kernel_optimize_test/arch/powerpc/net/bpf_jit_comp.c
Matt Evans 0ca87f05ba net: filter: BPF 'JIT' compiler for PPC64
An implementation of a code generator for BPF programs to speed up packet
filtering on PPC64, inspired by Eric Dumazet's x86-64 version.

Filter code is generated as an ABI-compliant function in module_alloc()'d mem
with stackframe & prologue/epilogue generated if required (simple filters don't
need anything more than an li/blr).  The filter's local variables, M[], live in
registers.  Supports all BPF opcodes, although "complicated" loads from negative
packet offsets (e.g. SKF_LL_OFF) are not yet supported.

There are a couple of further optimisations left for future work; many-pass
assembly with branch-reach reduction and a register allocator to push M[]
variables into volatile registers would improve the code quality further.

This currently supports big-endian 64-bit PowerPC only (but is fairly simple
to port to PPC32 or LE!).

Enabled in the same way as x86-64:

	echo 1 > /proc/sys/net/core/bpf_jit_enable

Or, enabled with extra debug output:

	echo 2 > /proc/sys/net/core/bpf_jit_enable

Signed-off-by: Matt Evans <matt@ozlabs.org>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-21 12:38:32 -07:00

695 lines
18 KiB
C

/* bpf_jit_comp.c: BPF JIT compiler for PPC64
*
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
*
* Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include "bpf_jit.h"
#ifndef __BIG_ENDIAN
/* There are endianness assumptions herein. */
#error "Little-endian PPC not supported in BPF compiler"
#endif
int bpf_jit_enable __read_mostly;
static inline void bpf_flush_icache(void *start, void *end)
{
smp_wmb();
flush_icache_range((unsigned long)start, (unsigned long)end);
}
static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
struct codegen_context *ctx)
{
int i;
const struct sock_filter *filter = fp->insns;
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
/* Make stackframe */
if (ctx->seen & SEEN_DATAREF) {
/* If we call any helpers (for loads), save LR */
EMIT(PPC_INST_MFLR | __PPC_RT(0));
PPC_STD(0, 1, 16);
/* Back up non-volatile regs. */
PPC_STD(r_D, 1, -(8*(32-r_D)));
PPC_STD(r_HL, 1, -(8*(32-r_HL)));
}
if (ctx->seen & SEEN_MEM) {
/*
* Conditionally save regs r15-r31 as some will be used
* for M[] data.
*/
for (i = r_M; i < (r_M+16); i++) {
if (ctx->seen & (1 << (i-r_M)))
PPC_STD(i, 1, -(8*(32-i)));
}
}
EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
(-BPF_PPC_STACKFRAME & 0xfffc));
}
if (ctx->seen & SEEN_DATAREF) {
/*
* If this filter needs to access skb data,
* prepare r_D and r_HL:
* r_HL = skb->len - skb->data_len
* r_D = skb->data
*/
PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
data_len));
PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
PPC_SUB(r_HL, r_HL, r_scratch1);
PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
}
if (ctx->seen & SEEN_XREG) {
/*
* TODO: Could also detect whether first instr. sets X and
* avoid this (as below, with A).
*/
PPC_LI(r_X, 0);
}
switch (filter[0].code) {
case BPF_S_RET_K:
case BPF_S_LD_W_LEN:
case BPF_S_ANC_PROTOCOL:
case BPF_S_ANC_IFINDEX:
case BPF_S_ANC_MARK:
case BPF_S_ANC_RXHASH:
case BPF_S_ANC_CPU:
case BPF_S_ANC_QUEUE:
case BPF_S_LD_W_ABS:
case BPF_S_LD_H_ABS:
case BPF_S_LD_B_ABS:
/* first instruction sets A register (or is RET 'constant') */
break;
default:
/* make sure we dont leak kernel information to user */
PPC_LI(r_A, 0);
}
}
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
{
int i;
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
if (ctx->seen & SEEN_DATAREF) {
PPC_LD(0, 1, 16);
PPC_MTLR(0);
PPC_LD(r_D, 1, -(8*(32-r_D)));
PPC_LD(r_HL, 1, -(8*(32-r_HL)));
}
if (ctx->seen & SEEN_MEM) {
/* Restore any saved non-vol registers */
for (i = r_M; i < (r_M+16); i++) {
if (ctx->seen & (1 << (i-r_M)))
PPC_LD(i, 1, -(8*(32-i)));
}
}
}
/* The RETs have left a return value in R3. */
PPC_BLR();
}
/* Assemble the body code between the prologue & epilogue. */
static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
struct codegen_context *ctx,
unsigned int *addrs)
{
const struct sock_filter *filter = fp->insns;
int flen = fp->len;
u8 *func;
unsigned int true_cond;
int i;
/* Start of epilogue code */
unsigned int exit_addr = addrs[flen];
for (i = 0; i < flen; i++) {
unsigned int K = filter[i].k;
/*
* addrs[] maps a BPF bytecode address into a real offset from
* the start of the body code.
*/
addrs[i] = ctx->idx * 4;
switch (filter[i].code) {
/*** ALU ops ***/
case BPF_S_ALU_ADD_X: /* A += X; */
ctx->seen |= SEEN_XREG;
PPC_ADD(r_A, r_A, r_X);
break;
case BPF_S_ALU_ADD_K: /* A += K; */
if (!K)
break;
PPC_ADDI(r_A, r_A, IMM_L(K));
if (K >= 32768)
PPC_ADDIS(r_A, r_A, IMM_HA(K));
break;
case BPF_S_ALU_SUB_X: /* A -= X; */
ctx->seen |= SEEN_XREG;
PPC_SUB(r_A, r_A, r_X);
break;
case BPF_S_ALU_SUB_K: /* A -= K */
if (!K)
break;
PPC_ADDI(r_A, r_A, IMM_L(-K));
if (K >= 32768)
PPC_ADDIS(r_A, r_A, IMM_HA(-K));
break;
case BPF_S_ALU_MUL_X: /* A *= X; */
ctx->seen |= SEEN_XREG;
PPC_MUL(r_A, r_A, r_X);
break;
case BPF_S_ALU_MUL_K: /* A *= K */
if (K < 32768)
PPC_MULI(r_A, r_A, K);
else {
PPC_LI32(r_scratch1, K);
PPC_MUL(r_A, r_A, r_scratch1);
}
break;
case BPF_S_ALU_DIV_X: /* A /= X; */
ctx->seen |= SEEN_XREG;
PPC_CMPWI(r_X, 0);
if (ctx->pc_ret0 != -1) {
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
} else {
/*
* Exit, returning 0; first pass hits here
* (longer worst-case code size).
*/
PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
PPC_LI(r_ret, 0);
PPC_JMP(exit_addr);
}
PPC_DIVWU(r_A, r_A, r_X);
break;
case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
PPC_LI32(r_scratch1, K);
/* Top 32 bits of 64bit result -> A */
PPC_MULHWU(r_A, r_A, r_scratch1);
break;
case BPF_S_ALU_AND_X:
ctx->seen |= SEEN_XREG;
PPC_AND(r_A, r_A, r_X);
break;
case BPF_S_ALU_AND_K:
if (!IMM_H(K))
PPC_ANDI(r_A, r_A, K);
else {
PPC_LI32(r_scratch1, K);
PPC_AND(r_A, r_A, r_scratch1);
}
break;
case BPF_S_ALU_OR_X:
ctx->seen |= SEEN_XREG;
PPC_OR(r_A, r_A, r_X);
break;
case BPF_S_ALU_OR_K:
if (IMM_L(K))
PPC_ORI(r_A, r_A, IMM_L(K));
if (K >= 65536)
PPC_ORIS(r_A, r_A, IMM_H(K));
break;
case BPF_S_ALU_LSH_X: /* A <<= X; */
ctx->seen |= SEEN_XREG;
PPC_SLW(r_A, r_A, r_X);
break;
case BPF_S_ALU_LSH_K:
if (K == 0)
break;
else
PPC_SLWI(r_A, r_A, K);
break;
case BPF_S_ALU_RSH_X: /* A >>= X; */
ctx->seen |= SEEN_XREG;
PPC_SRW(r_A, r_A, r_X);
break;
case BPF_S_ALU_RSH_K: /* A >>= K; */
if (K == 0)
break;
else
PPC_SRWI(r_A, r_A, K);
break;
case BPF_S_ALU_NEG:
PPC_NEG(r_A, r_A);
break;
case BPF_S_RET_K:
PPC_LI32(r_ret, K);
if (!K) {
if (ctx->pc_ret0 == -1)
ctx->pc_ret0 = i;
}
/*
* If this isn't the very last instruction, branch to
* the epilogue if we've stuff to clean up. Otherwise,
* if there's nothing to tidy, just return. If we /are/
* the last instruction, we're about to fall through to
* the epilogue to return.
*/
if (i != flen - 1) {
/*
* Note: 'seen' is properly valid only on pass
* #2. Both parts of this conditional are the
* same instruction size though, meaning the
* first pass will still correctly determine the
* code size/addresses.
*/
if (ctx->seen)
PPC_JMP(exit_addr);
else
PPC_BLR();
}
break;
case BPF_S_RET_A:
PPC_MR(r_ret, r_A);
if (i != flen - 1) {
if (ctx->seen)
PPC_JMP(exit_addr);
else
PPC_BLR();
}
break;
case BPF_S_MISC_TAX: /* X = A */
PPC_MR(r_X, r_A);
break;
case BPF_S_MISC_TXA: /* A = X */
ctx->seen |= SEEN_XREG;
PPC_MR(r_A, r_X);
break;
/*** Constant loads/M[] access ***/
case BPF_S_LD_IMM: /* A = K */
PPC_LI32(r_A, K);
break;
case BPF_S_LDX_IMM: /* X = K */
PPC_LI32(r_X, K);
break;
case BPF_S_LD_MEM: /* A = mem[K] */
PPC_MR(r_A, r_M + (K & 0xf));
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
break;
case BPF_S_LDX_MEM: /* X = mem[K] */
PPC_MR(r_X, r_M + (K & 0xf));
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
break;
case BPF_S_ST: /* mem[K] = A */
PPC_MR(r_M + (K & 0xf), r_A);
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
break;
case BPF_S_STX: /* mem[K] = X */
PPC_MR(r_M + (K & 0xf), r_X);
ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
break;
case BPF_S_LD_W_LEN: /* A = skb->len; */
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
break;
case BPF_S_LDX_W_LEN: /* X = skb->len; */
PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
break;
/*** Ancillary info loads ***/
/* None of the BPF_S_ANC* codes appear to be passed by
* sk_chk_filter(). The interpreter and the x86 BPF
* compiler implement them so we do too -- they may be
* planted in future.
*/
case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
protocol) != 2);
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
protocol));
/* ntohs is a NOP with BE loads. */
break;
case BPF_S_ANC_IFINDEX:
PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
dev));
PPC_CMPDI(r_scratch1, 0);
if (ctx->pc_ret0 != -1) {
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
} else {
/* Exit, returning 0; first pass hits here. */
PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
PPC_LI(r_ret, 0);
PPC_JMP(exit_addr);
}
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
ifindex) != 4);
PPC_LWZ_OFFS(r_A, r_scratch1,
offsetof(struct net_device, ifindex));
break;
case BPF_S_ANC_MARK:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
mark));
break;
case BPF_S_ANC_RXHASH:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
rxhash));
break;
case BPF_S_ANC_QUEUE:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
queue_mapping) != 2);
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
queue_mapping));
break;
case BPF_S_ANC_CPU:
#ifdef CONFIG_SMP
/*
* PACA ptr is r13:
* raw_smp_processor_id() = local_paca->paca_index
*/
BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
paca_index) != 2);
PPC_LHZ_OFFS(r_A, 13,
offsetof(struct paca_struct, paca_index));
#else
PPC_LI(r_A, 0);
#endif
break;
/*** Absolute loads from packet header/data ***/
case BPF_S_LD_W_ABS:
func = sk_load_word;
goto common_load;
case BPF_S_LD_H_ABS:
func = sk_load_half;
goto common_load;
case BPF_S_LD_B_ABS:
func = sk_load_byte;
common_load:
/*
* Load from [K]. Reference with the (negative)
* SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
*/
ctx->seen |= SEEN_DATAREF;
if ((int)K < 0)
return -ENOTSUPP;
PPC_LI64(r_scratch1, func);
PPC_MTLR(r_scratch1);
PPC_LI32(r_addr, K);
PPC_BLRL();
/*
* Helper returns 'lt' condition on error, and an
* appropriate return value in r3
*/
PPC_BCC(COND_LT, exit_addr);
break;
/*** Indirect loads from packet header/data ***/
case BPF_S_LD_W_IND:
func = sk_load_word;
goto common_load_ind;
case BPF_S_LD_H_IND:
func = sk_load_half;
goto common_load_ind;
case BPF_S_LD_B_IND:
func = sk_load_byte;
common_load_ind:
/*
* Load from [X + K]. Negative offsets are tested for
* in the helper functions, and result in a 'ret 0'.
*/
ctx->seen |= SEEN_DATAREF | SEEN_XREG;
PPC_LI64(r_scratch1, func);
PPC_MTLR(r_scratch1);
PPC_ADDI(r_addr, r_X, IMM_L(K));
if (K >= 32768)
PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
PPC_BLRL();
/* If error, cr0.LT set */
PPC_BCC(COND_LT, exit_addr);
break;
case BPF_S_LDX_B_MSH:
/*
* x86 version drops packet (RET 0) when K<0, whereas
* interpreter does allow K<0 (__load_pointer, special
* ancillary data). common_load returns ENOTSUPP if K<0,
* so we fall back to interpreter & filter works.
*/
func = sk_load_byte_msh;
goto common_load;
break;
/*** Jump and branches ***/
case BPF_S_JMP_JA:
if (K != 0)
PPC_JMP(addrs[i + 1 + K]);
break;
case BPF_S_JMP_JGT_K:
case BPF_S_JMP_JGT_X:
true_cond = COND_GT;
goto cond_branch;
case BPF_S_JMP_JGE_K:
case BPF_S_JMP_JGE_X:
true_cond = COND_GE;
goto cond_branch;
case BPF_S_JMP_JEQ_K:
case BPF_S_JMP_JEQ_X:
true_cond = COND_EQ;
goto cond_branch;
case BPF_S_JMP_JSET_K:
case BPF_S_JMP_JSET_X:
true_cond = COND_NE;
/* Fall through */
cond_branch:
/* same targets, can avoid doing the test :) */
if (filter[i].jt == filter[i].jf) {
if (filter[i].jt > 0)
PPC_JMP(addrs[i + 1 + filter[i].jt]);
break;
}
switch (filter[i].code) {
case BPF_S_JMP_JGT_X:
case BPF_S_JMP_JGE_X:
case BPF_S_JMP_JEQ_X:
ctx->seen |= SEEN_XREG;
PPC_CMPLW(r_A, r_X);
break;
case BPF_S_JMP_JSET_X:
ctx->seen |= SEEN_XREG;
PPC_AND_DOT(r_scratch1, r_A, r_X);
break;
case BPF_S_JMP_JEQ_K:
case BPF_S_JMP_JGT_K:
case BPF_S_JMP_JGE_K:
if (K < 32768)
PPC_CMPLWI(r_A, K);
else {
PPC_LI32(r_scratch1, K);
PPC_CMPLW(r_A, r_scratch1);
}
break;
case BPF_S_JMP_JSET_K:
if (K < 32768)
/* PPC_ANDI is /only/ dot-form */
PPC_ANDI(r_scratch1, r_A, K);
else {
PPC_LI32(r_scratch1, K);
PPC_AND_DOT(r_scratch1, r_A,
r_scratch1);
}
break;
}
/* Sometimes branches are constructed "backward", with
* the false path being the branch and true path being
* a fallthrough to the next instruction.
*/
if (filter[i].jt == 0)
/* Swap the sense of the branch */
PPC_BCC(true_cond ^ COND_CMP_TRUE,
addrs[i + 1 + filter[i].jf]);
else {
PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
if (filter[i].jf != 0)
PPC_JMP(addrs[i + 1 + filter[i].jf]);
}
break;
default:
/* The filter contains something cruel & unusual.
* We don't handle it, but also there shouldn't be
* anything missing from our list.
*/
if (printk_ratelimit())
pr_err("BPF filter opcode %04x (@%d) unsupported\n",
filter[i].code, i);
return -ENOTSUPP;
}
}
/* Set end-of-body-code address for exit. */
addrs[i] = ctx->idx * 4;
return 0;
}
void bpf_jit_compile(struct sk_filter *fp)
{
unsigned int proglen;
unsigned int alloclen;
u32 *image = NULL;
u32 *code_base;
unsigned int *addrs;
struct codegen_context cgctx;
int pass;
int flen = fp->len;
if (!bpf_jit_enable)
return;
addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
if (addrs == NULL)
return;
/*
* There are multiple assembly passes as the generated code will change
* size as it settles down, figuring out the max branch offsets/exit
* paths required.
*
* The range of standard conditional branches is +/- 32Kbytes. Since
* BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
* finish with 8 bytes/instruction. Not feasible, so long jumps are
* used, distinct from short branches.
*
* Current:
*
* For now, both branch types assemble to 2 words (short branches padded
* with a NOP); this is less efficient, but assembly will always complete
* after exactly 3 passes:
*
* First pass: No code buffer; Program is "faux-generated" -- no code
* emitted but maximum size of output determined (and addrs[] filled
* in). Also, we note whether we use M[], whether we use skb data, etc.
* All generation choices assumed to be 'worst-case', e.g. branches all
* far (2 instructions), return path code reduction not available, etc.
*
* Second pass: Code buffer allocated with size determined previously.
* Prologue generated to support features we have seen used. Exit paths
* determined and addrs[] is filled in again, as code may be slightly
* smaller as a result.
*
* Third pass: Code generated 'for real', and branch destinations
* determined from now-accurate addrs[] map.
*
* Ideal:
*
* If we optimise this, near branches will be shorter. On the
* first assembly pass, we should err on the side of caution and
* generate the biggest code. On subsequent passes, branches will be
* generated short or long and code size will reduce. With smaller
* code, more branches may fall into the short category, and code will
* reduce more.
*
* Finally, if we see one pass generate code the same size as the
* previous pass we have converged and should now generate code for
* real. Allocating at the end will also save the memory that would
* otherwise be wasted by the (small) current code shrinkage.
* Preferably, we should do a small number of passes (e.g. 5) and if we
* haven't converged by then, get impatient and force code to generate
* as-is, even if the odd branch would be left long. The chances of a
* long jump are tiny with all but the most enormous of BPF filter
* inputs, so we should usually converge on the third pass.
*/
cgctx.idx = 0;
cgctx.seen = 0;
cgctx.pc_ret0 = -1;
/* Scouting faux-generate pass 0 */
if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
/* We hit something illegal or unsupported. */
goto out;
/*
* Pretend to build prologue, given the features we've seen. This will
* update ctgtx.idx as it pretends to output instructions, then we can
* calculate total size from idx.
*/
bpf_jit_build_prologue(fp, 0, &cgctx);
bpf_jit_build_epilogue(0, &cgctx);
proglen = cgctx.idx * 4;
alloclen = proglen + FUNCTION_DESCR_SIZE;
image = module_alloc(max_t(unsigned int, alloclen,
sizeof(struct work_struct)));
if (!image)
goto out;
code_base = image + (FUNCTION_DESCR_SIZE/4);
/* Code generation passes 1-2 */
for (pass = 1; pass < 3; pass++) {
/* Now build the prologue, body code & epilogue for real. */
cgctx.idx = 0;
bpf_jit_build_prologue(fp, code_base, &cgctx);
bpf_jit_build_body(fp, code_base, &cgctx, addrs);
bpf_jit_build_epilogue(code_base, &cgctx);
if (bpf_jit_enable > 1)
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
proglen - (cgctx.idx * 4), cgctx.seen);
}
if (bpf_jit_enable > 1)
pr_info("flen=%d proglen=%u pass=%d image=%p\n",
flen, proglen, pass, image);
if (image) {
if (bpf_jit_enable > 1)
print_hex_dump(KERN_ERR, "JIT code: ",
DUMP_PREFIX_ADDRESS,
16, 1, code_base,
proglen, false);
bpf_flush_icache(code_base, code_base + (proglen/4));
/* Function descriptor nastiness: Address + TOC */
((u64 *)image)[0] = (u64)code_base;
((u64 *)image)[1] = local_paca->kernel_toc;
fp->bpf_func = (void *)image;
}
out:
kfree(addrs);
return;
}
static void jit_free_defer(struct work_struct *arg)
{
module_free(NULL, arg);
}
/* run from softirq, we must use a work_struct to call
* module_free() from process context
*/
void bpf_jit_free(struct sk_filter *fp)
{
if (fp->bpf_func != sk_run_filter) {
struct work_struct *work = (struct work_struct *)fp->bpf_func;
INIT_WORK(work, jit_free_defer);
schedule_work(work);
}
}