *);
/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
struct pci_dev;
extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
/*
* ISA space is 'always mapped' on currently supported MIPS systems, no need
* to explicitly ioremap() it. The fact that the ISA IO space is mapped
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
* are physical addresses. The following constant pointer can be
* used as the IO-area pointer (it can be iounmapped as well, so the
* analogy with PCI is quite large):
*/
#define __ISA_IO_base ((char *)(isa_slot_offset))
#define isa_readb(a) readb(__ISA_IO_base + (a))
#define isa_readw(a) readw(__ISA_IO_base + (a))
#define isa_readl(a) readl(__ISA_IO_base + (a))
#define isa_readq(a) readq(__ISA_IO_base + (a))
#define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
#define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
#define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
#define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a))
#define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
#define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
/*
* We don't have csum_partial_copy_fromio() yet, so we cheat here and
* just copy it. The net code will then do the checksum later.
*/
#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
/*
* check_signature - find BIOS signatures
* @io_addr: mmio address to check
* @signature: signature block
* @length: length of signature
*
* Perform a signature comparison with the mmio address io_addr. This
* address should have been obtained by ioremap.
* Returns 1 on a match.
*/
static inline int check_signature(char __iomem *io_addr,
const unsigned char *signature, int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
/*
* The caches on some architectures aren't dma-coherent and have need to
* handle this in software. There are three types of operations that
* can be applied to dma buffers.
*
* - dma_cache_wback_inv(start, size) makes caches and coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_wback(start, size) makes caches and coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_inv(start, size) invalidates the affected parts of the
* caches. Dirty lines of the caches may be written back or simply
* be discarded. This operation is necessary before dma operations
* to the memory.
*/
#ifdef CONFIG_DMA_NONCOHERENT
extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size)
#define dma_cache_wback(start, size) _dma_cache_wback(start,size)
#define dma_cache_inv(start, size) _dma_cache_inv(start,size)
#else /* Sane hardware */
#define dma_cache_wback_inv(start,size) \
do { (void) (start); (void) (size); } while (0)
#define dma_cache_wback(start,size) \
do { (void) (start); (void) (size); } while (0)
#define dma_cache_inv(start,size) \
do { (void) (start); (void) (size); } while (0)
#endif /* CONFIG_DMA_NONCOHERENT */
/*
* Read a 32-bit register that requires a 64-bit read cycle on the bus.
* Avoid interrupt mucking, just adjust the address for 4-byte access.
* Assume the addresses are 8-byte aligned.
*/
#ifdef __MIPSEB__
#define __CSR_32_ADJUST 4
#else
#define __CSR_32_ADJUST 0
#endif
#define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* _ASM_IO_H */