kernel_optimize_test/drivers/net/wan/pc300_drv.c
Julia Lawall c14ea0ca65 drivers/net/wan: Remove redundant test
arg is checked not to be NULL a few lines before.

A simplified version of the semantic patch that makes this change is as
follows: (http://www.emn.fr/x-info/coccinelle/)

// <smpl>
@r exists@
local idexpression x;
expression E;
position p1,p2;
@@

if (x@p1 == NULL || ...) { ... when forall
   return ...; }
... when != \(x=E\|x--\|x++\|--x\|++x\|x-=E\|x+=E\|x|=E\|x&=E\|&x\)
(
x@p2 == NULL
|
x@p2 != NULL
)

// another path to the test that is not through p1?
@s exists@
local idexpression r.x;
position r.p1,r.p2;
@@

... when != x@p1
(
x@p2 == NULL
|
x@p2 != NULL
)

@fix depends on !s@
position r.p1,r.p2;
expression x,E;
statement S1,S2;
@@

(
- if ((x@p2 != NULL) || ...)
  S1
|
- if ((x@p2 == NULL) && ...) S1
|
- BUG_ON(x@p2 == NULL);
)
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-12-25 18:03:44 -08:00

3676 lines
110 KiB
C

#define USE_PCI_CLOCK
static char rcsid[] =
"Revision: 3.4.5 Date: 2002/03/07 ";
/*
* pc300.c Cyclades-PC300(tm) Driver.
*
* Author: Ivan Passos <ivan@cyclades.com>
* Maintainer: PC300 Maintainer <pc300@cyclades.com>
*
* Copyright: (c) 1999-2003 Cyclades Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Using tabstop = 4.
*
* $Log: pc300_drv.c,v $
* Revision 3.23 2002/03/20 13:58:40 henrique
* Fixed ortographic mistakes
*
* Revision 3.22 2002/03/13 16:56:56 henrique
* Take out the debug messages
*
* Revision 3.21 2002/03/07 14:17:09 henrique
* License data fixed
*
* Revision 3.20 2002/01/17 17:58:52 ivan
* Support for PC300-TE/M (PMC).
*
* Revision 3.19 2002/01/03 17:08:47 daniela
* Enables DMA reception when the SCA-II disables it improperly.
*
* Revision 3.18 2001/12/03 18:47:50 daniela
* Esthetic changes.
*
* Revision 3.17 2001/10/19 16:50:13 henrique
* Patch to kernel 2.4.12 and new generic hdlc.
*
* Revision 3.16 2001/10/16 15:12:31 regina
* clear statistics
*
* Revision 3.11 to 3.15 2001/10/11 20:26:04 daniela
* More DMA fixes for noisy lines.
* Return the size of bad frames in dma_get_rx_frame_size, so that the Rx buffer
* descriptors can be cleaned by dma_buf_read (called in cpc_net_rx).
* Renamed dma_start routine to rx_dma_start. Improved Rx statistics.
* Fixed BOF interrupt treatment. Created dma_start routine.
* Changed min and max to cpc_min and cpc_max.
*
* Revision 3.10 2001/08/06 12:01:51 regina
* Fixed problem in DSR_DE bit.
*
* Revision 3.9 2001/07/18 19:27:26 daniela
* Added some history comments.
*
* Revision 3.8 2001/07/12 13:11:19 regina
* bug fix - DCD-OFF in pc300 tty driver
*
* Revision 3.3 to 3.7 2001/07/06 15:00:20 daniela
* Removing kernel 2.4.3 and previous support.
* DMA transmission bug fix.
* MTU check in cpc_net_rx fixed.
* Boot messages reviewed.
* New configuration parameters (line code, CRC calculation and clock).
*
* Revision 3.2 2001/06/22 13:13:02 regina
* MLPPP implementation. Changed the header of message trace to include
* the device name. New format : "hdlcX[R/T]: ".
* Default configuration changed.
*
* Revision 3.1 2001/06/15 regina
* in cpc_queue_xmit, netif_stop_queue is called if don't have free descriptor
* upping major version number
*
* Revision 1.1.1.1 2001/06/13 20:25:04 daniela
* PC300 initial CVS version (3.4.0-pre1)
*
* Revision 3.0.1.2 2001/06/08 daniela
* Did some changes in the DMA programming implementation to avoid the
* occurrence of a SCA-II bug when CDA is accessed during a DMA transfer.
*
* Revision 3.0.1.1 2001/05/02 daniela
* Added kernel 2.4.3 support.
*
* Revision 3.0.1.0 2001/03/13 daniela, henrique
* Added Frame Relay Support.
* Driver now uses HDLC generic driver to provide protocol support.
*
* Revision 3.0.0.8 2001/03/02 daniela
* Fixed ram size detection.
* Changed SIOCGPC300CONF ioctl, to give hw information to pc300util.
*
* Revision 3.0.0.7 2001/02/23 daniela
* netif_stop_queue called before the SCA-II transmition commands in
* cpc_queue_xmit, and with interrupts disabled to avoid race conditions with
* transmition interrupts.
* Fixed falc_check_status for Unframed E1.
*
* Revision 3.0.0.6 2000/12/13 daniela
* Implemented pc300util support: trace, statistics, status and loopback
* tests for the PC300 TE boards.
*
* Revision 3.0.0.5 2000/12/12 ivan
* Added support for Unframed E1.
* Implemented monitor mode.
* Fixed DCD sensitivity on the second channel.
* Driver now complies with new PCI kernel architecture.
*
* Revision 3.0.0.4 2000/09/28 ivan
* Implemented DCD sensitivity.
* Moved hardware-specific open to the end of cpc_open, to avoid race
* conditions with early reception interrupts.
* Included code for [request|release]_mem_region().
* Changed location of pc300.h .
* Minor code revision (contrib. of Jeff Garzik).
*
* Revision 3.0.0.3 2000/07/03 ivan
* Previous bugfix for the framing errors with external clock made X21
* boards stop working. This version fixes it.
*
* Revision 3.0.0.2 2000/06/23 ivan
* Revisited cpc_queue_xmit to prevent race conditions on Tx DMA buffer
* handling when Tx timeouts occur.
* Revisited Rx statistics.
* Fixed a bug in the SCA-II programming that would cause framing errors
* when external clock was configured.
*
* Revision 3.0.0.1 2000/05/26 ivan
* Added logic in the SCA interrupt handler so that no board can monopolize
* the driver.
* Request PLX I/O region, although driver doesn't use it, to avoid
* problems with other drivers accessing it.
*
* Revision 3.0.0.0 2000/05/15 ivan
* Did some changes in the DMA programming implementation to avoid the
* occurrence of a SCA-II bug in the second channel.
* Implemented workaround for PLX9050 bug that would cause a system lockup
* in certain systems, depending on the MMIO addresses allocated to the
* board.
* Fixed the FALC chip programming to avoid synchronization problems in the
* second channel (TE only).
* Implemented a cleaner and faster Tx DMA descriptor cleanup procedure in
* cpc_queue_xmit().
* Changed the built-in driver implementation so that the driver can use the
* general 'hdlcN' naming convention instead of proprietary device names.
* Driver load messages are now device-centric, instead of board-centric.
* Dynamic allocation of net_device structures.
* Code is now compliant with the new module interface (module_[init|exit]).
* Make use of the PCI helper functions to access PCI resources.
*
* Revision 2.0.0.0 2000/04/15 ivan
* Added support for the PC300/TE boards (T1/FT1/E1/FE1).
*
* Revision 1.1.0.0 2000/02/28 ivan
* Major changes in the driver architecture.
* Softnet compliancy implemented.
* Driver now reports physical instead of virtual memory addresses.
* Added cpc_change_mtu function.
*
* Revision 1.0.0.0 1999/12/16 ivan
* First official release.
* Support for 1- and 2-channel boards (which use distinct PCI Device ID's).
* Support for monolythic installation (i.e., drv built into the kernel).
* X.25 additional checking when lapb_[dis]connect_request returns an error.
* SCA programming now covers X.21 as well.
*
* Revision 0.3.1.0 1999/11/18 ivan
* Made X.25 support configuration-dependent (as it depends on external
* modules to work).
* Changed X.25-specific function names to comply with adopted convention.
* Fixed typos in X.25 functions that would cause compile errors (Daniela).
* Fixed bug in ch_config that would disable interrupts on a previously
* enabled channel if the other channel on the same board was enabled later.
*
* Revision 0.3.0.0 1999/11/16 daniela
* X.25 support.
*
* Revision 0.2.3.0 1999/11/15 ivan
* Function cpc_ch_status now provides more detailed information.
* Added support for X.21 clock configuration.
* Changed TNR1 setting in order to prevent Tx FIFO overaccesses by the SCA.
* Now using PCI clock instead of internal oscillator clock for the SCA.
*
* Revision 0.2.2.0 1999/11/10 ivan
* Changed the *_dma_buf_check functions so that they would print only
* the useful info instead of the whole buffer descriptor bank.
* Fixed bug in cpc_queue_xmit that would eventually crash the system
* in case of a packet drop.
* Implemented TX underrun handling.
* Improved SCA fine tuning to boost up its performance.
*
* Revision 0.2.1.0 1999/11/03 ivan
* Added functions *dma_buf_pt_init to allow independent initialization
* of the next-descr. and DMA buffer pointers on the DMA descriptors.
* Kernel buffer release and tbusy clearing is now done in the interrupt
* handler.
* Fixed bug in cpc_open that would cause an interface reopen to fail.
* Added a protocol-specific code section in cpc_net_rx.
* Removed printk level defs (they might be added back after the beta phase).
*
* Revision 0.2.0.0 1999/10/28 ivan
* Revisited the code so that new protocols can be easily added / supported.
*
* Revision 0.1.0.1 1999/10/20 ivan
* Mostly "esthetic" changes.
*
* Revision 0.1.0.0 1999/10/11 ivan
* Initial version.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/spinlock.h>
#include <linux/if.h>
#include <net/arp.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "pc300.h"
#define CPC_LOCK(card,flags) \
do { \
spin_lock_irqsave(&card->card_lock, flags); \
} while (0)
#define CPC_UNLOCK(card,flags) \
do { \
spin_unlock_irqrestore(&card->card_lock, flags); \
} while (0)
#undef PC300_DEBUG_PCI
#undef PC300_DEBUG_INTR
#undef PC300_DEBUG_TX
#undef PC300_DEBUG_RX
#undef PC300_DEBUG_OTHER
static struct pci_device_id cpc_pci_dev_id[] __devinitdata = {
/* PC300/RSV or PC300/X21, 2 chan */
{0x120e, 0x300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x300},
/* PC300/RSV or PC300/X21, 1 chan */
{0x120e, 0x301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x301},
/* PC300/TE, 2 chan */
{0x120e, 0x310, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x310},
/* PC300/TE, 1 chan */
{0x120e, 0x311, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x311},
/* PC300/TE-M, 2 chan */
{0x120e, 0x320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x320},
/* PC300/TE-M, 1 chan */
{0x120e, 0x321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0x321},
/* End of table */
{0,},
};
MODULE_DEVICE_TABLE(pci, cpc_pci_dev_id);
#ifndef cpc_min
#define cpc_min(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef cpc_max
#define cpc_max(a,b) (((a)>(b))?(a):(b))
#endif
/* prototypes */
static void tx_dma_buf_pt_init(pc300_t *, int);
static void tx_dma_buf_init(pc300_t *, int);
static void rx_dma_buf_pt_init(pc300_t *, int);
static void rx_dma_buf_init(pc300_t *, int);
static void tx_dma_buf_check(pc300_t *, int);
static void rx_dma_buf_check(pc300_t *, int);
static irqreturn_t cpc_intr(int, void *);
static int clock_rate_calc(u32, u32, int *);
static u32 detect_ram(pc300_t *);
static void plx_init(pc300_t *);
static void cpc_trace(struct net_device *, struct sk_buff *, char);
static int cpc_attach(struct net_device *, unsigned short, unsigned short);
static int cpc_close(struct net_device *dev);
#ifdef CONFIG_PC300_MLPPP
void cpc_tty_init(pc300dev_t * dev);
void cpc_tty_unregister_service(pc300dev_t * pc300dev);
void cpc_tty_receive(pc300dev_t * pc300dev);
void cpc_tty_trigger_poll(pc300dev_t * pc300dev);
void cpc_tty_reset_var(void);
#endif
/************************/
/*** DMA Routines ***/
/************************/
static void tx_dma_buf_pt_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_TX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
cpc_writel(&ptdescr->next, (u32)(DMA_TX_BD_BASE +
(ch_factor + ((i + 1) & (N_DMA_TX_BUF - 1))) * sizeof(pcsca_bd_t)));
cpc_writel(&ptdescr->ptbuf,
(u32)(DMA_TX_BASE + (ch_factor + i) * BD_DEF_LEN));
}
}
static void tx_dma_buf_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_TX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_TX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_TX_BUF; i++, ptdescr++) {
memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
cpc_writew(&ptdescr->len, 0);
cpc_writeb(&ptdescr->status, DST_OSB);
}
tx_dma_buf_pt_init(card, ch);
}
static void rx_dma_buf_pt_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_RX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
cpc_writel(&ptdescr->next, (u32)(DMA_RX_BD_BASE +
(ch_factor + ((i + 1) & (N_DMA_RX_BUF - 1))) * sizeof(pcsca_bd_t)));
cpc_writel(&ptdescr->ptbuf,
(u32)(DMA_RX_BASE + (ch_factor + i) * BD_DEF_LEN));
}
}
static void rx_dma_buf_init(pc300_t * card, int ch)
{
int i;
int ch_factor = ch * N_DMA_RX_BUF;
volatile pcsca_bd_t __iomem *ptdescr = (card->hw.rambase
+ DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
for (i = 0; i < N_DMA_RX_BUF; i++, ptdescr++) {
memset_io(ptdescr, 0, sizeof(pcsca_bd_t));
cpc_writew(&ptdescr->len, 0);
cpc_writeb(&ptdescr->status, 0);
}
rx_dma_buf_pt_init(card, ch);
}
static void tx_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
u16 first_bd = card->chan[ch].tx_first_bd;
u16 next_bd = card->chan[ch].tx_next_bd;
printk("#CH%d: f_bd = %d(0x%08zx), n_bd = %d(0x%08zx)\n", ch,
first_bd, TX_BD_ADDR(ch, first_bd),
next_bd, TX_BD_ADDR(ch, next_bd));
for (i = first_bd,
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, first_bd));
i != ((next_bd + 1) & (N_DMA_TX_BUF - 1));
i = (i + 1) & (N_DMA_TX_BUF - 1),
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i))) {
printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
}
printk("\n");
}
#ifdef PC300_DEBUG_OTHER
/* Show all TX buffer descriptors */
static void tx1_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
u16 first_bd = card->chan[ch].tx_first_bd;
u16 next_bd = card->chan[ch].tx_next_bd;
u32 scabase = card->hw.scabase;
printk ("\nnfree_tx_bd = %d \n", card->chan[ch].nfree_tx_bd);
printk("#CH%d: f_bd = %d(0x%08x), n_bd = %d(0x%08x)\n", ch,
first_bd, TX_BD_ADDR(ch, first_bd),
next_bd, TX_BD_ADDR(ch, next_bd));
printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
cpc_readl(scabase + DTX_REG(CDAL, ch)),
cpc_readl(scabase + DTX_REG(EDAL, ch)));
for (i = 0; i < N_DMA_TX_BUF; i++) {
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch, i));
printk("\n CH%d TX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status), cpc_readw(&ptdescr->len));
}
printk("\n");
}
#endif
static void rx_dma_buf_check(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
int i;
u16 first_bd = card->chan[ch].rx_first_bd;
u16 last_bd = card->chan[ch].rx_last_bd;
int ch_factor;
ch_factor = ch * N_DMA_RX_BUF;
printk("#CH%d: f_bd = %d, l_bd = %d\n", ch, first_bd, last_bd);
for (i = 0, ptdescr = (card->hw.rambase +
DMA_RX_BD_BASE + ch_factor * sizeof(pcsca_bd_t));
i < N_DMA_RX_BUF; i++, ptdescr++) {
if (cpc_readb(&ptdescr->status) & DST_OSB)
printk ("\n CH%d RX%d: next=0x%x, ptbuf=0x%x, ST=0x%x, len=%d",
ch, i, cpc_readl(&ptdescr->next),
cpc_readl(&ptdescr->ptbuf),
cpc_readb(&ptdescr->status),
cpc_readw(&ptdescr->len));
}
printk("\n");
}
static int dma_get_rx_frame_size(pc300_t * card, int ch)
{
volatile pcsca_bd_t __iomem *ptdescr;
u16 first_bd = card->chan[ch].rx_first_bd;
int rcvd = 0;
volatile u8 status;
ptdescr = (card->hw.rambase + RX_BD_ADDR(ch, first_bd));
while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
rcvd += cpc_readw(&ptdescr->len);
first_bd = (first_bd + 1) & (N_DMA_RX_BUF - 1);
if ((status & DST_EOM) || (first_bd == card->chan[ch].rx_last_bd)) {
/* Return the size of a good frame or incomplete bad frame
* (dma_buf_read will clean the buffer descriptors in this case). */
return (rcvd);
}
ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
}
return (-1);
}
/*
* dma_buf_write: writes a frame to the Tx DMA buffers
* NOTE: this function writes one frame at a time.
*/
static int dma_buf_write(pc300_t *card, int ch, u8 *ptdata, int len)
{
int i, nchar;
volatile pcsca_bd_t __iomem *ptdescr;
int tosend = len;
u8 nbuf = ((len - 1) / BD_DEF_LEN) + 1;
if (nbuf >= card->chan[ch].nfree_tx_bd) {
return -ENOMEM;
}
for (i = 0; i < nbuf; i++) {
ptdescr = (card->hw.rambase +
TX_BD_ADDR(ch, card->chan[ch].tx_next_bd));
nchar = cpc_min(BD_DEF_LEN, tosend);
if (cpc_readb(&ptdescr->status) & DST_OSB) {
memcpy_toio((card->hw.rambase + cpc_readl(&ptdescr->ptbuf)),
&ptdata[len - tosend], nchar);
cpc_writew(&ptdescr->len, nchar);
card->chan[ch].nfree_tx_bd--;
if ((i + 1) == nbuf) {
/* This must be the last BD to be used */
cpc_writeb(&ptdescr->status, DST_EOM);
} else {
cpc_writeb(&ptdescr->status, 0);
}
} else {
return -ENOMEM;
}
tosend -= nchar;
card->chan[ch].tx_next_bd =
(card->chan[ch].tx_next_bd + 1) & (N_DMA_TX_BUF - 1);
}
/* If it gets to here, it means we have sent the whole frame */
return 0;
}
/*
* dma_buf_read: reads a frame from the Rx DMA buffers
* NOTE: this function reads one frame at a time.
*/
static int dma_buf_read(pc300_t * card, int ch, struct sk_buff *skb)
{
int nchar;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
volatile pcsca_bd_t __iomem *ptdescr;
int rcvd = 0;
volatile u8 status;
ptdescr = (card->hw.rambase +
RX_BD_ADDR(ch, chan->rx_first_bd));
while ((status = cpc_readb(&ptdescr->status)) & DST_OSB) {
nchar = cpc_readw(&ptdescr->len);
if ((status & (DST_OVR | DST_CRC | DST_RBIT | DST_SHRT | DST_ABT))
|| (nchar > BD_DEF_LEN)) {
if (nchar > BD_DEF_LEN)
status |= DST_RBIT;
rcvd = -status;
/* Discard remaining descriptors used by the bad frame */
while (chan->rx_first_bd != chan->rx_last_bd) {
cpc_writeb(&ptdescr->status, 0);
chan->rx_first_bd = (chan->rx_first_bd+1) & (N_DMA_RX_BUF-1);
if (status & DST_EOM)
break;
ptdescr = (card->hw.rambase +
cpc_readl(&ptdescr->next));
status = cpc_readb(&ptdescr->status);
}
break;
}
if (nchar != 0) {
if (skb) {
memcpy_fromio(skb_put(skb, nchar),
(card->hw.rambase+cpc_readl(&ptdescr->ptbuf)),nchar);
}
rcvd += nchar;
}
cpc_writeb(&ptdescr->status, 0);
cpc_writeb(&ptdescr->len, 0);
chan->rx_first_bd = (chan->rx_first_bd + 1) & (N_DMA_RX_BUF - 1);
if (status & DST_EOM)
break;
ptdescr = (card->hw.rambase + cpc_readl(&ptdescr->next));
}
if (rcvd != 0) {
/* Update pointer */
chan->rx_last_bd = (chan->rx_first_bd - 1) & (N_DMA_RX_BUF - 1);
/* Update EDA */
cpc_writel(card->hw.scabase + DRX_REG(EDAL, ch),
RX_BD_ADDR(ch, chan->rx_last_bd));
}
return (rcvd);
}
static void tx_dma_stop(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
u8 drr_ena_bit = 1 << (5 + 2 * ch);
u8 drr_rst_bit = 1 << (1 + 2 * ch);
/* Disable DMA */
cpc_writeb(scabase + DRR, drr_ena_bit);
cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}
static void rx_dma_stop(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
u8 drr_ena_bit = 1 << (4 + 2 * ch);
u8 drr_rst_bit = 1 << (2 * ch);
/* Disable DMA */
cpc_writeb(scabase + DRR, drr_ena_bit);
cpc_writeb(scabase + DRR, drr_rst_bit & ~drr_ena_bit);
}
static void rx_dma_start(pc300_t * card, int ch)
{
void __iomem *scabase = card->hw.scabase;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
/* Start DMA */
cpc_writel(scabase + DRX_REG(CDAL, ch),
RX_BD_ADDR(ch, chan->rx_first_bd));
if (cpc_readl(scabase + DRX_REG(CDAL,ch)) !=
RX_BD_ADDR(ch, chan->rx_first_bd)) {
cpc_writel(scabase + DRX_REG(CDAL, ch),
RX_BD_ADDR(ch, chan->rx_first_bd));
}
cpc_writel(scabase + DRX_REG(EDAL, ch),
RX_BD_ADDR(ch, chan->rx_last_bd));
cpc_writew(scabase + DRX_REG(BFLL, ch), BD_DEF_LEN);
cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
if (!(cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
cpc_writeb(scabase + DSR_RX(ch), DSR_DE);
}
}
/*************************/
/*** FALC Routines ***/
/*************************/
static void falc_issue_cmd(pc300_t *card, int ch, u8 cmd)
{
void __iomem *falcbase = card->hw.falcbase;
unsigned long i = 0;
while (cpc_readb(falcbase + F_REG(SIS, ch)) & SIS_CEC) {
if (i++ >= PC300_FALC_MAXLOOP) {
printk("%s: FALC command locked(cmd=0x%x).\n",
card->chan[ch].d.name, cmd);
break;
}
}
cpc_writeb(falcbase + F_REG(CMDR, ch), cmd);
}
static void falc_intr_enable(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
/* Interrupt pins are open-drain */
cpc_writeb(falcbase + F_REG(IPC, ch),
cpc_readb(falcbase + F_REG(IPC, ch)) & ~IPC_IC0);
/* Conters updated each second */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_ECM);
/* Enable SEC and ES interrupts */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~(IMR3_SEC | IMR3_ES));
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(IMR4, ch),
cpc_readb(falcbase + F_REG(IMR4, ch)) & ~(IMR4_LOS));
} else {
cpc_writeb(falcbase + F_REG(IMR4, ch),
cpc_readb(falcbase + F_REG(IMR4, ch)) &
~(IMR4_LFA | IMR4_AIS | IMR4_LOS | IMR4_SLIP));
}
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
} else {
cpc_writeb(falcbase + F_REG(IPC, ch),
cpc_readb(falcbase + F_REG(IPC, ch)) | IPC_SCI);
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) & ~(IMR2_LOS));
} else {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) &
~(IMR2_FAR | IMR2_LFA | IMR2_AIS | IMR2_LOS));
if (pfalc->multiframe_mode) {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) &
~(IMR2_T400MS | IMR2_MFAR));
} else {
cpc_writeb(falcbase + F_REG(IMR2, ch),
cpc_readb(falcbase + F_REG(IMR2, ch)) |
IMR2_T400MS | IMR2_MFAR);
}
}
}
}
static void falc_open_timeslot(pc300_t * card, int ch, int timeslot)
{
void __iomem *falcbase = card->hw.falcbase;
u8 tshf = card->chan[ch].falc.offset;
cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) &
~(0x80 >> ((timeslot - tshf) & 0x07)));
cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) |
(0x80 >> (timeslot & 0x07)));
cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) |
(0x80 >> (timeslot & 0x07)));
}
static void falc_close_timeslot(pc300_t * card, int ch, int timeslot)
{
void __iomem *falcbase = card->hw.falcbase;
u8 tshf = card->chan[ch].falc.offset;
cpc_writeb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch),
cpc_readb(falcbase + F_REG((ICB1 + (timeslot - tshf) / 8), ch)) |
(0x80 >> ((timeslot - tshf) & 0x07)));
cpc_writeb(falcbase + F_REG((TTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((TTR1 + timeslot / 8), ch)) &
~(0x80 >> (timeslot & 0x07)));
cpc_writeb(falcbase + F_REG((RTR1 + timeslot / 8), ch),
cpc_readb(falcbase + F_REG((RTR1 + timeslot / 8), ch)) &
~(0x80 >> (timeslot & 0x07)));
}
static void falc_close_all_timeslots(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
cpc_writeb(falcbase + F_REG(ICB1, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR1, ch), 0);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0);
cpc_writeb(falcbase + F_REG(ICB2, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR2, ch), 0);
cpc_writeb(falcbase + F_REG(RTR2, ch), 0);
cpc_writeb(falcbase + F_REG(ICB3, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR3, ch), 0);
cpc_writeb(falcbase + F_REG(RTR3, ch), 0);
if (conf->media == IF_IFACE_E1) {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0);
}
}
static void falc_open_all_timeslots(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
cpc_writeb(falcbase + F_REG(ICB1, ch), 0);
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(TTR1, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0xff);
} else {
/* Timeslot 0 is never enabled */
cpc_writeb(falcbase + F_REG(TTR1, ch), 0x7f);
cpc_writeb(falcbase + F_REG(RTR1, ch), 0x7f);
}
cpc_writeb(falcbase + F_REG(ICB2, ch), 0);
cpc_writeb(falcbase + F_REG(TTR2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR2, ch), 0xff);
cpc_writeb(falcbase + F_REG(ICB3, ch), 0);
cpc_writeb(falcbase + F_REG(TTR3, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR3, ch), 0xff);
if (conf->media == IF_IFACE_E1) {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0xff);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0xff);
} else {
cpc_writeb(falcbase + F_REG(ICB4, ch), 0xff);
cpc_writeb(falcbase + F_REG(TTR4, ch), 0x80);
cpc_writeb(falcbase + F_REG(RTR4, ch), 0x80);
}
}
static void falc_init_timeslot(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
int tslot;
for (tslot = 0; tslot < pfalc->num_channels; tslot++) {
if (conf->tslot_bitmap & (1 << tslot)) {
// Channel enabled
falc_open_timeslot(card, ch, tslot + 1);
} else {
// Channel disabled
falc_close_timeslot(card, ch, tslot + 1);
}
}
}
static void falc_enable_comm(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
if (pfalc->full_bandwidth) {
falc_open_all_timeslots(card, ch);
} else {
falc_init_timeslot(card, ch);
}
// CTS/DCD ON
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}
static void falc_disable_comm(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
if (pfalc->loop_active != 2) {
falc_close_all_timeslots(card, ch);
}
// CTS/DCD OFF
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
((CPLD_REG1_FALC_DCD | CPLD_REG1_FALC_CTS) << (2 * ch)));
}
static void falc_init_t1(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
/* Switch to T1 mode (PCM 24) */
cpc_writeb(falcbase + F_REG(FMR1, ch), FMR1_PMOD);
/* Wait 20 us for setup */
udelay(20);
/* Transmit Buffer Size (1 frame) */
cpc_writeb(falcbase + F_REG(SIC1, ch), SIC1_XBS0);
/* Clock mode */
if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
} else { /* Slave mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
cpc_writeb(falcbase + F_REG(LOOP, ch),
cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_RTM);
}
cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) &
~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
switch (conf->lcode) {
case PC300_LC_AMI:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC1 | FMR0_RC1);
/* Clear Channel register to ON for all channels */
cpc_writeb(falcbase + F_REG(CCB1, ch), 0xff);
cpc_writeb(falcbase + F_REG(CCB2, ch), 0xff);
cpc_writeb(falcbase + F_REG(CCB3, ch), 0xff);
break;
case PC300_LC_B8ZS:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
break;
case PC300_LC_NRZ:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) | 0x00);
break;
}
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_ELOS);
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
/* Set interface mode to 2 MBPS */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
switch (conf->fr_mode) {
case PC300_FR_ESF:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_FM1);
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) |
FMR1_CRC | FMR1_EDL);
cpc_writeb(falcbase + F_REG(XDL1, ch), 0);
cpc_writeb(falcbase + F_REG(XDL2, ch), 0);
cpc_writeb(falcbase + F_REG(XDL3, ch), 0);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) & ~FMR0_SRAF);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2,ch)) | FMR2_MCSP | FMR2_SSP);
break;
case PC300_FR_D4:
pfalc->multiframe_mode = 1;
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) &
~(FMR4_FM1 | FMR4_FM0));
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) | FMR0_SRAF);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_SSP);
break;
}
/* Enable Automatic Resynchronization */
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_AUTO);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Channel translation mode 1 : one to one */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_CTM);
/* No signaling */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_SIGM);
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) &
~(FMR5_EIBR | FMR5_SRS));
cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
switch (conf->lbo) {
/* Provides proper Line Build Out */
case PC300_LBO_0_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x5a);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x8f);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_7_5_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0x40 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x11);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x02);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_15_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0x80 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x8e);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
case PC300_LBO_22_5_DB:
cpc_writeb(falcbase + F_REG(LIM2, ch), (0xc0 | LIM2_LOS1 | dja));
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x09);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x01);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x20);
break;
}
/* Transmit Clock-Slot Offset */
cpc_writeb(falcbase + F_REG(XC0, ch),
cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
/* Transmit Time-slot Offset */
cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
/* Receive Clock-Slot offset */
cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
/* Receive Time-slot offset */
cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
/* LOS Detection after 176 consecutive 0s */
cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
/* LOS Recovery after 22 ones in the time window of PCD */
cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
if (conf->fr_mode == PC300_FR_ESF_JAPAN) {
cpc_writeb(falcbase + F_REG(RC1, ch),
cpc_readb(falcbase + F_REG(RC1, ch)) | 0x80);
}
falc_close_all_timeslots(card, ch);
}
static void falc_init_e1(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u8 dja = (ch ? (LIM2_DJA2 | LIM2_DJA1) : 0);
/* Switch to E1 mode (PCM 30) */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_PMOD);
/* Clock mode */
if (conf->phys_settings.clock_type == CLOCK_INT) { /* Master mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_MAS);
} else { /* Slave mode */
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_MAS);
}
cpc_writeb(falcbase + F_REG(LOOP, ch),
cpc_readb(falcbase + F_REG(LOOP, ch)) & ~LOOP_SFM);
cpc_writeb(falcbase + F_REG(IPC, ch), IPC_SCI);
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) &
~(FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1));
switch (conf->lcode) {
case PC300_LC_AMI:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC1 | FMR0_RC1);
break;
case PC300_LC_HDB3:
cpc_writeb(falcbase + F_REG(FMR0, ch),
cpc_readb(falcbase + F_REG(FMR0, ch)) |
FMR0_XC0 | FMR0_XC1 | FMR0_RC0 | FMR0_RC1);
break;
case PC300_LC_NRZ:
break;
}
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~(LIM0_SCL1 | LIM0_SCL0));
/* Set interface mode to 2 MBPS */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_IMOD);
cpc_writeb(falcbase + F_REG(XPM0, ch), 0x18);
cpc_writeb(falcbase + F_REG(XPM1, ch), 0x03);
cpc_writeb(falcbase + F_REG(XPM2, ch), 0x00);
switch (conf->fr_mode) {
case PC300_FR_MF_CRC4:
pfalc->multiframe_mode = 1;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_RFS1);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_RFS0);
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_EXTIW);
/* MultiFrame Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_MFCS);
/* Automatic Loss of Multiframe > 914 CRC errors */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_ALMF);
/* S1 and SI1/SI2 spare Bits set to 1 */
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_AXS);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_EBP);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XS13 | XSP_XS15);
/* Automatic Force Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) |
XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
break;
case PC300_FR_MF_NON_CRC4:
case PC300_FR_D4:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) &
~(FMR2_RFS1 | FMR2_RFS0));
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XSIS);
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_XSIF);
/* Automatic Force Resynchronization */
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) | FMR1_AFR);
/* Transmit Automatic Remote Alarm */
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_AXRA);
/* Transmit Spare Bits for National Use (Y, Sn, Sa) */
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) |
XSW_XY0 | XSW_XY1 | XSW_XY2 | XSW_XY3 | XSW_XY4);
break;
case PC300_FR_UNFRAMED:
pfalc->multiframe_mode = 0;
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_XFS);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) &
~(FMR2_RFS1 | FMR2_RFS0));
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) | XSP_TT0);
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) &
~(XSW_XTM|XSW_XY0|XSW_XY1|XSW_XY2|XSW_XY3|XSW_XY4));
cpc_writeb(falcbase + F_REG(TSWM, ch), 0xff);
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) |
(FMR2_RTM | FMR2_DAIS));
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_AXRA);
cpc_writeb(falcbase + F_REG(FMR1, ch),
cpc_readb(falcbase + F_REG(FMR1, ch)) & ~FMR1_AFR);
pfalc->sync = 1;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED2 << (2 * ch)));
break;
}
/* No signaling */
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch)) & ~XSP_CASEN);
cpc_writeb(falcbase + F_REG(CCR1, ch), 0);
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RIL0 | LIM1_RIL1);
cpc_writeb(falcbase + F_REG(LIM2, ch), (LIM2_LOS1 | dja));
/* Transmit Clock-Slot Offset */
cpc_writeb(falcbase + F_REG(XC0, ch),
cpc_readb(falcbase + F_REG(XC0, ch)) | 0x01);
/* Transmit Time-slot Offset */
cpc_writeb(falcbase + F_REG(XC1, ch), 0x3e);
/* Receive Clock-Slot offset */
cpc_writeb(falcbase + F_REG(RC0, ch), 0x05);
/* Receive Time-slot offset */
cpc_writeb(falcbase + F_REG(RC1, ch), 0x00);
/* LOS Detection after 176 consecutive 0s */
cpc_writeb(falcbase + F_REG(PCDR, ch), 0x0a);
/* LOS Recovery after 22 ones in the time window of PCD */
cpc_writeb(falcbase + F_REG(PCRR, ch), 0x15);
cpc_writeb(falcbase + F_REG(IDLE, ch), 0x7f);
falc_close_all_timeslots(card, ch);
}
static void falc_init_hdlc(pc300_t * card, int ch)
{
void __iomem *falcbase = card->hw.falcbase;
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
/* Enable transparent data transfer */
if (conf->fr_mode == PC300_FR_UNFRAMED) {
cpc_writeb(falcbase + F_REG(MODE, ch), 0);
} else {
cpc_writeb(falcbase + F_REG(MODE, ch),
cpc_readb(falcbase + F_REG(MODE, ch)) |
(MODE_HRAC | MODE_MDS2));
cpc_writeb(falcbase + F_REG(RAH2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAH1, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAL2, ch), 0xff);
cpc_writeb(falcbase + F_REG(RAL1, ch), 0xff);
}
/* Tx/Rx reset */
falc_issue_cmd(card, ch, CMDR_RRES | CMDR_XRES | CMDR_SRES);
/* Enable interrupt sources */
falc_intr_enable(card, ch);
}
static void te_config(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u8 dummy;
unsigned long flags;
memset(pfalc, 0, sizeof(falc_t));
switch (conf->media) {
case IF_IFACE_T1:
pfalc->num_channels = NUM_OF_T1_CHANNELS;
pfalc->offset = 1;
break;
case IF_IFACE_E1:
pfalc->num_channels = NUM_OF_E1_CHANNELS;
pfalc->offset = 0;
break;
}
if (conf->tslot_bitmap == 0xffffffffUL)
pfalc->full_bandwidth = 1;
else
pfalc->full_bandwidth = 0;
CPC_LOCK(card, flags);
/* Reset the FALC chip */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
(CPLD_REG1_FALC_RESET << (2 * ch)));
udelay(10000);
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~(CPLD_REG1_FALC_RESET << (2 * ch)));
if (conf->media == IF_IFACE_T1) {
falc_init_t1(card, ch);
} else {
falc_init_e1(card, ch);
}
falc_init_hdlc(card, ch);
if (conf->rx_sens == PC300_RX_SENS_SH) {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_EQON);
} else {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_EQON);
}
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK) << (2 * ch)));
/* Clear all interrupt registers */
dummy = cpc_readb(falcbase + F_REG(FISR0, ch)) +
cpc_readb(falcbase + F_REG(FISR1, ch)) +
cpc_readb(falcbase + F_REG(FISR2, ch)) +
cpc_readb(falcbase + F_REG(FISR3, ch));
CPC_UNLOCK(card, flags);
}
static void falc_check_status(pc300_t * card, int ch, unsigned char frs0)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
/* Verify LOS */
if (frs0 & FRS0_LOS) {
if (!pfalc->red_alarm) {
pfalc->red_alarm = 1;
pfalc->los++;
if (!pfalc->blue_alarm) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere
* with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
if (pfalc->red_alarm) {
pfalc->red_alarm = 0;
pfalc->losr++;
}
}
if (conf->fr_mode != PC300_FR_UNFRAMED) {
/* Verify AIS alarm */
if (frs0 & FRS0_AIS) {
if (!pfalc->blue_alarm) {
pfalc->blue_alarm = 1;
pfalc->ais++;
// EVENT_AIS
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_AIS
}
} else {
pfalc->blue_alarm = 0;
}
/* Verify LFA */
if (frs0 & FRS0_LFA) {
if (!pfalc->loss_fa) {
pfalc->loss_fa = 1;
pfalc->lfa++;
if (!pfalc->blue_alarm && !pfalc->red_alarm) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise
* interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
if (pfalc->loss_fa) {
pfalc->loss_fa = 0;
pfalc->farec++;
}
}
/* Verify LMFA */
if (pfalc->multiframe_mode && (frs0 & FRS0_LMFA)) {
/* D4 or CRC4 frame mode */
if (!pfalc->loss_mfa) {
pfalc->loss_mfa = 1;
pfalc->lmfa++;
if (!pfalc->blue_alarm && !pfalc->red_alarm &&
!pfalc->loss_fa) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise
* interfere with other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch))
| IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
}
}
} else {
pfalc->loss_mfa = 0;
}
/* Verify Remote Alarm */
if (frs0 & FRS0_RRA) {
if (!pfalc->yellow_alarm) {
pfalc->yellow_alarm = 1;
pfalc->rai++;
if (pfalc->sync) {
// EVENT_RAI
falc_disable_comm(card, ch);
// EVENT_RAI
}
}
} else {
pfalc->yellow_alarm = 0;
}
} /* if !PC300_UNFRAMED */
if (pfalc->red_alarm || pfalc->loss_fa ||
pfalc->loss_mfa || pfalc->blue_alarm) {
if (pfalc->sync) {
pfalc->sync = 0;
chan->d.line_off++;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
}
} else {
if (!pfalc->sync) {
pfalc->sync = 1;
chan->d.line_on++;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED2 << (2 * ch)));
}
}
if (pfalc->sync && !pfalc->yellow_alarm) {
if (!pfalc->active) {
// EVENT_FALC_NORMAL
if (pfalc->loop_active) {
return;
}
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) & ~IMR0_PDEN);
}
falc_enable_comm(card, ch);
// EVENT_FALC_NORMAL
pfalc->active = 1;
}
} else {
if (pfalc->active) {
pfalc->active = 0;
}
}
}
static void falc_update_stats(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u16 counter;
counter = cpc_readb(falcbase + F_REG(FECL, ch));
counter |= cpc_readb(falcbase + F_REG(FECH, ch)) << 8;
pfalc->fec += counter;
counter = cpc_readb(falcbase + F_REG(CVCL, ch));
counter |= cpc_readb(falcbase + F_REG(CVCH, ch)) << 8;
pfalc->cvc += counter;
counter = cpc_readb(falcbase + F_REG(CECL, ch));
counter |= cpc_readb(falcbase + F_REG(CECH, ch)) << 8;
pfalc->cec += counter;
counter = cpc_readb(falcbase + F_REG(EBCL, ch));
counter |= cpc_readb(falcbase + F_REG(EBCH, ch)) << 8;
pfalc->ebc += counter;
if (cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) {
mdelay(10);
counter = cpc_readb(falcbase + F_REG(BECL, ch));
counter |= cpc_readb(falcbase + F_REG(BECH, ch)) << 8;
pfalc->bec += counter;
if (((conf->media == IF_IFACE_T1) &&
(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_LLBAD) &&
(!(cpc_readb(falcbase + F_REG(FRS1, ch)) & FRS1_PDEN)))
||
((conf->media == IF_IFACE_E1) &&
(cpc_readb(falcbase + F_REG(RSP, ch)) & RSP_LLBAD))) {
pfalc->prbs = 2;
} else {
pfalc->prbs = 1;
}
}
}
/*----------------------------------------------------------------------------
* falc_remote_loop
*----------------------------------------------------------------------------
* Description: In the remote loopback mode the clock and data recovered
* from the line inputs RL1/2 or RDIP/RDIN are routed back
* to the line outputs XL1/2 or XDOP/XDON via the analog
* transmitter. As in normal mode they are processsed by
* the synchronizer and then sent to the system interface.
*----------------------------------------------------------------------------
*/
static void falc_remote_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) | LIM1_RL);
pfalc->loop_active = 1;
} else {
cpc_writeb(falcbase + F_REG(LIM1, ch),
cpc_readb(falcbase + F_REG(LIM1, ch)) & ~LIM1_RL);
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* falc_local_loop
*----------------------------------------------------------------------------
* Description: The local loopback mode disconnects the receive lines
* RL1/RL2 resp. RDIP/RDIN from the receiver. Instead of the
* signals coming from the line the data provided by system
* interface are routed through the analog receiver back to
* the system interface. The unipolar bit stream will be
* undisturbed transmitted on the line. Receiver and transmitter
* coding must be identical.
*----------------------------------------------------------------------------
*/
static void falc_local_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) | LIM0_LL);
pfalc->loop_active = 1;
} else {
cpc_writeb(falcbase + F_REG(LIM0, ch),
cpc_readb(falcbase + F_REG(LIM0, ch)) & ~LIM0_LL);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* falc_payload_loop
*----------------------------------------------------------------------------
* Description: This routine allows to enable/disable payload loopback.
* When the payload loop is activated, the received 192 bits
* of payload data will be looped back to the transmit
* direction. The framing bits, CRC6 and DL bits are not
* looped. They are originated by the FALC-LH transmitter.
*----------------------------------------------------------------------------
*/
static void falc_payload_loop(pc300_t * card, int ch, int loop_on)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (loop_on) {
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) | FMR2_PLB);
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) | FMR4_TM);
} else {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | XSP_TT0);
}
falc_open_all_timeslots(card, ch);
pfalc->loop_active = 2;
} else {
cpc_writeb(falcbase + F_REG(FMR2, ch),
cpc_readb(falcbase + F_REG(FMR2, ch)) & ~FMR2_PLB);
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR4, ch),
cpc_readb(falcbase + F_REG(FMR4, ch)) & ~FMR4_TM);
} else {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~XSP_TT0);
}
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_active = 0;
}
}
/*----------------------------------------------------------------------------
* turn_off_xlu
*----------------------------------------------------------------------------
* Description: Turns XLU bit off in the proper register
*----------------------------------------------------------------------------
*/
static void turn_off_xlu(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLU);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLU);
}
}
/*----------------------------------------------------------------------------
* turn_off_xld
*----------------------------------------------------------------------------
* Description: Turns XLD bit off in the proper register
*----------------------------------------------------------------------------
*/
static void turn_off_xld(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) & ~FMR5_XLD);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) & ~FMR3_XLD);
}
}
/*----------------------------------------------------------------------------
* falc_generate_loop_up_code
*----------------------------------------------------------------------------
* Description: This routine writes the proper FALC chip register in order
* to generate a LOOP activation code over a T1/E1 line.
*----------------------------------------------------------------------------
*/
static void falc_generate_loop_up_code(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLU);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLU);
}
// EVENT_FALC_ABNORMAL
if (conf->media == IF_IFACE_T1) {
/* Disable this interrupt as it may otherwise interfere with
* other working boards. */
cpc_writeb(falcbase + F_REG(IMR0, ch),
cpc_readb(falcbase + F_REG(IMR0, ch)) | IMR0_PDEN);
}
falc_disable_comm(card, ch);
// EVENT_FALC_ABNORMAL
pfalc->loop_gen = 1;
}
/*----------------------------------------------------------------------------
* falc_generate_loop_down_code
*----------------------------------------------------------------------------
* Description: This routine writes the proper FALC chip register in order
* to generate a LOOP deactivation code over a T1/E1 line.
*----------------------------------------------------------------------------
*/
static void falc_generate_loop_down_code(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (conf->media == IF_IFACE_T1) {
cpc_writeb(falcbase + F_REG(FMR5, ch),
cpc_readb(falcbase + F_REG(FMR5, ch)) | FMR5_XLD);
} else {
cpc_writeb(falcbase + F_REG(FMR3, ch),
cpc_readb(falcbase + F_REG(FMR3, ch)) | FMR3_XLD);
}
pfalc->sync = 0;
cpc_writeb(falcbase + card->hw.cpld_reg2,
cpc_readb(falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED2 << (2 * ch)));
pfalc->active = 0;
//? falc_issue_cmd(card, ch, CMDR_XRES);
pfalc->loop_gen = 0;
}
/*----------------------------------------------------------------------------
* falc_pattern_test
*----------------------------------------------------------------------------
* Description: This routine generates a pattern code and checks
* it on the reception side.
*----------------------------------------------------------------------------
*/
static void falc_pattern_test(pc300_t * card, int ch, unsigned int activate)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (activate) {
pfalc->prbs = 1;
pfalc->bec = 0;
if (conf->media == IF_IFACE_T1) {
/* Disable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) | IMR3_LLBSC);
} else {
/* Disable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_LLBSC);
}
/* Activates generation and monitoring of PRBS
* (Pseudo Random Bit Sequence) */
cpc_writeb(falcbase + F_REG(LCR1, ch),
cpc_readb(falcbase + F_REG(LCR1, ch)) | LCR1_EPRM | LCR1_XPRBS);
} else {
pfalc->prbs = 0;
/* Deactivates generation and monitoring of PRBS
* (Pseudo Random Bit Sequence) */
cpc_writeb(falcbase + F_REG(LCR1, ch),
cpc_readb(falcbase+F_REG(LCR1,ch)) & ~(LCR1_EPRM | LCR1_XPRBS));
if (conf->media == IF_IFACE_T1) {
/* Enable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR3, ch),
cpc_readb(falcbase + F_REG(IMR3, ch)) & ~IMR3_LLBSC);
} else {
/* Enable local loop activation/deactivation detect */
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_LLBSC);
}
}
}
/*----------------------------------------------------------------------------
* falc_pattern_test_error
*----------------------------------------------------------------------------
* Description: This routine returns the bit error counter value
*----------------------------------------------------------------------------
*/
static u16 falc_pattern_test_error(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
return (pfalc->bec);
}
/**********************************/
/*** Net Interface Routines ***/
/**********************************/
static void
cpc_trace(struct net_device *dev, struct sk_buff *skb_main, char rx_tx)
{
struct sk_buff *skb;
if ((skb = dev_alloc_skb(10 + skb_main->len)) == NULL) {
printk("%s: out of memory\n", dev->name);
return;
}
skb_put(skb, 10 + skb_main->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_CUST);
skb_reset_mac_header(skb);
skb->pkt_type = PACKET_HOST;
skb->len = 10 + skb_main->len;
skb_copy_to_linear_data(skb, dev->name, 5);
skb->data[5] = '[';
skb->data[6] = rx_tx;
skb->data[7] = ']';
skb->data[8] = ':';
skb->data[9] = ' ';
skb_copy_from_linear_data(skb_main, &skb->data[10], skb_main->len);
netif_rx(skb);
}
static void cpc_tx_timeout(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
int ch = chan->channel;
unsigned long flags;
u8 ilar;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
CPC_LOCK(card, flags);
if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) {
printk("%s: ILAR=0x%x\n", dev->name, ilar);
cpc_writeb(card->hw.scabase + ILAR, ilar);
cpc_writeb(card->hw.scabase + DMER, 0x80);
}
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
dev->trans_start = jiffies;
CPC_UNLOCK(card, flags);
netif_wake_queue(dev);
}
static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
int ch = chan->channel;
unsigned long flags;
#ifdef PC300_DEBUG_TX
int i;
#endif
if (!netif_carrier_ok(dev)) {
/* DCD must be OFF: drop packet */
dev_kfree_skb(skb);
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
return 0;
} else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) {
printk("%s: DCD is OFF. Going administrative down.\n", dev->name);
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
dev_kfree_skb(skb);
netif_carrier_off(dev);
CPC_LOCK(card, flags);
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_BUF_CLR);
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
CPC_UNLOCK(card, flags);
netif_wake_queue(dev);
return 0;
}
/* Write buffer to DMA buffers */
if (dma_buf_write(card, ch, (u8 *)skb->data, skb->len) != 0) {
// printk("%s: write error. Dropping TX packet.\n", dev->name);
netif_stop_queue(dev);
dev_kfree_skb(skb);
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
return 0;
}
#ifdef PC300_DEBUG_TX
printk("%s T:", dev->name);
for (i = 0; i < skb->len; i++)
printk(" %02x", *(skb->data + i));
printk("\n");
#endif
if (d->trace_on) {
cpc_trace(dev, skb, 'T');
}
dev->trans_start = jiffies;
/* Start transmission */
CPC_LOCK(card, flags);
/* verify if it has more than one free descriptor */
if (card->chan[ch].nfree_tx_bd <= 1) {
/* don't have so stop the queue */
netif_stop_queue(dev);
}
cpc_writel(card->hw.scabase + DTX_REG(EDAL, ch),
TX_BD_ADDR(ch, chan->tx_next_bd));
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_TX_ENA);
cpc_writeb(card->hw.scabase + DSR_TX(ch), DSR_DE);
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
CPC_UNLOCK(card, flags);
dev_kfree_skb(skb);
return 0;
}
static void cpc_net_rx(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
int ch = chan->channel;
#ifdef PC300_DEBUG_RX
int i;
#endif
int rxb;
struct sk_buff *skb;
while (1) {
if ((rxb = dma_get_rx_frame_size(card, ch)) == -1)
return;
if (!netif_carrier_ok(dev)) {
/* DCD must be OFF: drop packet */
printk("%s : DCD is OFF - drop %d rx bytes\n", dev->name, rxb);
skb = NULL;
} else {
if (rxb > (dev->mtu + 40)) { /* add headers */
printk("%s : MTU exceeded %d\n", dev->name, rxb);
skb = NULL;
} else {
skb = dev_alloc_skb(rxb);
if (skb == NULL) {
printk("%s: Memory squeeze!!\n", dev->name);
return;
}
skb->dev = dev;
}
}
if (((rxb = dma_buf_read(card, ch, skb)) <= 0) || (skb == NULL)) {
#ifdef PC300_DEBUG_RX
printk("%s: rxb = %x\n", dev->name, rxb);
#endif
if ((skb == NULL) && (rxb > 0)) {
/* rxb > dev->mtu */
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
continue;
}
if (rxb < 0) { /* Invalid frame */
rxb = -rxb;
if (rxb & DST_OVR) {
dev->stats.rx_errors++;
dev->stats.rx_fifo_errors++;
}
if (rxb & DST_CRC) {
dev->stats.rx_errors++;
dev->stats.rx_crc_errors++;
}
if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) {
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
}
if (skb) {
dev_kfree_skb_irq(skb);
}
continue;
}
dev->stats.rx_bytes += rxb;
#ifdef PC300_DEBUG_RX
printk("%s R:", dev->name);
for (i = 0; i < skb->len; i++)
printk(" %02x", *(skb->data + i));
printk("\n");
#endif
if (d->trace_on) {
cpc_trace(dev, skb, 'R');
}
dev->stats.rx_packets++;
skb->protocol = hdlc_type_trans(skb, dev);
netif_rx(skb);
}
}
/************************************/
/*** PC300 Interrupt Routines ***/
/************************************/
static void sca_tx_intr(pc300dev_t *dev)
{
pc300ch_t *chan = (pc300ch_t *)dev->chan;
pc300_t *card = (pc300_t *)chan->card;
int ch = chan->channel;
volatile pcsca_bd_t __iomem * ptdescr;
/* Clean up descriptors from previous transmission */
ptdescr = (card->hw.rambase +
TX_BD_ADDR(ch,chan->tx_first_bd));
while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) !=
TX_BD_ADDR(ch,chan->tx_first_bd)) &&
(cpc_readb(&ptdescr->status) & DST_OSB)) {
dev->dev->stats.tx_packets++;
dev->dev->stats.tx_bytes += cpc_readw(&ptdescr->len);
cpc_writeb(&ptdescr->status, DST_OSB);
cpc_writew(&ptdescr->len, 0);
chan->nfree_tx_bd++;
chan->tx_first_bd = (chan->tx_first_bd + 1) & (N_DMA_TX_BUF - 1);
ptdescr = (card->hw.rambase + TX_BD_ADDR(ch,chan->tx_first_bd));
}
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
cpc_tty_trigger_poll(dev);
} else {
#endif
/* Tell the upper layer we are ready to transmit more packets */
netif_wake_queue(dev->dev);
#ifdef CONFIG_PC300_MLPPP
}
#endif
}
static void sca_intr(pc300_t * card)
{
void __iomem *scabase = card->hw.scabase;
volatile u32 status;
int ch;
int intr_count = 0;
unsigned char dsr_rx;
while ((status = cpc_readl(scabase + ISR0)) != 0) {
for (ch = 0; ch < card->hw.nchan; ch++) {
pc300ch_t *chan = &card->chan[ch];
pc300dev_t *d = &chan->d;
struct net_device *dev = d->dev;
spin_lock(&card->card_lock);
/**** Reception ****/
if (status & IR0_DRX((IR0_DMIA | IR0_DMIB), ch)) {
u8 drx_stat = cpc_readb(scabase + DSR_RX(ch));
/* Clear RX interrupts */
cpc_writeb(scabase + DSR_RX(ch), drx_stat | DSR_DWE);
#ifdef PC300_DEBUG_INTR
printk ("sca_intr: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
ch, status, drx_stat);
#endif
if (status & IR0_DRX(IR0_DMIA, ch)) {
if (drx_stat & DSR_BOF) {
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
/* verify if driver is TTY */
if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
rx_dma_stop(card, ch);
}
cpc_tty_receive(d);
rx_dma_start(card, ch);
} else
#endif
{
if ((cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
rx_dma_stop(card, ch);
}
cpc_net_rx(dev);
/* Discard invalid frames */
dev->stats.rx_errors++;
dev->stats.rx_over_errors++;
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
rx_dma_start(card, ch);
}
}
}
if (status & IR0_DRX(IR0_DMIB, ch)) {
if (drx_stat & DSR_EOM) {
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase +
card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) |
(CPLD_REG2_FALC_LED1 << (2 * ch)));
}
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
/* verify if driver is TTY */
cpc_tty_receive(d);
} else {
cpc_net_rx(dev);
}
#else
cpc_net_rx(dev);
#endif
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase +
card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
}
}
if (!(dsr_rx = cpc_readb(scabase + DSR_RX(ch)) & DSR_DE)) {
#ifdef PC300_DEBUG_INTR
printk("%s: RX intr chan[%d] (st=0x%08lx, dsr=0x%02x, dsr2=0x%02x)\n",
dev->name, ch, status, drx_stat, dsr_rx);
#endif
cpc_writeb(scabase + DSR_RX(ch), (dsr_rx | DSR_DE) & 0xfe);
}
}
/**** Transmission ****/
if (status & IR0_DTX((IR0_EFT | IR0_DMIA | IR0_DMIB), ch)) {
u8 dtx_stat = cpc_readb(scabase + DSR_TX(ch));
/* Clear TX interrupts */
cpc_writeb(scabase + DSR_TX(ch), dtx_stat | DSR_DWE);
#ifdef PC300_DEBUG_INTR
printk ("sca_intr: TX intr chan[%d] (st=0x%08lx, dsr=0x%02x)\n",
ch, status, dtx_stat);
#endif
if (status & IR0_DTX(IR0_EFT, ch)) {
if (dtx_stat & DSR_UDRF) {
if (cpc_readb (scabase + M_REG(TBN, ch)) != 0) {
cpc_writeb(scabase + M_REG(CMD,ch), CMD_TX_BUF_CLR);
}
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
dev->stats.tx_errors++;
dev->stats.tx_fifo_errors++;
sca_tx_intr(d);
}
}
if (status & IR0_DTX(IR0_DMIA, ch)) {
if (dtx_stat & DSR_BOF) {
}
}
if (status & IR0_DTX(IR0_DMIB, ch)) {
if (dtx_stat & DSR_EOM) {
if (card->hw.type == PC300_TE) {
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb (card->hw.falcbase +
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
sca_tx_intr(d);
}
}
}
/**** MSCI ****/
if (status & IR0_M(IR0_RXINTA, ch)) {
u8 st1 = cpc_readb(scabase + M_REG(ST1, ch));
/* Clear MSCI interrupts */
cpc_writeb(scabase + M_REG(ST1, ch), st1);
#ifdef PC300_DEBUG_INTR
printk("sca_intr: MSCI intr chan[%d] (st=0x%08lx, st1=0x%02x)\n",
ch, status, st1);
#endif
if (st1 & ST1_CDCD) { /* DCD changed */
if (cpc_readb(scabase + M_REG(ST3, ch)) & ST3_DCD) {
printk ("%s: DCD is OFF. Going administrative down.\n",
dev->name);
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto != PC300_PROTO_MLPPP) {
netif_carrier_off(dev);
}
#else
netif_carrier_off(dev);
#endif
card->chan[ch].d.line_off++;
} else { /* DCD = 1 */
printk ("%s: DCD is ON. Going administrative up.\n",
dev->name);
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto != PC300_PROTO_MLPPP)
/* verify if driver is not TTY */
#endif
netif_carrier_on(dev);
card->chan[ch].d.line_on++;
}
}
}
spin_unlock(&card->card_lock);
}
if (++intr_count == 10)
/* Too much work at this board. Force exit */
break;
}
}
static void falc_t1_loop_detection(pc300_t *card, int ch, u8 frs1)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
!pfalc->loop_gen) {
if (frs1 & FRS1_LLBDD) {
// A Line Loop Back Deactivation signal detected
if (pfalc->loop_active) {
falc_remote_loop(card, ch, 0);
}
} else {
if ((frs1 & FRS1_LLBAD) &&
((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
// A Line Loop Back Activation signal detected
if (!pfalc->loop_active) {
falc_remote_loop(card, ch, 1);
}
}
}
}
}
static void falc_e1_loop_detection(pc300_t *card, int ch, u8 rsp)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
if (((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_XPRBS) == 0) &&
!pfalc->loop_gen) {
if (rsp & RSP_LLBDD) {
// A Line Loop Back Deactivation signal detected
if (pfalc->loop_active) {
falc_remote_loop(card, ch, 0);
}
} else {
if ((rsp & RSP_LLBAD) &&
((cpc_readb(falcbase + F_REG(LCR1, ch)) & LCR1_EPRM) == 0)) {
// A Line Loop Back Activation signal detected
if (!pfalc->loop_active) {
falc_remote_loop(card, ch, 1);
}
}
}
}
}
static void falc_t1_intr(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u8 isr0, isr3, gis;
u8 dummy;
while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
if (gis & GIS_ISR0) {
isr0 = cpc_readb(falcbase + F_REG(FISR0, ch));
if (isr0 & FISR0_PDEN) {
/* Read the bit to clear the situation */
if (cpc_readb(falcbase + F_REG(FRS1, ch)) &
FRS1_PDEN) {
pfalc->pden++;
}
}
}
if (gis & GIS_ISR1) {
dummy = cpc_readb(falcbase + F_REG(FISR1, ch));
}
if (gis & GIS_ISR2) {
dummy = cpc_readb(falcbase + F_REG(FISR2, ch));
}
if (gis & GIS_ISR3) {
isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
if (isr3 & FISR3_SEC) {
pfalc->sec++;
falc_update_stats(card, ch);
falc_check_status(card, ch,
cpc_readb(falcbase + F_REG(FRS0, ch)));
}
if (isr3 & FISR3_ES) {
pfalc->es++;
}
if (isr3 & FISR3_LLBSC) {
falc_t1_loop_detection(card, ch,
cpc_readb(falcbase + F_REG(FRS1, ch)));
}
}
}
}
static void falc_e1_intr(pc300_t * card, int ch)
{
pc300ch_t *chan = (pc300ch_t *) & card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
void __iomem *falcbase = card->hw.falcbase;
u8 isr1, isr2, isr3, gis, rsp;
u8 dummy;
while ((gis = cpc_readb(falcbase + F_REG(GIS, ch))) != 0) {
rsp = cpc_readb(falcbase + F_REG(RSP, ch));
if (gis & GIS_ISR0) {
dummy = cpc_readb(falcbase + F_REG(FISR0, ch));
}
if (gis & GIS_ISR1) {
isr1 = cpc_readb(falcbase + F_REG(FISR1, ch));
if (isr1 & FISR1_XMB) {
if ((pfalc->xmb_cause & 2)
&& pfalc->multiframe_mode) {
if (cpc_readb (falcbase + F_REG(FRS0, ch)) &
(FRS0_LOS | FRS0_AIS | FRS0_LFA)) {
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch))
& ~XSP_AXS);
} else {
cpc_writeb(falcbase + F_REG(XSP, ch),
cpc_readb(falcbase + F_REG(XSP, ch))
| XSP_AXS);
}
}
pfalc->xmb_cause = 0;
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) | IMR1_XMB);
}
if (isr1 & FISR1_LLBSC) {
falc_e1_loop_detection(card, ch, rsp);
}
}
if (gis & GIS_ISR2) {
isr2 = cpc_readb(falcbase + F_REG(FISR2, ch));
if (isr2 & FISR2_T400MS) {
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) | XSW_XRA);
}
if (isr2 & FISR2_MFAR) {
cpc_writeb(falcbase + F_REG(XSW, ch),
cpc_readb(falcbase + F_REG(XSW, ch)) & ~XSW_XRA);
}
if (isr2 & (FISR2_FAR | FISR2_LFA | FISR2_AIS | FISR2_LOS)) {
pfalc->xmb_cause |= 2;
cpc_writeb(falcbase + F_REG(IMR1, ch),
cpc_readb(falcbase + F_REG(IMR1, ch)) & ~IMR1_XMB);
}
}
if (gis & GIS_ISR3) {
isr3 = cpc_readb(falcbase + F_REG(FISR3, ch));
if (isr3 & FISR3_SEC) {
pfalc->sec++;
falc_update_stats(card, ch);
falc_check_status(card, ch,
cpc_readb(falcbase + F_REG(FRS0, ch)));
}
if (isr3 & FISR3_ES) {
pfalc->es++;
}
}
}
}
static void falc_intr(pc300_t * card)
{
int ch;
for (ch = 0; ch < card->hw.nchan; ch++) {
pc300ch_t *chan = &card->chan[ch];
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
if (conf->media == IF_IFACE_T1) {
falc_t1_intr(card, ch);
} else {
falc_e1_intr(card, ch);
}
}
}
static irqreturn_t cpc_intr(int irq, void *dev_id)
{
pc300_t *card = dev_id;
volatile u8 plx_status;
if (!card) {
#ifdef PC300_DEBUG_INTR
printk("cpc_intr: spurious intr %d\n", irq);
#endif
return IRQ_NONE; /* spurious intr */
}
if (!card->hw.rambase) {
#ifdef PC300_DEBUG_INTR
printk("cpc_intr: spurious intr2 %d\n", irq);
#endif
return IRQ_NONE; /* spurious intr */
}
switch (card->hw.type) {
case PC300_RSV:
case PC300_X21:
sca_intr(card);
break;
case PC300_TE:
while ( (plx_status = (cpc_readb(card->hw.plxbase + card->hw.intctl_reg) &
(PLX_9050_LINT1_STATUS | PLX_9050_LINT2_STATUS))) != 0) {
if (plx_status & PLX_9050_LINT1_STATUS) { /* SCA Interrupt */
sca_intr(card);
}
if (plx_status & PLX_9050_LINT2_STATUS) { /* FALC Interrupt */
falc_intr(card);
}
}
break;
}
return IRQ_HANDLED;
}
static void cpc_sca_status(pc300_t * card, int ch)
{
u8 ilar;
void __iomem *scabase = card->hw.scabase;
unsigned long flags;
tx_dma_buf_check(card, ch);
rx_dma_buf_check(card, ch);
ilar = cpc_readb(scabase + ILAR);
printk ("ILAR=0x%02x, WCRL=0x%02x, PCR=0x%02x, BTCR=0x%02x, BOLR=0x%02x\n",
ilar, cpc_readb(scabase + WCRL), cpc_readb(scabase + PCR),
cpc_readb(scabase + BTCR), cpc_readb(scabase + BOLR));
printk("TX_CDA=0x%08x, TX_EDA=0x%08x\n",
cpc_readl(scabase + DTX_REG(CDAL, ch)),
cpc_readl(scabase + DTX_REG(EDAL, ch)));
printk("RX_CDA=0x%08x, RX_EDA=0x%08x, BFL=0x%04x\n",
cpc_readl(scabase + DRX_REG(CDAL, ch)),
cpc_readl(scabase + DRX_REG(EDAL, ch)),
cpc_readw(scabase + DRX_REG(BFLL, ch)));
printk("DMER=0x%02x, DSR_TX=0x%02x, DSR_RX=0x%02x\n",
cpc_readb(scabase + DMER), cpc_readb(scabase + DSR_TX(ch)),
cpc_readb(scabase + DSR_RX(ch)));
printk("DMR_TX=0x%02x, DMR_RX=0x%02x, DIR_TX=0x%02x, DIR_RX=0x%02x\n",
cpc_readb(scabase + DMR_TX(ch)), cpc_readb(scabase + DMR_RX(ch)),
cpc_readb(scabase + DIR_TX(ch)),
cpc_readb(scabase + DIR_RX(ch)));
printk("DCR_TX=0x%02x, DCR_RX=0x%02x, FCT_TX=0x%02x, FCT_RX=0x%02x\n",
cpc_readb(scabase + DCR_TX(ch)), cpc_readb(scabase + DCR_RX(ch)),
cpc_readb(scabase + FCT_TX(ch)),
cpc_readb(scabase + FCT_RX(ch)));
printk("MD0=0x%02x, MD1=0x%02x, MD2=0x%02x, MD3=0x%02x, IDL=0x%02x\n",
cpc_readb(scabase + M_REG(MD0, ch)),
cpc_readb(scabase + M_REG(MD1, ch)),
cpc_readb(scabase + M_REG(MD2, ch)),
cpc_readb(scabase + M_REG(MD3, ch)),
cpc_readb(scabase + M_REG(IDL, ch)));
printk("CMD=0x%02x, SA0=0x%02x, SA1=0x%02x, TFN=0x%02x, CTL=0x%02x\n",
cpc_readb(scabase + M_REG(CMD, ch)),
cpc_readb(scabase + M_REG(SA0, ch)),
cpc_readb(scabase + M_REG(SA1, ch)),
cpc_readb(scabase + M_REG(TFN, ch)),
cpc_readb(scabase + M_REG(CTL, ch)));
printk("ST0=0x%02x, ST1=0x%02x, ST2=0x%02x, ST3=0x%02x, ST4=0x%02x\n",
cpc_readb(scabase + M_REG(ST0, ch)),
cpc_readb(scabase + M_REG(ST1, ch)),
cpc_readb(scabase + M_REG(ST2, ch)),
cpc_readb(scabase + M_REG(ST3, ch)),
cpc_readb(scabase + M_REG(ST4, ch)));
printk ("CST0=0x%02x, CST1=0x%02x, CST2=0x%02x, CST3=0x%02x, FST=0x%02x\n",
cpc_readb(scabase + M_REG(CST0, ch)),
cpc_readb(scabase + M_REG(CST1, ch)),
cpc_readb(scabase + M_REG(CST2, ch)),
cpc_readb(scabase + M_REG(CST3, ch)),
cpc_readb(scabase + M_REG(FST, ch)));
printk("TRC0=0x%02x, TRC1=0x%02x, RRC=0x%02x, TBN=0x%02x, RBN=0x%02x\n",
cpc_readb(scabase + M_REG(TRC0, ch)),
cpc_readb(scabase + M_REG(TRC1, ch)),
cpc_readb(scabase + M_REG(RRC, ch)),
cpc_readb(scabase + M_REG(TBN, ch)),
cpc_readb(scabase + M_REG(RBN, ch)));
printk("TFS=0x%02x, TNR0=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
cpc_readb(scabase + M_REG(TFS, ch)),
cpc_readb(scabase + M_REG(TNR0, ch)),
cpc_readb(scabase + M_REG(TNR1, ch)),
cpc_readb(scabase + M_REG(RNR, ch)));
printk("TCR=0x%02x, RCR=0x%02x, TNR1=0x%02x, RNR=0x%02x\n",
cpc_readb(scabase + M_REG(TCR, ch)),
cpc_readb(scabase + M_REG(RCR, ch)),
cpc_readb(scabase + M_REG(TNR1, ch)),
cpc_readb(scabase + M_REG(RNR, ch)));
printk("TXS=0x%02x, RXS=0x%02x, EXS=0x%02x, TMCT=0x%02x, TMCR=0x%02x\n",
cpc_readb(scabase + M_REG(TXS, ch)),
cpc_readb(scabase + M_REG(RXS, ch)),
cpc_readb(scabase + M_REG(EXS, ch)),
cpc_readb(scabase + M_REG(TMCT, ch)),
cpc_readb(scabase + M_REG(TMCR, ch)));
printk("IE0=0x%02x, IE1=0x%02x, IE2=0x%02x, IE4=0x%02x, FIE=0x%02x\n",
cpc_readb(scabase + M_REG(IE0, ch)),
cpc_readb(scabase + M_REG(IE1, ch)),
cpc_readb(scabase + M_REG(IE2, ch)),
cpc_readb(scabase + M_REG(IE4, ch)),
cpc_readb(scabase + M_REG(FIE, ch)));
printk("IER0=0x%08x\n", cpc_readl(scabase + IER0));
if (ilar != 0) {
CPC_LOCK(card, flags);
cpc_writeb(scabase + ILAR, ilar);
cpc_writeb(scabase + DMER, 0x80);
CPC_UNLOCK(card, flags);
}
}
static void cpc_falc_status(pc300_t * card, int ch)
{
pc300ch_t *chan = &card->chan[ch];
falc_t *pfalc = (falc_t *) & chan->falc;
unsigned long flags;
CPC_LOCK(card, flags);
printk("CH%d: %s %s %d channels\n",
ch, (pfalc->sync ? "SYNC" : ""), (pfalc->active ? "ACTIVE" : ""),
pfalc->num_channels);
printk(" pden=%d, los=%d, losr=%d, lfa=%d, farec=%d\n",
pfalc->pden, pfalc->los, pfalc->losr, pfalc->lfa, pfalc->farec);
printk(" lmfa=%d, ais=%d, sec=%d, es=%d, rai=%d\n",
pfalc->lmfa, pfalc->ais, pfalc->sec, pfalc->es, pfalc->rai);
printk(" bec=%d, fec=%d, cvc=%d, cec=%d, ebc=%d\n",
pfalc->bec, pfalc->fec, pfalc->cvc, pfalc->cec, pfalc->ebc);
printk("\n");
printk(" STATUS: %s %s %s %s %s %s\n",
(pfalc->red_alarm ? "RED" : ""),
(pfalc->blue_alarm ? "BLU" : ""),
(pfalc->yellow_alarm ? "YEL" : ""),
(pfalc->loss_fa ? "LFA" : ""),
(pfalc->loss_mfa ? "LMF" : ""), (pfalc->prbs ? "PRB" : ""));
CPC_UNLOCK(card, flags);
}
static int cpc_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 128) || (new_mtu > PC300_DEF_MTU))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
pc300conf_t conf_aux;
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
int ch = chan->channel;
void __user *arg = ifr->ifr_data;
struct if_settings *settings = &ifr->ifr_settings;
void __iomem *scabase = card->hw.scabase;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case SIOCGPC300CONF:
#ifdef CONFIG_PC300_MLPPP
if (conf->proto != PC300_PROTO_MLPPP) {
conf->proto = /* FIXME hdlc->proto.id */ 0;
}
#else
conf->proto = /* FIXME hdlc->proto.id */ 0;
#endif
memcpy(&conf_aux.conf, conf, sizeof(pc300chconf_t));
memcpy(&conf_aux.hw, &card->hw, sizeof(pc300hw_t));
if (!arg ||
copy_to_user(arg, &conf_aux, sizeof(pc300conf_t)))
return -EINVAL;
return 0;
case SIOCSPC300CONF:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!arg ||
copy_from_user(&conf_aux.conf, arg, sizeof(pc300chconf_t)))
return -EINVAL;
if (card->hw.cpld_id < 0x02 &&
conf_aux.conf.fr_mode == PC300_FR_UNFRAMED) {
/* CPLD_ID < 0x02 doesn't support Unframed E1 */
return -EINVAL;
}
#ifdef CONFIG_PC300_MLPPP
if (conf_aux.conf.proto == PC300_PROTO_MLPPP) {
if (conf->proto != PC300_PROTO_MLPPP) {
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
cpc_tty_init(d); /* init TTY driver */
}
} else {
if (conf_aux.conf.proto == 0xffff) {
if (conf->proto == PC300_PROTO_MLPPP){
/* ifdown interface */
cpc_close(dev);
}
} else {
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
/* FIXME hdlc->proto.id = conf->proto; */
}
}
#else
memcpy(conf, &conf_aux.conf, sizeof(pc300chconf_t));
/* FIXME hdlc->proto.id = conf->proto; */
#endif
return 0;
case SIOCGPC300STATUS:
cpc_sca_status(card, ch);
return 0;
case SIOCGPC300FALCSTATUS:
cpc_falc_status(card, ch);
return 0;
case SIOCGPC300UTILSTATS:
{
if (!arg) { /* clear statistics */
memset(&dev->stats, 0, sizeof(dev->stats));
if (card->hw.type == PC300_TE) {
memset(&chan->falc, 0, sizeof(falc_t));
}
} else {
pc300stats_t pc300stats;
memset(&pc300stats, 0, sizeof(pc300stats_t));
pc300stats.hw_type = card->hw.type;
pc300stats.line_on = card->chan[ch].d.line_on;
pc300stats.line_off = card->chan[ch].d.line_off;
memcpy(&pc300stats.gen_stats, &dev->stats,
sizeof(dev->stats));
if (card->hw.type == PC300_TE)
memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t));
if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t)))
return -EFAULT;
}
return 0;
}
case SIOCGPC300UTILSTATUS:
{
struct pc300status pc300status;
pc300status.hw_type = card->hw.type;
if (card->hw.type == PC300_TE) {
pc300status.te_status.sync = chan->falc.sync;
pc300status.te_status.red_alarm = chan->falc.red_alarm;
pc300status.te_status.blue_alarm = chan->falc.blue_alarm;
pc300status.te_status.loss_fa = chan->falc.loss_fa;
pc300status.te_status.yellow_alarm =chan->falc.yellow_alarm;
pc300status.te_status.loss_mfa = chan->falc.loss_mfa;
pc300status.te_status.prbs = chan->falc.prbs;
} else {
pc300status.gen_status.dcd =
!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_DCD);
pc300status.gen_status.cts =
!(cpc_readb (scabase + M_REG(ST3, ch)) & ST3_CTS);
pc300status.gen_status.rts =
!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_RTS);
pc300status.gen_status.dtr =
!(cpc_readb (scabase + M_REG(CTL, ch)) & CTL_DTR);
/* There is no DSR in HD64572 */
}
if (!arg
|| copy_to_user(arg, &pc300status, sizeof(pc300status_t)))
return -EINVAL;
return 0;
}
case SIOCSPC300TRACE:
/* Sets/resets a trace_flag for the respective device */
if (!arg || copy_from_user(&d->trace_on, arg,sizeof(unsigned char)))
return -EINVAL;
return 0;
case SIOCSPC300LOOPBACK:
{
struct pc300loopback pc300loop;
/* TE boards only */
if (card->hw.type != PC300_TE)
return -EINVAL;
if (!arg ||
copy_from_user(&pc300loop, arg, sizeof(pc300loopback_t)))
return -EINVAL;
switch (pc300loop.loop_type) {
case PC300LOCLOOP: /* Turn the local loop on/off */
falc_local_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300REMLOOP: /* Turn the remote loop on/off */
falc_remote_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300PAYLOADLOOP: /* Turn the payload loop on/off */
falc_payload_loop(card, ch, pc300loop.loop_on);
return 0;
case PC300GENLOOPUP: /* Generate loop UP */
if (pc300loop.loop_on) {
falc_generate_loop_up_code (card, ch);
} else {
turn_off_xlu(card, ch);
}
return 0;
case PC300GENLOOPDOWN: /* Generate loop DOWN */
if (pc300loop.loop_on) {
falc_generate_loop_down_code (card, ch);
} else {
turn_off_xld(card, ch);
}
return 0;
default:
return -EINVAL;
}
}
case SIOCSPC300PATTERNTEST:
/* Turn the pattern test on/off and show the errors counter */
{
struct pc300patterntst pc300patrntst;
/* TE boards only */
if (card->hw.type != PC300_TE)
return -EINVAL;
if (card->hw.cpld_id < 0x02) {
/* CPLD_ID < 0x02 doesn't support pattern test */
return -EINVAL;
}
if (!arg ||
copy_from_user(&pc300patrntst,arg,sizeof(pc300patterntst_t)))
return -EINVAL;
if (pc300patrntst.patrntst_on == 2) {
if (chan->falc.prbs == 0) {
falc_pattern_test(card, ch, 1);
}
pc300patrntst.num_errors =
falc_pattern_test_error(card, ch);
if (copy_to_user(arg, &pc300patrntst,
sizeof(pc300patterntst_t)))
return -EINVAL;
} else {
falc_pattern_test(card, ch, pc300patrntst.patrntst_on);
}
return 0;
}
case SIOCWANDEV:
switch (ifr->ifr_settings.type) {
case IF_GET_IFACE:
{
const size_t size = sizeof(sync_serial_settings);
ifr->ifr_settings.type = conf->media;
if (ifr->ifr_settings.size < size) {
/* data size wanted */
ifr->ifr_settings.size = size;
return -ENOBUFS;
}
if (copy_to_user(settings->ifs_ifsu.sync,
&conf->phys_settings, size)) {
return -EFAULT;
}
return 0;
}
case IF_IFACE_V35:
case IF_IFACE_V24:
case IF_IFACE_X21:
{
const size_t size = sizeof(sync_serial_settings);
if (!capable(CAP_NET_ADMIN)) {
return -EPERM;
}
/* incorrect data len? */
if (ifr->ifr_settings.size != size) {
return -ENOBUFS;
}
if (copy_from_user(&conf->phys_settings,
settings->ifs_ifsu.sync, size)) {
return -EFAULT;
}
if (conf->phys_settings.loopback) {
cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
MD2_LOOP_MIR);
}
conf->media = ifr->ifr_settings.type;
return 0;
}
case IF_IFACE_T1:
case IF_IFACE_E1:
{
const size_t te_size = sizeof(te1_settings);
const size_t size = sizeof(sync_serial_settings);
if (!capable(CAP_NET_ADMIN)) {
return -EPERM;
}
/* incorrect data len? */
if (ifr->ifr_settings.size != te_size) {
return -ENOBUFS;
}
if (copy_from_user(&conf->phys_settings,
settings->ifs_ifsu.te1, size)) {
return -EFAULT;
}/* Ignoring HDLC slot_map for a while */
if (conf->phys_settings.loopback) {
cpc_writeb(card->hw.scabase + M_REG(MD2, ch),
cpc_readb(card->hw.scabase + M_REG(MD2, ch)) |
MD2_LOOP_MIR);
}
conf->media = ifr->ifr_settings.type;
return 0;
}
default:
return hdlc_ioctl(dev, ifr, cmd);
}
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
static int clock_rate_calc(u32 rate, u32 clock, int *br_io)
{
int br, tc;
int br_pwr, error;
*br_io = 0;
if (rate == 0)
return (0);
for (br = 0, br_pwr = 1; br <= 9; br++, br_pwr <<= 1) {
if ((tc = clock / br_pwr / rate) <= 0xff) {
*br_io = br;
break;
}
}
if (tc <= 0xff) {
error = ((rate - (clock / br_pwr / rate)) / rate) * 1000;
/* Errors bigger than +/- 1% won't be tolerated */
if (error < -10 || error > 10)
return (-1);
else
return (tc);
} else {
return (-1);
}
}
static int ch_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300chconf_t *conf = (pc300chconf_t *) & chan->conf;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
void __iomem *plxbase = card->hw.plxbase;
int ch = chan->channel;
u32 clkrate = chan->conf.phys_settings.clock_rate;
u32 clktype = chan->conf.phys_settings.clock_type;
u16 encoding = chan->conf.proto_settings.encoding;
u16 parity = chan->conf.proto_settings.parity;
u8 md0, md2;
/* Reset the channel */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_CH_RST);
/* Configure the SCA registers */
switch (parity) {
case PARITY_NONE:
md0 = MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR0:
md0 = MD0_CRC16_0|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR1:
md0 = MD0_CRC16_1|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC32_PR1_CCITT:
md0 = MD0_CRC32|MD0_CRCC0|MD0_BIT_SYNC;
break;
case PARITY_CRC16_PR1_CCITT:
default:
md0 = MD0_CRC_CCITT|MD0_CRCC0|MD0_BIT_SYNC;
break;
}
switch (encoding) {
case ENCODING_NRZI:
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZI;
break;
case ENCODING_FM_MARK: /* FM1 */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM1;
break;
case ENCODING_FM_SPACE: /* FM0 */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_FM0;
break;
case ENCODING_MANCHESTER: /* It's not working... */
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_FM|MD2_MANCH;
break;
case ENCODING_NRZ:
default:
md2 = MD2_F_DUPLEX|MD2_ADPLL_X8|MD2_NRZ;
break;
}
cpc_writeb(scabase + M_REG(MD0, ch), md0);
cpc_writeb(scabase + M_REG(MD1, ch), 0);
cpc_writeb(scabase + M_REG(MD2, ch), md2);
cpc_writeb(scabase + M_REG(IDL, ch), 0x7e);
cpc_writeb(scabase + M_REG(CTL, ch), CTL_URSKP | CTL_IDLC);
/* Configure HW media */
switch (card->hw.type) {
case PC300_RSV:
if (conf->media == IF_IFACE_V35) {
cpc_writel((plxbase + card->hw.gpioc_reg),
cpc_readl(plxbase + card->hw.gpioc_reg) | PC300_CHMEDIA_MASK(ch));
} else {
cpc_writel((plxbase + card->hw.gpioc_reg),
cpc_readl(plxbase + card->hw.gpioc_reg) & ~PC300_CHMEDIA_MASK(ch));
}
break;
case PC300_X21:
break;
case PC300_TE:
te_config(card, ch);
break;
}
switch (card->hw.type) {
case PC300_RSV:
case PC300_X21:
if (clktype == CLOCK_INT || clktype == CLOCK_TXINT) {
int tmc, br;
/* Calculate the clkrate parameters */
tmc = clock_rate_calc(clkrate, card->hw.clock, &br);
if (tmc < 0)
return -EIO;
cpc_writeb(scabase + M_REG(TMCT, ch), tmc);
cpc_writeb(scabase + M_REG(TXS, ch),
(TXS_DTRXC | TXS_IBRG | br));
if (clktype == CLOCK_INT) {
cpc_writeb(scabase + M_REG(TMCR, ch), tmc);
cpc_writeb(scabase + M_REG(RXS, ch),
(RXS_IBRG | br));
} else {
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
}
if (card->hw.type == PC300_X21) {
cpc_writeb(scabase + M_REG(GPO, ch), 1);
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
} else {
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
}
} else {
cpc_writeb(scabase + M_REG(TMCT, ch), 1);
if (clktype == CLOCK_EXT) {
cpc_writeb(scabase + M_REG(TXS, ch),
TXS_DTRXC);
} else {
cpc_writeb(scabase + M_REG(TXS, ch),
TXS_DTRXC|TXS_RCLK);
}
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
if (card->hw.type == PC300_X21) {
cpc_writeb(scabase + M_REG(GPO, ch), 0);
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1 | EXS_RES1);
} else {
cpc_writeb(scabase + M_REG(EXS, ch), EXS_TES1);
}
}
break;
case PC300_TE:
/* SCA always receives clock from the FALC chip */
cpc_writeb(scabase + M_REG(TMCT, ch), 1);
cpc_writeb(scabase + M_REG(TXS, ch), 0);
cpc_writeb(scabase + M_REG(TMCR, ch), 1);
cpc_writeb(scabase + M_REG(RXS, ch), 0);
cpc_writeb(scabase + M_REG(EXS, ch), 0);
break;
}
/* Enable Interrupts */
cpc_writel(scabase + IER0,
cpc_readl(scabase + IER0) |
IR0_M(IR0_RXINTA, ch) |
IR0_DRX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch) |
IR0_DTX(IR0_EFT | IR0_DMIA | IR0_DMIB, ch));
cpc_writeb(scabase + M_REG(IE0, ch),
cpc_readl(scabase + M_REG(IE0, ch)) | IE0_RXINTA);
cpc_writeb(scabase + M_REG(IE1, ch),
cpc_readl(scabase + M_REG(IE1, ch)) | IE1_CDCD);
return 0;
}
static int rx_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
int ch = chan->channel;
cpc_writeb(scabase + DSR_RX(ch), 0);
/* General RX settings */
cpc_writeb(scabase + M_REG(RRC, ch), 0);
cpc_writeb(scabase + M_REG(RNR, ch), 16);
/* Enable reception */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_CRC_INIT);
cpc_writeb(scabase + M_REG(CMD, ch), CMD_RX_ENA);
/* Initialize DMA stuff */
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
rx_dma_buf_init(card, ch);
cpc_writeb(scabase + DCR_RX(ch), DCR_FCT_CLR);
cpc_writeb(scabase + DMR_RX(ch), (DMR_TMOD | DMR_NF));
cpc_writeb(scabase + DIR_RX(ch), (DIR_EOM | DIR_BOF));
/* Start DMA */
rx_dma_start(card, ch);
return 0;
}
static int tx_config(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
void __iomem *scabase = card->hw.scabase;
int ch = chan->channel;
cpc_writeb(scabase + DSR_TX(ch), 0);
/* General TX settings */
cpc_writeb(scabase + M_REG(TRC0, ch), 0);
cpc_writeb(scabase + M_REG(TFS, ch), 32);
cpc_writeb(scabase + M_REG(TNR0, ch), 20);
cpc_writeb(scabase + M_REG(TNR1, ch), 48);
cpc_writeb(scabase + M_REG(TCR, ch), 8);
/* Enable transmission */
cpc_writeb(scabase + M_REG(CMD, ch), CMD_TX_CRC_INIT);
/* Initialize DMA stuff */
chan->tx_first_bd = 0;
chan->tx_next_bd = 0;
tx_dma_buf_init(card, ch);
cpc_writeb(scabase + DCR_TX(ch), DCR_FCT_CLR);
cpc_writeb(scabase + DMR_TX(ch), (DMR_TMOD | DMR_NF));
cpc_writeb(scabase + DIR_TX(ch), (DIR_EOM | DIR_BOF | DIR_UDRF));
cpc_writel(scabase + DTX_REG(CDAL, ch), TX_BD_ADDR(ch, chan->tx_first_bd));
cpc_writel(scabase + DTX_REG(EDAL, ch), TX_BD_ADDR(ch, chan->tx_next_bd));
return 0;
}
static int cpc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
pc300dev_t *d = (pc300dev_t *)dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *)d->chan;
pc300_t *card = (pc300_t *)chan->card;
pc300chconf_t *conf = (pc300chconf_t *)&chan->conf;
if (card->hw.type == PC300_TE) {
if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) {
return -EINVAL;
}
} else {
if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI &&
encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE) {
/* Driver doesn't support ENCODING_MANCHESTER yet */
return -EINVAL;
}
}
if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0 &&
parity != PARITY_CRC16_PR1 && parity != PARITY_CRC32_PR1_CCITT &&
parity != PARITY_CRC16_PR1_CCITT) {
return -EINVAL;
}
conf->proto_settings.encoding = encoding;
conf->proto_settings.parity = parity;
return 0;
}
static int cpc_opench(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
int ch = chan->channel, rc;
void __iomem *scabase = card->hw.scabase;
rc = ch_config(d);
if (rc)
return rc;
rx_config(d);
tx_config(d);
/* Assert RTS and DTR */
cpc_writeb(scabase + M_REG(CTL, ch),
cpc_readb(scabase + M_REG(CTL, ch)) & ~(CTL_RTS | CTL_DTR));
return 0;
}
static void cpc_closech(pc300dev_t * d)
{
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
falc_t *pfalc = (falc_t *) & chan->falc;
int ch = chan->channel;
cpc_writeb(card->hw.scabase + M_REG(CMD, ch), CMD_CH_RST);
rx_dma_stop(card, ch);
tx_dma_stop(card, ch);
if (card->hw.type == PC300_TE) {
memset(pfalc, 0, sizeof(falc_t));
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg2,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg2) &
~((CPLD_REG2_FALC_TX_CLK | CPLD_REG2_FALC_RX_CLK |
CPLD_REG2_FALC_LED2) << (2 * ch)));
/* Reset the FALC chip */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
(CPLD_REG1_FALC_RESET << (2 * ch)));
udelay(10000);
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) &
~(CPLD_REG1_FALC_RESET << (2 * ch)));
}
}
int cpc_open(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
struct ifreq ifr;
int result;
#ifdef PC300_DEBUG_OTHER
printk("pc300: cpc_open");
#endif
result = hdlc_open(dev);
if (result)
return result;
sprintf(ifr.ifr_name, "%s", dev->name);
result = cpc_opench(d);
if (result)
goto err_out;
netif_start_queue(dev);
return 0;
err_out:
hdlc_close(dev);
return result;
}
static int cpc_close(struct net_device *dev)
{
pc300dev_t *d = (pc300dev_t *) dev_to_hdlc(dev)->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
unsigned long flags;
#ifdef PC300_DEBUG_OTHER
printk("pc300: cpc_close");
#endif
netif_stop_queue(dev);
CPC_LOCK(card, flags);
cpc_closech(d);
CPC_UNLOCK(card, flags);
hdlc_close(dev);
#ifdef CONFIG_PC300_MLPPP
if (chan->conf.proto == PC300_PROTO_MLPPP) {
cpc_tty_unregister_service(d);
chan->conf.proto = 0xffff;
}
#endif
return 0;
}
static u32 detect_ram(pc300_t * card)
{
u32 i;
u8 data;
void __iomem *rambase = card->hw.rambase;
card->hw.ramsize = PC300_RAMSIZE;
/* Let's find out how much RAM is present on this board */
for (i = 0; i < card->hw.ramsize; i++) {
data = (u8)(i & 0xff);
cpc_writeb(rambase + i, data);
if (cpc_readb(rambase + i) != data) {
break;
}
}
return (i);
}
static void plx_init(pc300_t * card)
{
struct RUNTIME_9050 __iomem *plx_ctl = card->hw.plxbase;
/* Reset PLX */
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) | 0x40000000);
udelay(10000L);
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) & ~0x40000000);
/* Reload Config. Registers from EEPROM */
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) | 0x20000000);
udelay(10000L);
cpc_writel(&plx_ctl->init_ctrl,
cpc_readl(&plx_ctl->init_ctrl) & ~0x20000000);
}
static inline void show_version(void)
{
char *rcsvers, *rcsdate, *tmp;
rcsvers = strchr(rcsid, ' ');
rcsvers++;
tmp = strchr(rcsvers, ' ');
*tmp++ = '\0';
rcsdate = strchr(tmp, ' ');
rcsdate++;
tmp = strrchr(rcsdate, ' ');
*tmp = '\0';
printk(KERN_INFO "Cyclades-PC300 driver %s %s (built %s %s)\n",
rcsvers, rcsdate, __DATE__, __TIME__);
} /* show_version */
static void cpc_init_card(pc300_t * card)
{
int i, devcount = 0;
static int board_nbr = 1;
/* Enable interrupts on the PCI bridge */
plx_init(card);
cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
cpc_readw(card->hw.plxbase + card->hw.intctl_reg) | 0x0040);
#ifdef USE_PCI_CLOCK
/* Set board clock to PCI clock */
cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) | 0x00000004UL);
card->hw.clock = PC300_PCI_CLOCK;
#else
/* Set board clock to internal oscillator clock */
cpc_writel(card->hw.plxbase + card->hw.gpioc_reg,
cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & ~0x00000004UL);
card->hw.clock = PC300_OSC_CLOCK;
#endif
/* Detect actual on-board RAM size */
card->hw.ramsize = detect_ram(card);
/* Set Global SCA-II registers */
cpc_writeb(card->hw.scabase + PCR, PCR_PR2);
cpc_writeb(card->hw.scabase + BTCR, 0x10);
cpc_writeb(card->hw.scabase + WCRL, 0);
cpc_writeb(card->hw.scabase + DMER, 0x80);
if (card->hw.type == PC300_TE) {
u8 reg1;
/* Check CPLD version */
reg1 = cpc_readb(card->hw.falcbase + CPLD_REG1);
cpc_writeb(card->hw.falcbase + CPLD_REG1, (reg1 + 0x5a));
if (cpc_readb(card->hw.falcbase + CPLD_REG1) == reg1) {
/* New CPLD */
card->hw.cpld_id = cpc_readb(card->hw.falcbase + CPLD_ID_REG);
card->hw.cpld_reg1 = CPLD_V2_REG1;
card->hw.cpld_reg2 = CPLD_V2_REG2;
} else {
/* old CPLD */
card->hw.cpld_id = 0;
card->hw.cpld_reg1 = CPLD_REG1;
card->hw.cpld_reg2 = CPLD_REG2;
cpc_writeb(card->hw.falcbase + CPLD_REG1, reg1);
}
/* Enable the board's global clock */
cpc_writeb(card->hw.falcbase + card->hw.cpld_reg1,
cpc_readb(card->hw.falcbase + card->hw.cpld_reg1) |
CPLD_REG1_GLOBAL_CLK);
}
for (i = 0; i < card->hw.nchan; i++) {
pc300ch_t *chan = &card->chan[i];
pc300dev_t *d = &chan->d;
hdlc_device *hdlc;
struct net_device *dev;
chan->card = card;
chan->channel = i;
chan->conf.phys_settings.clock_rate = 0;
chan->conf.phys_settings.clock_type = CLOCK_EXT;
chan->conf.proto_settings.encoding = ENCODING_NRZ;
chan->conf.proto_settings.parity = PARITY_CRC16_PR1_CCITT;
switch (card->hw.type) {
case PC300_TE:
chan->conf.media = IF_IFACE_T1;
chan->conf.lcode = PC300_LC_B8ZS;
chan->conf.fr_mode = PC300_FR_ESF;
chan->conf.lbo = PC300_LBO_0_DB;
chan->conf.rx_sens = PC300_RX_SENS_SH;
chan->conf.tslot_bitmap = 0xffffffffUL;
break;
case PC300_X21:
chan->conf.media = IF_IFACE_X21;
break;
case PC300_RSV:
default:
chan->conf.media = IF_IFACE_V35;
break;
}
chan->conf.proto = IF_PROTO_PPP;
chan->tx_first_bd = 0;
chan->tx_next_bd = 0;
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
chan->nfree_tx_bd = N_DMA_TX_BUF;
d->chan = chan;
d->trace_on = 0;
d->line_on = 0;
d->line_off = 0;
dev = alloc_hdlcdev(d);
if (dev == NULL)
continue;
hdlc = dev_to_hdlc(dev);
hdlc->xmit = cpc_queue_xmit;
hdlc->attach = cpc_attach;
d->dev = dev;
dev->mem_start = card->hw.ramphys;
dev->mem_end = card->hw.ramphys + card->hw.ramsize - 1;
dev->irq = card->hw.irq;
dev->init = NULL;
dev->tx_queue_len = PC300_TX_QUEUE_LEN;
dev->mtu = PC300_DEF_MTU;
dev->open = cpc_open;
dev->stop = cpc_close;
dev->tx_timeout = cpc_tx_timeout;
dev->watchdog_timeo = PC300_TX_TIMEOUT;
dev->set_multicast_list = NULL;
dev->set_mac_address = NULL;
dev->change_mtu = cpc_change_mtu;
dev->do_ioctl = cpc_ioctl;
if (register_hdlc_device(dev) == 0) {
printk("%s: Cyclades-PC300/", dev->name);
switch (card->hw.type) {
case PC300_TE:
if (card->hw.bus == PC300_PMC) {
printk("TE-M");
} else {
printk("TE ");
}
break;
case PC300_X21:
printk("X21 ");
break;
case PC300_RSV:
default:
printk("RSV ");
break;
}
printk (" #%d, %dKB of RAM at 0x%08x, IRQ%d, channel %d.\n",
board_nbr, card->hw.ramsize / 1024,
card->hw.ramphys, card->hw.irq, i + 1);
devcount++;
} else {
printk ("Dev%d on card(0x%08x): unable to allocate i/f name.\n",
i + 1, card->hw.ramphys);
free_netdev(dev);
continue;
}
}
spin_lock_init(&card->card_lock);
board_nbr++;
}
static int __devinit
cpc_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int first_time = 1;
int err, eeprom_outdated = 0;
u16 device_id;
pc300_t *card;
if (first_time) {
first_time = 0;
show_version();
#ifdef CONFIG_PC300_MLPPP
cpc_tty_reset_var();
#endif
}
if ((err = pci_enable_device(pdev)) < 0)
return err;
card = kzalloc(sizeof(pc300_t), GFP_KERNEL);
if (card == NULL) {
printk("PC300 found at RAM 0x%016llx, "
"but could not allocate card structure.\n",
(unsigned long long)pci_resource_start(pdev, 3));
err = -ENOMEM;
goto err_disable_dev;
}
err = -ENODEV;
/* read PCI configuration area */
device_id = ent->device;
card->hw.irq = pdev->irq;
card->hw.iophys = pci_resource_start(pdev, 1);
card->hw.iosize = pci_resource_len(pdev, 1);
card->hw.scaphys = pci_resource_start(pdev, 2);
card->hw.scasize = pci_resource_len(pdev, 2);
card->hw.ramphys = pci_resource_start(pdev, 3);
card->hw.alloc_ramsize = pci_resource_len(pdev, 3);
card->hw.falcphys = pci_resource_start(pdev, 4);
card->hw.falcsize = pci_resource_len(pdev, 4);
card->hw.plxphys = pci_resource_start(pdev, 5);
card->hw.plxsize = pci_resource_len(pdev, 5);
switch (device_id) {
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_M_1:
card->hw.nchan = 1;
break;
case PCI_DEVICE_ID_PC300_RX_2:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_2:
default:
card->hw.nchan = PC300_MAXCHAN;
break;
}
#ifdef PC300_DEBUG_PCI
printk("cpc (bus=0x0%x,pci_id=0x%x,", pdev->bus->number, pdev->devfn);
printk("rev_id=%d) IRQ%d\n", pdev->revision, card->hw.irq);
printk("cpc:found ramaddr=0x%08lx plxaddr=0x%08lx "
"ctladdr=0x%08lx falcaddr=0x%08lx\n",
card->hw.ramphys, card->hw.plxphys, card->hw.scaphys,
card->hw.falcphys);
#endif
/* Although we don't use this I/O region, we should
* request it from the kernel anyway, to avoid problems
* with other drivers accessing it. */
if (!request_region(card->hw.iophys, card->hw.iosize, "PLX Registers")) {
/* In case we can't allocate it, warn user */
printk("WARNING: couldn't allocate I/O region for PC300 board "
"at 0x%08x!\n", card->hw.ramphys);
}
if (card->hw.plxphys) {
pci_write_config_dword(pdev, PCI_BASE_ADDRESS_0, card->hw.plxphys);
} else {
eeprom_outdated = 1;
card->hw.plxphys = pci_resource_start(pdev, 0);
card->hw.plxsize = pci_resource_len(pdev, 0);
}
if (!request_mem_region(card->hw.plxphys, card->hw.plxsize,
"PLX Registers")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate PLX mem region.\n",
card->hw.ramphys);
goto err_release_io;
}
if (!request_mem_region(card->hw.ramphys, card->hw.alloc_ramsize,
"On-board RAM")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate RAM mem region.\n",
card->hw.ramphys);
goto err_release_plx;
}
if (!request_mem_region(card->hw.scaphys, card->hw.scasize,
"SCA-II Registers")) {
printk("PC300 found at RAM 0x%08x, "
"but could not allocate SCA mem region.\n",
card->hw.ramphys);
goto err_release_ram;
}
card->hw.plxbase = ioremap(card->hw.plxphys, card->hw.plxsize);
card->hw.rambase = ioremap(card->hw.ramphys, card->hw.alloc_ramsize);
card->hw.scabase = ioremap(card->hw.scaphys, card->hw.scasize);
switch (device_id) {
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_1:
case PCI_DEVICE_ID_PC300_TE_M_2:
request_mem_region(card->hw.falcphys, card->hw.falcsize,
"FALC Registers");
card->hw.falcbase = ioremap(card->hw.falcphys, card->hw.falcsize);
break;
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_RX_2:
default:
card->hw.falcbase = NULL;
break;
}
#ifdef PC300_DEBUG_PCI
printk("cpc: relocate ramaddr=0x%08lx plxaddr=0x%08lx "
"ctladdr=0x%08lx falcaddr=0x%08lx\n",
card->hw.rambase, card->hw.plxbase, card->hw.scabase,
card->hw.falcbase);
#endif
/* Set PCI drv pointer to the card structure */
pci_set_drvdata(pdev, card);
/* Set board type */
switch (device_id) {
case PCI_DEVICE_ID_PC300_TE_1:
case PCI_DEVICE_ID_PC300_TE_2:
case PCI_DEVICE_ID_PC300_TE_M_1:
case PCI_DEVICE_ID_PC300_TE_M_2:
card->hw.type = PC300_TE;
if ((device_id == PCI_DEVICE_ID_PC300_TE_M_1) ||
(device_id == PCI_DEVICE_ID_PC300_TE_M_2)) {
card->hw.bus = PC300_PMC;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x54;
card->hw.intctl_reg = 0x4c;
} else {
card->hw.bus = PC300_PCI;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x50;
card->hw.intctl_reg = 0x4c;
}
break;
case PCI_DEVICE_ID_PC300_RX_1:
case PCI_DEVICE_ID_PC300_RX_2:
default:
card->hw.bus = PC300_PCI;
/* Set PLX register offsets */
card->hw.gpioc_reg = 0x50;
card->hw.intctl_reg = 0x4c;
if ((cpc_readl(card->hw.plxbase + card->hw.gpioc_reg) & PC300_CTYPE_MASK)) {
card->hw.type = PC300_X21;
} else {
card->hw.type = PC300_RSV;
}
break;
}
/* Allocate IRQ */
if (request_irq(card->hw.irq, cpc_intr, IRQF_SHARED, "Cyclades-PC300", card)) {
printk ("PC300 found at RAM 0x%08x, but could not allocate IRQ%d.\n",
card->hw.ramphys, card->hw.irq);
goto err_io_unmap;
}
cpc_init_card(card);
if (eeprom_outdated)
printk("WARNING: PC300 with outdated EEPROM.\n");
return 0;
err_io_unmap:
iounmap(card->hw.plxbase);
iounmap(card->hw.scabase);
iounmap(card->hw.rambase);
if (card->hw.type == PC300_TE) {
iounmap(card->hw.falcbase);
release_mem_region(card->hw.falcphys, card->hw.falcsize);
}
release_mem_region(card->hw.scaphys, card->hw.scasize);
err_release_ram:
release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
err_release_plx:
release_mem_region(card->hw.plxphys, card->hw.plxsize);
err_release_io:
release_region(card->hw.iophys, card->hw.iosize);
kfree(card);
err_disable_dev:
pci_disable_device(pdev);
return err;
}
static void __devexit cpc_remove_one(struct pci_dev *pdev)
{
pc300_t *card = pci_get_drvdata(pdev);
if (card->hw.rambase) {
int i;
/* Disable interrupts on the PCI bridge */
cpc_writew(card->hw.plxbase + card->hw.intctl_reg,
cpc_readw(card->hw.plxbase + card->hw.intctl_reg) & ~(0x0040));
for (i = 0; i < card->hw.nchan; i++) {
unregister_hdlc_device(card->chan[i].d.dev);
}
iounmap(card->hw.plxbase);
iounmap(card->hw.scabase);
iounmap(card->hw.rambase);
release_mem_region(card->hw.plxphys, card->hw.plxsize);
release_mem_region(card->hw.ramphys, card->hw.alloc_ramsize);
release_mem_region(card->hw.scaphys, card->hw.scasize);
release_region(card->hw.iophys, card->hw.iosize);
if (card->hw.type == PC300_TE) {
iounmap(card->hw.falcbase);
release_mem_region(card->hw.falcphys, card->hw.falcsize);
}
for (i = 0; i < card->hw.nchan; i++)
if (card->chan[i].d.dev)
free_netdev(card->chan[i].d.dev);
if (card->hw.irq)
free_irq(card->hw.irq, card);
kfree(card);
pci_disable_device(pdev);
}
}
static struct pci_driver cpc_driver = {
.name = "pc300",
.id_table = cpc_pci_dev_id,
.probe = cpc_init_one,
.remove = __devexit_p(cpc_remove_one),
};
static int __init cpc_init(void)
{
return pci_register_driver(&cpc_driver);
}
static void __exit cpc_cleanup_module(void)
{
pci_unregister_driver(&cpc_driver);
}
module_init(cpc_init);
module_exit(cpc_cleanup_module);
MODULE_DESCRIPTION("Cyclades-PC300 cards driver");
MODULE_AUTHOR( "Author: Ivan Passos <ivan@cyclades.com>\r\n"
"Maintainer: PC300 Maintainer <pc300@cyclades.com");
MODULE_LICENSE("GPL");