forked from luck/tmp_suning_uos_patched
7bced39751
Per commit "77873803363c net_dma: mark broken" net_dma is no longer used and there is no plan to fix it. This is the mechanical removal of bits in CONFIG_NET_DMA ifdef guards. Reverting the remainder of the net_dma induced changes is deferred to subsequent patches. Marked for stable due to Roman's report of a memory leak in dma_pin_iovec_pages(): https://lkml.org/lkml/2014/9/3/177 Cc: Dave Jiang <dave.jiang@intel.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: David Whipple <whipple@securedatainnovations.ch> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Cc: <stable@vger.kernel.org> Reported-by: Roman Gushchin <klamm@yandex-team.ru> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
1676 lines
46 KiB
C
1676 lines
46 KiB
C
/*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in
|
|
* the file called "COPYING".
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Support routines for v3+ hardware
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/prefetch.h>
|
|
#include "../dmaengine.h"
|
|
#include "registers.h"
|
|
#include "hw.h"
|
|
#include "dma.h"
|
|
#include "dma_v2.h"
|
|
|
|
extern struct kmem_cache *ioat3_sed_cache;
|
|
|
|
/* ioat hardware assumes at least two sources for raid operations */
|
|
#define src_cnt_to_sw(x) ((x) + 2)
|
|
#define src_cnt_to_hw(x) ((x) - 2)
|
|
#define ndest_to_sw(x) ((x) + 1)
|
|
#define ndest_to_hw(x) ((x) - 1)
|
|
#define src16_cnt_to_sw(x) ((x) + 9)
|
|
#define src16_cnt_to_hw(x) ((x) - 9)
|
|
|
|
/* provide a lookup table for setting the source address in the base or
|
|
* extended descriptor of an xor or pq descriptor
|
|
*/
|
|
static const u8 xor_idx_to_desc = 0xe0;
|
|
static const u8 xor_idx_to_field[] = { 1, 4, 5, 6, 7, 0, 1, 2 };
|
|
static const u8 pq_idx_to_desc = 0xf8;
|
|
static const u8 pq16_idx_to_desc[] = { 0, 0, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2 };
|
|
static const u8 pq_idx_to_field[] = { 1, 4, 5, 0, 1, 2, 4, 5 };
|
|
static const u8 pq16_idx_to_field[] = { 1, 4, 1, 2, 3, 4, 5, 6, 7,
|
|
0, 1, 2, 3, 4, 5, 6 };
|
|
|
|
static void ioat3_eh(struct ioat2_dma_chan *ioat);
|
|
|
|
static void xor_set_src(struct ioat_raw_descriptor *descs[2],
|
|
dma_addr_t addr, u32 offset, int idx)
|
|
{
|
|
struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
|
|
|
|
raw->field[xor_idx_to_field[idx]] = addr + offset;
|
|
}
|
|
|
|
static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
|
|
{
|
|
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
|
|
|
|
return raw->field[pq_idx_to_field[idx]];
|
|
}
|
|
|
|
static dma_addr_t pq16_get_src(struct ioat_raw_descriptor *desc[3], int idx)
|
|
{
|
|
struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
|
|
|
|
return raw->field[pq16_idx_to_field[idx]];
|
|
}
|
|
|
|
static void pq_set_src(struct ioat_raw_descriptor *descs[2],
|
|
dma_addr_t addr, u32 offset, u8 coef, int idx)
|
|
{
|
|
struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
|
|
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
|
|
|
|
raw->field[pq_idx_to_field[idx]] = addr + offset;
|
|
pq->coef[idx] = coef;
|
|
}
|
|
|
|
static bool is_jf_ioat(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF0:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF1:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF3:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF4:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF5:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF6:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF7:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF8:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_JSF9:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool is_snb_ioat(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB0:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB1:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB3:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB4:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB5:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB6:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB7:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB8:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_SNB9:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool is_ivb_ioat(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB0:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB1:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB3:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB4:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB5:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB6:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB7:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB8:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_IVB9:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
static bool is_hsw_ioat(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW0:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW1:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW3:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW4:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW5:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW6:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW7:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW8:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_HSW9:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
static bool is_xeon_cb32(struct pci_dev *pdev)
|
|
{
|
|
return is_jf_ioat(pdev) || is_snb_ioat(pdev) || is_ivb_ioat(pdev) ||
|
|
is_hsw_ioat(pdev);
|
|
}
|
|
|
|
static bool is_bwd_ioat(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD0:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD1:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool is_bwd_noraid(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
|
|
case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
static void pq16_set_src(struct ioat_raw_descriptor *desc[3],
|
|
dma_addr_t addr, u32 offset, u8 coef, unsigned idx)
|
|
{
|
|
struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *)desc[0];
|
|
struct ioat_pq16a_descriptor *pq16 =
|
|
(struct ioat_pq16a_descriptor *)desc[1];
|
|
struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
|
|
|
|
raw->field[pq16_idx_to_field[idx]] = addr + offset;
|
|
|
|
if (idx < 8)
|
|
pq->coef[idx] = coef;
|
|
else
|
|
pq16->coef[idx - 8] = coef;
|
|
}
|
|
|
|
static struct ioat_sed_ent *
|
|
ioat3_alloc_sed(struct ioatdma_device *device, unsigned int hw_pool)
|
|
{
|
|
struct ioat_sed_ent *sed;
|
|
gfp_t flags = __GFP_ZERO | GFP_ATOMIC;
|
|
|
|
sed = kmem_cache_alloc(ioat3_sed_cache, flags);
|
|
if (!sed)
|
|
return NULL;
|
|
|
|
sed->hw_pool = hw_pool;
|
|
sed->hw = dma_pool_alloc(device->sed_hw_pool[hw_pool],
|
|
flags, &sed->dma);
|
|
if (!sed->hw) {
|
|
kmem_cache_free(ioat3_sed_cache, sed);
|
|
return NULL;
|
|
}
|
|
|
|
return sed;
|
|
}
|
|
|
|
static void ioat3_free_sed(struct ioatdma_device *device, struct ioat_sed_ent *sed)
|
|
{
|
|
if (!sed)
|
|
return;
|
|
|
|
dma_pool_free(device->sed_hw_pool[sed->hw_pool], sed->hw, sed->dma);
|
|
kmem_cache_free(ioat3_sed_cache, sed);
|
|
}
|
|
|
|
static bool desc_has_ext(struct ioat_ring_ent *desc)
|
|
{
|
|
struct ioat_dma_descriptor *hw = desc->hw;
|
|
|
|
if (hw->ctl_f.op == IOAT_OP_XOR ||
|
|
hw->ctl_f.op == IOAT_OP_XOR_VAL) {
|
|
struct ioat_xor_descriptor *xor = desc->xor;
|
|
|
|
if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
|
|
return true;
|
|
} else if (hw->ctl_f.op == IOAT_OP_PQ ||
|
|
hw->ctl_f.op == IOAT_OP_PQ_VAL) {
|
|
struct ioat_pq_descriptor *pq = desc->pq;
|
|
|
|
if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static u64 ioat3_get_current_completion(struct ioat_chan_common *chan)
|
|
{
|
|
u64 phys_complete;
|
|
u64 completion;
|
|
|
|
completion = *chan->completion;
|
|
phys_complete = ioat_chansts_to_addr(completion);
|
|
|
|
dev_dbg(to_dev(chan), "%s: phys_complete: %#llx\n", __func__,
|
|
(unsigned long long) phys_complete);
|
|
|
|
return phys_complete;
|
|
}
|
|
|
|
static bool ioat3_cleanup_preamble(struct ioat_chan_common *chan,
|
|
u64 *phys_complete)
|
|
{
|
|
*phys_complete = ioat3_get_current_completion(chan);
|
|
if (*phys_complete == chan->last_completion)
|
|
return false;
|
|
|
|
clear_bit(IOAT_COMPLETION_ACK, &chan->state);
|
|
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
desc_get_errstat(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc)
|
|
{
|
|
struct ioat_dma_descriptor *hw = desc->hw;
|
|
|
|
switch (hw->ctl_f.op) {
|
|
case IOAT_OP_PQ_VAL:
|
|
case IOAT_OP_PQ_VAL_16S:
|
|
{
|
|
struct ioat_pq_descriptor *pq = desc->pq;
|
|
|
|
/* check if there's error written */
|
|
if (!pq->dwbes_f.wbes)
|
|
return;
|
|
|
|
/* need to set a chanerr var for checking to clear later */
|
|
|
|
if (pq->dwbes_f.p_val_err)
|
|
*desc->result |= SUM_CHECK_P_RESULT;
|
|
|
|
if (pq->dwbes_f.q_val_err)
|
|
*desc->result |= SUM_CHECK_Q_RESULT;
|
|
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __cleanup - reclaim used descriptors
|
|
* @ioat: channel (ring) to clean
|
|
*
|
|
* The difference from the dma_v2.c __cleanup() is that this routine
|
|
* handles extended descriptors and dma-unmapping raid operations.
|
|
*/
|
|
static void __cleanup(struct ioat2_dma_chan *ioat, dma_addr_t phys_complete)
|
|
{
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
struct ioatdma_device *device = chan->device;
|
|
struct ioat_ring_ent *desc;
|
|
bool seen_current = false;
|
|
int idx = ioat->tail, i;
|
|
u16 active;
|
|
|
|
dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
|
|
__func__, ioat->head, ioat->tail, ioat->issued);
|
|
|
|
/*
|
|
* At restart of the channel, the completion address and the
|
|
* channel status will be 0 due to starting a new chain. Since
|
|
* it's new chain and the first descriptor "fails", there is
|
|
* nothing to clean up. We do not want to reap the entire submitted
|
|
* chain due to this 0 address value and then BUG.
|
|
*/
|
|
if (!phys_complete)
|
|
return;
|
|
|
|
active = ioat2_ring_active(ioat);
|
|
for (i = 0; i < active && !seen_current; i++) {
|
|
struct dma_async_tx_descriptor *tx;
|
|
|
|
smp_read_barrier_depends();
|
|
prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
|
|
desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
dump_desc_dbg(ioat, desc);
|
|
|
|
/* set err stat if we are using dwbes */
|
|
if (device->cap & IOAT_CAP_DWBES)
|
|
desc_get_errstat(ioat, desc);
|
|
|
|
tx = &desc->txd;
|
|
if (tx->cookie) {
|
|
dma_cookie_complete(tx);
|
|
dma_descriptor_unmap(tx);
|
|
if (tx->callback) {
|
|
tx->callback(tx->callback_param);
|
|
tx->callback = NULL;
|
|
}
|
|
}
|
|
|
|
if (tx->phys == phys_complete)
|
|
seen_current = true;
|
|
|
|
/* skip extended descriptors */
|
|
if (desc_has_ext(desc)) {
|
|
BUG_ON(i + 1 >= active);
|
|
i++;
|
|
}
|
|
|
|
/* cleanup super extended descriptors */
|
|
if (desc->sed) {
|
|
ioat3_free_sed(device, desc->sed);
|
|
desc->sed = NULL;
|
|
}
|
|
}
|
|
smp_mb(); /* finish all descriptor reads before incrementing tail */
|
|
ioat->tail = idx + i;
|
|
BUG_ON(active && !seen_current); /* no active descs have written a completion? */
|
|
chan->last_completion = phys_complete;
|
|
|
|
if (active - i == 0) {
|
|
dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
|
|
__func__);
|
|
clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
|
|
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
|
|
}
|
|
/* 5 microsecond delay per pending descriptor */
|
|
writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
|
|
chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
|
|
}
|
|
|
|
static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
|
|
{
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
u64 phys_complete;
|
|
|
|
spin_lock_bh(&chan->cleanup_lock);
|
|
|
|
if (ioat3_cleanup_preamble(chan, &phys_complete))
|
|
__cleanup(ioat, phys_complete);
|
|
|
|
if (is_ioat_halted(*chan->completion)) {
|
|
u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
|
|
if (chanerr & IOAT_CHANERR_HANDLE_MASK) {
|
|
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
|
|
ioat3_eh(ioat);
|
|
}
|
|
}
|
|
|
|
spin_unlock_bh(&chan->cleanup_lock);
|
|
}
|
|
|
|
static void ioat3_cleanup_event(unsigned long data)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
|
|
ioat3_cleanup(ioat);
|
|
if (!test_bit(IOAT_RUN, &chan->state))
|
|
return;
|
|
writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
|
|
}
|
|
|
|
static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
|
|
{
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
u64 phys_complete;
|
|
|
|
ioat2_quiesce(chan, 0);
|
|
if (ioat3_cleanup_preamble(chan, &phys_complete))
|
|
__cleanup(ioat, phys_complete);
|
|
|
|
__ioat2_restart_chan(ioat);
|
|
}
|
|
|
|
static void ioat3_eh(struct ioat2_dma_chan *ioat)
|
|
{
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
struct pci_dev *pdev = to_pdev(chan);
|
|
struct ioat_dma_descriptor *hw;
|
|
u64 phys_complete;
|
|
struct ioat_ring_ent *desc;
|
|
u32 err_handled = 0;
|
|
u32 chanerr_int;
|
|
u32 chanerr;
|
|
|
|
/* cleanup so tail points to descriptor that caused the error */
|
|
if (ioat3_cleanup_preamble(chan, &phys_complete))
|
|
__cleanup(ioat, phys_complete);
|
|
|
|
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr_int);
|
|
|
|
dev_dbg(to_dev(chan), "%s: error = %x:%x\n",
|
|
__func__, chanerr, chanerr_int);
|
|
|
|
desc = ioat2_get_ring_ent(ioat, ioat->tail);
|
|
hw = desc->hw;
|
|
dump_desc_dbg(ioat, desc);
|
|
|
|
switch (hw->ctl_f.op) {
|
|
case IOAT_OP_XOR_VAL:
|
|
if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
|
|
*desc->result |= SUM_CHECK_P_RESULT;
|
|
err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
|
|
}
|
|
break;
|
|
case IOAT_OP_PQ_VAL:
|
|
case IOAT_OP_PQ_VAL_16S:
|
|
if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
|
|
*desc->result |= SUM_CHECK_P_RESULT;
|
|
err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
|
|
}
|
|
if (chanerr & IOAT_CHANERR_XOR_Q_ERR) {
|
|
*desc->result |= SUM_CHECK_Q_RESULT;
|
|
err_handled |= IOAT_CHANERR_XOR_Q_ERR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* fault on unhandled error or spurious halt */
|
|
if (chanerr ^ err_handled || chanerr == 0) {
|
|
dev_err(to_dev(chan), "%s: fatal error (%x:%x)\n",
|
|
__func__, chanerr, err_handled);
|
|
BUG();
|
|
}
|
|
|
|
writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr_int);
|
|
|
|
/* mark faulting descriptor as complete */
|
|
*chan->completion = desc->txd.phys;
|
|
|
|
spin_lock_bh(&ioat->prep_lock);
|
|
ioat3_restart_channel(ioat);
|
|
spin_unlock_bh(&ioat->prep_lock);
|
|
}
|
|
|
|
static void check_active(struct ioat2_dma_chan *ioat)
|
|
{
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
|
|
if (ioat2_ring_active(ioat)) {
|
|
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
|
|
return;
|
|
}
|
|
|
|
if (test_and_clear_bit(IOAT_CHAN_ACTIVE, &chan->state))
|
|
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
|
|
else if (ioat->alloc_order > ioat_get_alloc_order()) {
|
|
/* if the ring is idle, empty, and oversized try to step
|
|
* down the size
|
|
*/
|
|
reshape_ring(ioat, ioat->alloc_order - 1);
|
|
|
|
/* keep shrinking until we get back to our minimum
|
|
* default size
|
|
*/
|
|
if (ioat->alloc_order > ioat_get_alloc_order())
|
|
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
|
|
}
|
|
|
|
}
|
|
|
|
static void ioat3_timer_event(unsigned long data)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
dma_addr_t phys_complete;
|
|
u64 status;
|
|
|
|
status = ioat_chansts(chan);
|
|
|
|
/* when halted due to errors check for channel
|
|
* programming errors before advancing the completion state
|
|
*/
|
|
if (is_ioat_halted(status)) {
|
|
u32 chanerr;
|
|
|
|
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
|
|
__func__, chanerr);
|
|
if (test_bit(IOAT_RUN, &chan->state))
|
|
BUG_ON(is_ioat_bug(chanerr));
|
|
else /* we never got off the ground */
|
|
return;
|
|
}
|
|
|
|
/* if we haven't made progress and we have already
|
|
* acknowledged a pending completion once, then be more
|
|
* forceful with a restart
|
|
*/
|
|
spin_lock_bh(&chan->cleanup_lock);
|
|
if (ioat_cleanup_preamble(chan, &phys_complete))
|
|
__cleanup(ioat, phys_complete);
|
|
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
|
|
spin_lock_bh(&ioat->prep_lock);
|
|
ioat3_restart_channel(ioat);
|
|
spin_unlock_bh(&ioat->prep_lock);
|
|
spin_unlock_bh(&chan->cleanup_lock);
|
|
return;
|
|
} else {
|
|
set_bit(IOAT_COMPLETION_ACK, &chan->state);
|
|
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
|
|
}
|
|
|
|
|
|
if (ioat2_ring_active(ioat))
|
|
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
|
|
else {
|
|
spin_lock_bh(&ioat->prep_lock);
|
|
check_active(ioat);
|
|
spin_unlock_bh(&ioat->prep_lock);
|
|
}
|
|
spin_unlock_bh(&chan->cleanup_lock);
|
|
}
|
|
|
|
static enum dma_status
|
|
ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
|
|
enum dma_status ret;
|
|
|
|
ret = dma_cookie_status(c, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
ioat3_cleanup(ioat);
|
|
|
|
return dma_cookie_status(c, cookie, txstate);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
__ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
|
|
dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
|
|
struct ioat_ring_ent *compl_desc;
|
|
struct ioat_ring_ent *desc;
|
|
struct ioat_ring_ent *ext;
|
|
size_t total_len = len;
|
|
struct ioat_xor_descriptor *xor;
|
|
struct ioat_xor_ext_descriptor *xor_ex = NULL;
|
|
struct ioat_dma_descriptor *hw;
|
|
int num_descs, with_ext, idx, i;
|
|
u32 offset = 0;
|
|
u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
|
|
|
|
BUG_ON(src_cnt < 2);
|
|
|
|
num_descs = ioat2_xferlen_to_descs(ioat, len);
|
|
/* we need 2x the number of descriptors to cover greater than 5
|
|
* sources
|
|
*/
|
|
if (src_cnt > 5) {
|
|
with_ext = 1;
|
|
num_descs *= 2;
|
|
} else
|
|
with_ext = 0;
|
|
|
|
/* completion writes from the raid engine may pass completion
|
|
* writes from the legacy engine, so we need one extra null
|
|
* (legacy) descriptor to ensure all completion writes arrive in
|
|
* order.
|
|
*/
|
|
if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
|
|
idx = ioat->head;
|
|
else
|
|
return NULL;
|
|
i = 0;
|
|
do {
|
|
struct ioat_raw_descriptor *descs[2];
|
|
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
|
|
int s;
|
|
|
|
desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
xor = desc->xor;
|
|
|
|
/* save a branch by unconditionally retrieving the
|
|
* extended descriptor xor_set_src() knows to not write
|
|
* to it in the single descriptor case
|
|
*/
|
|
ext = ioat2_get_ring_ent(ioat, idx + i + 1);
|
|
xor_ex = ext->xor_ex;
|
|
|
|
descs[0] = (struct ioat_raw_descriptor *) xor;
|
|
descs[1] = (struct ioat_raw_descriptor *) xor_ex;
|
|
for (s = 0; s < src_cnt; s++)
|
|
xor_set_src(descs, src[s], offset, s);
|
|
xor->size = xfer_size;
|
|
xor->dst_addr = dest + offset;
|
|
xor->ctl = 0;
|
|
xor->ctl_f.op = op;
|
|
xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
|
|
|
|
len -= xfer_size;
|
|
offset += xfer_size;
|
|
dump_desc_dbg(ioat, desc);
|
|
} while ((i += 1 + with_ext) < num_descs);
|
|
|
|
/* last xor descriptor carries the unmap parameters and fence bit */
|
|
desc->txd.flags = flags;
|
|
desc->len = total_len;
|
|
if (result)
|
|
desc->result = result;
|
|
xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
|
|
|
|
/* completion descriptor carries interrupt bit */
|
|
compl_desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
|
|
hw = compl_desc->hw;
|
|
hw->ctl = 0;
|
|
hw->ctl_f.null = 1;
|
|
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
|
|
hw->ctl_f.compl_write = 1;
|
|
hw->size = NULL_DESC_BUFFER_SIZE;
|
|
dump_desc_dbg(ioat, compl_desc);
|
|
|
|
/* we leave the channel locked to ensure in order submission */
|
|
return &compl_desc->txd;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len, unsigned long flags)
|
|
{
|
|
return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len,
|
|
enum sum_check_flags *result, unsigned long flags)
|
|
{
|
|
/* the cleanup routine only sets bits on validate failure, it
|
|
* does not clear bits on validate success... so clear it here
|
|
*/
|
|
*result = 0;
|
|
|
|
return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
|
|
src_cnt - 1, len, flags);
|
|
}
|
|
|
|
static void
|
|
dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
|
|
{
|
|
struct device *dev = to_dev(&ioat->base);
|
|
struct ioat_pq_descriptor *pq = desc->pq;
|
|
struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
|
|
struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
|
|
int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
|
|
int i;
|
|
|
|
dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
|
|
" sz: %#10.8x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
|
|
" src_cnt: %d)\n",
|
|
desc_id(desc), (unsigned long long) desc->txd.phys,
|
|
(unsigned long long) (pq_ex ? pq_ex->next : pq->next),
|
|
desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
|
|
pq->ctl_f.compl_write,
|
|
pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
|
|
pq->ctl_f.src_cnt);
|
|
for (i = 0; i < src_cnt; i++)
|
|
dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
|
|
(unsigned long long) pq_get_src(descs, i), pq->coef[i]);
|
|
dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
|
|
dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
|
|
dev_dbg(dev, "\tNEXT: %#llx\n", pq->next);
|
|
}
|
|
|
|
static void dump_pq16_desc_dbg(struct ioat2_dma_chan *ioat,
|
|
struct ioat_ring_ent *desc)
|
|
{
|
|
struct device *dev = to_dev(&ioat->base);
|
|
struct ioat_pq_descriptor *pq = desc->pq;
|
|
struct ioat_raw_descriptor *descs[] = { (void *)pq,
|
|
(void *)pq,
|
|
(void *)pq };
|
|
int src_cnt = src16_cnt_to_sw(pq->ctl_f.src_cnt);
|
|
int i;
|
|
|
|
if (desc->sed) {
|
|
descs[1] = (void *)desc->sed->hw;
|
|
descs[2] = (void *)desc->sed->hw + 64;
|
|
}
|
|
|
|
dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
|
|
" sz: %#x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
|
|
" src_cnt: %d)\n",
|
|
desc_id(desc), (unsigned long long) desc->txd.phys,
|
|
(unsigned long long) pq->next,
|
|
desc->txd.flags, pq->size, pq->ctl,
|
|
pq->ctl_f.op, pq->ctl_f.int_en,
|
|
pq->ctl_f.compl_write,
|
|
pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
|
|
pq->ctl_f.src_cnt);
|
|
for (i = 0; i < src_cnt; i++) {
|
|
dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
|
|
(unsigned long long) pq16_get_src(descs, i),
|
|
pq->coef[i]);
|
|
}
|
|
dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
|
|
dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
__ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
|
|
const dma_addr_t *dst, const dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
struct ioatdma_device *device = chan->device;
|
|
struct ioat_ring_ent *compl_desc;
|
|
struct ioat_ring_ent *desc;
|
|
struct ioat_ring_ent *ext;
|
|
size_t total_len = len;
|
|
struct ioat_pq_descriptor *pq;
|
|
struct ioat_pq_ext_descriptor *pq_ex = NULL;
|
|
struct ioat_dma_descriptor *hw;
|
|
u32 offset = 0;
|
|
u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
|
|
int i, s, idx, with_ext, num_descs;
|
|
int cb32 = (device->version < IOAT_VER_3_3) ? 1 : 0;
|
|
|
|
dev_dbg(to_dev(chan), "%s\n", __func__);
|
|
/* the engine requires at least two sources (we provide
|
|
* at least 1 implied source in the DMA_PREP_CONTINUE case)
|
|
*/
|
|
BUG_ON(src_cnt + dmaf_continue(flags) < 2);
|
|
|
|
num_descs = ioat2_xferlen_to_descs(ioat, len);
|
|
/* we need 2x the number of descriptors to cover greater than 3
|
|
* sources (we need 1 extra source in the q-only continuation
|
|
* case and 3 extra sources in the p+q continuation case.
|
|
*/
|
|
if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
|
|
(dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
|
|
with_ext = 1;
|
|
num_descs *= 2;
|
|
} else
|
|
with_ext = 0;
|
|
|
|
/* completion writes from the raid engine may pass completion
|
|
* writes from the legacy engine, so we need one extra null
|
|
* (legacy) descriptor to ensure all completion writes arrive in
|
|
* order.
|
|
*/
|
|
if (likely(num_descs) &&
|
|
ioat2_check_space_lock(ioat, num_descs + cb32) == 0)
|
|
idx = ioat->head;
|
|
else
|
|
return NULL;
|
|
i = 0;
|
|
do {
|
|
struct ioat_raw_descriptor *descs[2];
|
|
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
|
|
|
|
desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
pq = desc->pq;
|
|
|
|
/* save a branch by unconditionally retrieving the
|
|
* extended descriptor pq_set_src() knows to not write
|
|
* to it in the single descriptor case
|
|
*/
|
|
ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
|
|
pq_ex = ext->pq_ex;
|
|
|
|
descs[0] = (struct ioat_raw_descriptor *) pq;
|
|
descs[1] = (struct ioat_raw_descriptor *) pq_ex;
|
|
|
|
for (s = 0; s < src_cnt; s++)
|
|
pq_set_src(descs, src[s], offset, scf[s], s);
|
|
|
|
/* see the comment for dma_maxpq in include/linux/dmaengine.h */
|
|
if (dmaf_p_disabled_continue(flags))
|
|
pq_set_src(descs, dst[1], offset, 1, s++);
|
|
else if (dmaf_continue(flags)) {
|
|
pq_set_src(descs, dst[0], offset, 0, s++);
|
|
pq_set_src(descs, dst[1], offset, 1, s++);
|
|
pq_set_src(descs, dst[1], offset, 0, s++);
|
|
}
|
|
pq->size = xfer_size;
|
|
pq->p_addr = dst[0] + offset;
|
|
pq->q_addr = dst[1] + offset;
|
|
pq->ctl = 0;
|
|
pq->ctl_f.op = op;
|
|
/* we turn on descriptor write back error status */
|
|
if (device->cap & IOAT_CAP_DWBES)
|
|
pq->ctl_f.wb_en = result ? 1 : 0;
|
|
pq->ctl_f.src_cnt = src_cnt_to_hw(s);
|
|
pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
|
|
pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
|
|
|
|
len -= xfer_size;
|
|
offset += xfer_size;
|
|
} while ((i += 1 + with_ext) < num_descs);
|
|
|
|
/* last pq descriptor carries the unmap parameters and fence bit */
|
|
desc->txd.flags = flags;
|
|
desc->len = total_len;
|
|
if (result)
|
|
desc->result = result;
|
|
pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
|
|
dump_pq_desc_dbg(ioat, desc, ext);
|
|
|
|
if (!cb32) {
|
|
pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
|
|
pq->ctl_f.compl_write = 1;
|
|
compl_desc = desc;
|
|
} else {
|
|
/* completion descriptor carries interrupt bit */
|
|
compl_desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
|
|
hw = compl_desc->hw;
|
|
hw->ctl = 0;
|
|
hw->ctl_f.null = 1;
|
|
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
|
|
hw->ctl_f.compl_write = 1;
|
|
hw->size = NULL_DESC_BUFFER_SIZE;
|
|
dump_desc_dbg(ioat, compl_desc);
|
|
}
|
|
|
|
|
|
/* we leave the channel locked to ensure in order submission */
|
|
return &compl_desc->txd;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
__ioat3_prep_pq16_lock(struct dma_chan *c, enum sum_check_flags *result,
|
|
const dma_addr_t *dst, const dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
|
|
struct ioat_chan_common *chan = &ioat->base;
|
|
struct ioatdma_device *device = chan->device;
|
|
struct ioat_ring_ent *desc;
|
|
size_t total_len = len;
|
|
struct ioat_pq_descriptor *pq;
|
|
u32 offset = 0;
|
|
u8 op;
|
|
int i, s, idx, num_descs;
|
|
|
|
/* this function is only called with 9-16 sources */
|
|
op = result ? IOAT_OP_PQ_VAL_16S : IOAT_OP_PQ_16S;
|
|
|
|
dev_dbg(to_dev(chan), "%s\n", __func__);
|
|
|
|
num_descs = ioat2_xferlen_to_descs(ioat, len);
|
|
|
|
/*
|
|
* 16 source pq is only available on cb3.3 and has no completion
|
|
* write hw bug.
|
|
*/
|
|
if (num_descs && ioat2_check_space_lock(ioat, num_descs) == 0)
|
|
idx = ioat->head;
|
|
else
|
|
return NULL;
|
|
|
|
i = 0;
|
|
|
|
do {
|
|
struct ioat_raw_descriptor *descs[4];
|
|
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
|
|
|
|
desc = ioat2_get_ring_ent(ioat, idx + i);
|
|
pq = desc->pq;
|
|
|
|
descs[0] = (struct ioat_raw_descriptor *) pq;
|
|
|
|
desc->sed = ioat3_alloc_sed(device, (src_cnt-2) >> 3);
|
|
if (!desc->sed) {
|
|
dev_err(to_dev(chan),
|
|
"%s: no free sed entries\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
pq->sed_addr = desc->sed->dma;
|
|
desc->sed->parent = desc;
|
|
|
|
descs[1] = (struct ioat_raw_descriptor *)desc->sed->hw;
|
|
descs[2] = (void *)descs[1] + 64;
|
|
|
|
for (s = 0; s < src_cnt; s++)
|
|
pq16_set_src(descs, src[s], offset, scf[s], s);
|
|
|
|
/* see the comment for dma_maxpq in include/linux/dmaengine.h */
|
|
if (dmaf_p_disabled_continue(flags))
|
|
pq16_set_src(descs, dst[1], offset, 1, s++);
|
|
else if (dmaf_continue(flags)) {
|
|
pq16_set_src(descs, dst[0], offset, 0, s++);
|
|
pq16_set_src(descs, dst[1], offset, 1, s++);
|
|
pq16_set_src(descs, dst[1], offset, 0, s++);
|
|
}
|
|
|
|
pq->size = xfer_size;
|
|
pq->p_addr = dst[0] + offset;
|
|
pq->q_addr = dst[1] + offset;
|
|
pq->ctl = 0;
|
|
pq->ctl_f.op = op;
|
|
pq->ctl_f.src_cnt = src16_cnt_to_hw(s);
|
|
/* we turn on descriptor write back error status */
|
|
if (device->cap & IOAT_CAP_DWBES)
|
|
pq->ctl_f.wb_en = result ? 1 : 0;
|
|
pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
|
|
pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
|
|
|
|
len -= xfer_size;
|
|
offset += xfer_size;
|
|
} while (++i < num_descs);
|
|
|
|
/* last pq descriptor carries the unmap parameters and fence bit */
|
|
desc->txd.flags = flags;
|
|
desc->len = total_len;
|
|
if (result)
|
|
desc->result = result;
|
|
pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
|
|
|
|
/* with cb3.3 we should be able to do completion w/o a null desc */
|
|
pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
|
|
pq->ctl_f.compl_write = 1;
|
|
|
|
dump_pq16_desc_dbg(ioat, desc);
|
|
|
|
/* we leave the channel locked to ensure in order submission */
|
|
return &desc->txd;
|
|
}
|
|
|
|
static int src_cnt_flags(unsigned int src_cnt, unsigned long flags)
|
|
{
|
|
if (dmaf_p_disabled_continue(flags))
|
|
return src_cnt + 1;
|
|
else if (dmaf_continue(flags))
|
|
return src_cnt + 3;
|
|
else
|
|
return src_cnt;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
unsigned long flags)
|
|
{
|
|
/* specify valid address for disabled result */
|
|
if (flags & DMA_PREP_PQ_DISABLE_P)
|
|
dst[0] = dst[1];
|
|
if (flags & DMA_PREP_PQ_DISABLE_Q)
|
|
dst[1] = dst[0];
|
|
|
|
/* handle the single source multiply case from the raid6
|
|
* recovery path
|
|
*/
|
|
if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
|
|
dma_addr_t single_source[2];
|
|
unsigned char single_source_coef[2];
|
|
|
|
BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
|
|
single_source[0] = src[0];
|
|
single_source[1] = src[0];
|
|
single_source_coef[0] = scf[0];
|
|
single_source_coef[1] = 0;
|
|
|
|
return src_cnt_flags(src_cnt, flags) > 8 ?
|
|
__ioat3_prep_pq16_lock(chan, NULL, dst, single_source,
|
|
2, single_source_coef, len,
|
|
flags) :
|
|
__ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
|
|
single_source_coef, len, flags);
|
|
|
|
} else {
|
|
return src_cnt_flags(src_cnt, flags) > 8 ?
|
|
__ioat3_prep_pq16_lock(chan, NULL, dst, src, src_cnt,
|
|
scf, len, flags) :
|
|
__ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt,
|
|
scf, len, flags);
|
|
}
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
enum sum_check_flags *pqres, unsigned long flags)
|
|
{
|
|
/* specify valid address for disabled result */
|
|
if (flags & DMA_PREP_PQ_DISABLE_P)
|
|
pq[0] = pq[1];
|
|
if (flags & DMA_PREP_PQ_DISABLE_Q)
|
|
pq[1] = pq[0];
|
|
|
|
/* the cleanup routine only sets bits on validate failure, it
|
|
* does not clear bits on validate success... so clear it here
|
|
*/
|
|
*pqres = 0;
|
|
|
|
return src_cnt_flags(src_cnt, flags) > 8 ?
|
|
__ioat3_prep_pq16_lock(chan, pqres, pq, src, src_cnt, scf, len,
|
|
flags) :
|
|
__ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
|
|
flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len, unsigned long flags)
|
|
{
|
|
unsigned char scf[src_cnt];
|
|
dma_addr_t pq[2];
|
|
|
|
memset(scf, 0, src_cnt);
|
|
pq[0] = dst;
|
|
flags |= DMA_PREP_PQ_DISABLE_Q;
|
|
pq[1] = dst; /* specify valid address for disabled result */
|
|
|
|
return src_cnt_flags(src_cnt, flags) > 8 ?
|
|
__ioat3_prep_pq16_lock(chan, NULL, pq, src, src_cnt, scf, len,
|
|
flags) :
|
|
__ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
|
|
flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
|
|
unsigned int src_cnt, size_t len,
|
|
enum sum_check_flags *result, unsigned long flags)
|
|
{
|
|
unsigned char scf[src_cnt];
|
|
dma_addr_t pq[2];
|
|
|
|
/* the cleanup routine only sets bits on validate failure, it
|
|
* does not clear bits on validate success... so clear it here
|
|
*/
|
|
*result = 0;
|
|
|
|
memset(scf, 0, src_cnt);
|
|
pq[0] = src[0];
|
|
flags |= DMA_PREP_PQ_DISABLE_Q;
|
|
pq[1] = pq[0]; /* specify valid address for disabled result */
|
|
|
|
return src_cnt_flags(src_cnt, flags) > 8 ?
|
|
__ioat3_prep_pq16_lock(chan, result, pq, &src[1], src_cnt - 1,
|
|
scf, len, flags) :
|
|
__ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1,
|
|
scf, len, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
|
|
{
|
|
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
|
|
struct ioat_ring_ent *desc;
|
|
struct ioat_dma_descriptor *hw;
|
|
|
|
if (ioat2_check_space_lock(ioat, 1) == 0)
|
|
desc = ioat2_get_ring_ent(ioat, ioat->head);
|
|
else
|
|
return NULL;
|
|
|
|
hw = desc->hw;
|
|
hw->ctl = 0;
|
|
hw->ctl_f.null = 1;
|
|
hw->ctl_f.int_en = 1;
|
|
hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
|
|
hw->ctl_f.compl_write = 1;
|
|
hw->size = NULL_DESC_BUFFER_SIZE;
|
|
hw->src_addr = 0;
|
|
hw->dst_addr = 0;
|
|
|
|
desc->txd.flags = flags;
|
|
desc->len = 1;
|
|
|
|
dump_desc_dbg(ioat, desc);
|
|
|
|
/* we leave the channel locked to ensure in order submission */
|
|
return &desc->txd;
|
|
}
|
|
|
|
static void ioat3_dma_test_callback(void *dma_async_param)
|
|
{
|
|
struct completion *cmp = dma_async_param;
|
|
|
|
complete(cmp);
|
|
}
|
|
|
|
#define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
|
|
static int ioat_xor_val_self_test(struct ioatdma_device *device)
|
|
{
|
|
int i, src_idx;
|
|
struct page *dest;
|
|
struct page *xor_srcs[IOAT_NUM_SRC_TEST];
|
|
struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
|
|
dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
|
|
dma_addr_t dest_dma;
|
|
struct dma_async_tx_descriptor *tx;
|
|
struct dma_chan *dma_chan;
|
|
dma_cookie_t cookie;
|
|
u8 cmp_byte = 0;
|
|
u32 cmp_word;
|
|
u32 xor_val_result;
|
|
int err = 0;
|
|
struct completion cmp;
|
|
unsigned long tmo;
|
|
struct device *dev = &device->pdev->dev;
|
|
struct dma_device *dma = &device->common;
|
|
u8 op = 0;
|
|
|
|
dev_dbg(dev, "%s\n", __func__);
|
|
|
|
if (!dma_has_cap(DMA_XOR, dma->cap_mask))
|
|
return 0;
|
|
|
|
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
|
|
xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
|
|
if (!xor_srcs[src_idx]) {
|
|
while (src_idx--)
|
|
__free_page(xor_srcs[src_idx]);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
dest = alloc_page(GFP_KERNEL);
|
|
if (!dest) {
|
|
while (src_idx--)
|
|
__free_page(xor_srcs[src_idx]);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Fill in src buffers */
|
|
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
|
|
u8 *ptr = page_address(xor_srcs[src_idx]);
|
|
for (i = 0; i < PAGE_SIZE; i++)
|
|
ptr[i] = (1 << src_idx);
|
|
}
|
|
|
|
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
|
|
cmp_byte ^= (u8) (1 << src_idx);
|
|
|
|
cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
|
|
(cmp_byte << 8) | cmp_byte;
|
|
|
|
memset(page_address(dest), 0, PAGE_SIZE);
|
|
|
|
dma_chan = container_of(dma->channels.next, struct dma_chan,
|
|
device_node);
|
|
if (dma->device_alloc_chan_resources(dma_chan) < 1) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* test xor */
|
|
op = IOAT_OP_XOR;
|
|
|
|
dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
|
|
dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
|
|
DMA_TO_DEVICE);
|
|
tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
|
|
IOAT_NUM_SRC_TEST, PAGE_SIZE,
|
|
DMA_PREP_INTERRUPT);
|
|
|
|
if (!tx) {
|
|
dev_err(dev, "Self-test xor prep failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
async_tx_ack(tx);
|
|
init_completion(&cmp);
|
|
tx->callback = ioat3_dma_test_callback;
|
|
tx->callback_param = &cmp;
|
|
cookie = tx->tx_submit(tx);
|
|
if (cookie < 0) {
|
|
dev_err(dev, "Self-test xor setup failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
dma->device_issue_pending(dma_chan);
|
|
|
|
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
|
|
|
|
if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
|
|
dev_err(dev, "Self-test xor timed out\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
|
|
dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
|
|
|
|
dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
|
|
u32 *ptr = page_address(dest);
|
|
if (ptr[i] != cmp_word) {
|
|
dev_err(dev, "Self-test xor failed compare\n");
|
|
err = -ENODEV;
|
|
goto free_resources;
|
|
}
|
|
}
|
|
dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
|
|
/* skip validate if the capability is not present */
|
|
if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
|
|
goto free_resources;
|
|
|
|
op = IOAT_OP_XOR_VAL;
|
|
|
|
/* validate the sources with the destintation page */
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
|
|
xor_val_srcs[i] = xor_srcs[i];
|
|
xor_val_srcs[i] = dest;
|
|
|
|
xor_val_result = 1;
|
|
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
|
|
dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
|
|
DMA_TO_DEVICE);
|
|
tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
|
|
IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
|
|
&xor_val_result, DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
dev_err(dev, "Self-test zero prep failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
async_tx_ack(tx);
|
|
init_completion(&cmp);
|
|
tx->callback = ioat3_dma_test_callback;
|
|
tx->callback_param = &cmp;
|
|
cookie = tx->tx_submit(tx);
|
|
if (cookie < 0) {
|
|
dev_err(dev, "Self-test zero setup failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
dma->device_issue_pending(dma_chan);
|
|
|
|
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
|
|
|
|
if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
|
|
dev_err(dev, "Self-test validate timed out\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
|
|
dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
|
|
|
|
if (xor_val_result != 0) {
|
|
dev_err(dev, "Self-test validate failed compare\n");
|
|
err = -ENODEV;
|
|
goto free_resources;
|
|
}
|
|
|
|
memset(page_address(dest), 0, PAGE_SIZE);
|
|
|
|
/* test for non-zero parity sum */
|
|
op = IOAT_OP_XOR_VAL;
|
|
|
|
xor_val_result = 0;
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
|
|
dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
|
|
DMA_TO_DEVICE);
|
|
tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
|
|
IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
|
|
&xor_val_result, DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
dev_err(dev, "Self-test 2nd zero prep failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
async_tx_ack(tx);
|
|
init_completion(&cmp);
|
|
tx->callback = ioat3_dma_test_callback;
|
|
tx->callback_param = &cmp;
|
|
cookie = tx->tx_submit(tx);
|
|
if (cookie < 0) {
|
|
dev_err(dev, "Self-test 2nd zero setup failed\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
dma->device_issue_pending(dma_chan);
|
|
|
|
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
|
|
|
|
if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
|
|
dev_err(dev, "Self-test 2nd validate timed out\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
if (xor_val_result != SUM_CHECK_P_RESULT) {
|
|
dev_err(dev, "Self-test validate failed compare\n");
|
|
err = -ENODEV;
|
|
goto dma_unmap;
|
|
}
|
|
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
|
|
dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
|
|
|
|
goto free_resources;
|
|
dma_unmap:
|
|
if (op == IOAT_OP_XOR) {
|
|
dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
|
|
dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
|
|
DMA_TO_DEVICE);
|
|
} else if (op == IOAT_OP_XOR_VAL) {
|
|
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
|
|
dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
free_resources:
|
|
dma->device_free_chan_resources(dma_chan);
|
|
out:
|
|
src_idx = IOAT_NUM_SRC_TEST;
|
|
while (src_idx--)
|
|
__free_page(xor_srcs[src_idx]);
|
|
__free_page(dest);
|
|
return err;
|
|
}
|
|
|
|
static int ioat3_dma_self_test(struct ioatdma_device *device)
|
|
{
|
|
int rc = ioat_dma_self_test(device);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ioat_xor_val_self_test(device);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ioat3_irq_reinit(struct ioatdma_device *device)
|
|
{
|
|
struct pci_dev *pdev = device->pdev;
|
|
int irq = pdev->irq, i;
|
|
|
|
if (!is_bwd_ioat(pdev))
|
|
return 0;
|
|
|
|
switch (device->irq_mode) {
|
|
case IOAT_MSIX:
|
|
for (i = 0; i < device->common.chancnt; i++) {
|
|
struct msix_entry *msix = &device->msix_entries[i];
|
|
struct ioat_chan_common *chan;
|
|
|
|
chan = ioat_chan_by_index(device, i);
|
|
devm_free_irq(&pdev->dev, msix->vector, chan);
|
|
}
|
|
|
|
pci_disable_msix(pdev);
|
|
break;
|
|
case IOAT_MSI:
|
|
pci_disable_msi(pdev);
|
|
/* fall through */
|
|
case IOAT_INTX:
|
|
devm_free_irq(&pdev->dev, irq, device);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
device->irq_mode = IOAT_NOIRQ;
|
|
|
|
return ioat_dma_setup_interrupts(device);
|
|
}
|
|
|
|
static int ioat3_reset_hw(struct ioat_chan_common *chan)
|
|
{
|
|
/* throw away whatever the channel was doing and get it
|
|
* initialized, with ioat3 specific workarounds
|
|
*/
|
|
struct ioatdma_device *device = chan->device;
|
|
struct pci_dev *pdev = device->pdev;
|
|
u32 chanerr;
|
|
u16 dev_id;
|
|
int err;
|
|
|
|
ioat2_quiesce(chan, msecs_to_jiffies(100));
|
|
|
|
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
|
|
|
|
if (device->version < IOAT_VER_3_3) {
|
|
/* clear any pending errors */
|
|
err = pci_read_config_dword(pdev,
|
|
IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"channel error register unreachable\n");
|
|
return err;
|
|
}
|
|
pci_write_config_dword(pdev,
|
|
IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
|
|
|
|
/* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
|
|
* (workaround for spurious config parity error after restart)
|
|
*/
|
|
pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
|
|
if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) {
|
|
pci_write_config_dword(pdev,
|
|
IOAT_PCI_DMAUNCERRSTS_OFFSET,
|
|
0x10);
|
|
}
|
|
}
|
|
|
|
err = ioat2_reset_sync(chan, msecs_to_jiffies(200));
|
|
if (!err)
|
|
err = ioat3_irq_reinit(device);
|
|
|
|
if (err)
|
|
dev_err(&pdev->dev, "Failed to reset: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void ioat3_intr_quirk(struct ioatdma_device *device)
|
|
{
|
|
struct dma_device *dma;
|
|
struct dma_chan *c;
|
|
struct ioat_chan_common *chan;
|
|
u32 errmask;
|
|
|
|
dma = &device->common;
|
|
|
|
/*
|
|
* if we have descriptor write back error status, we mask the
|
|
* error interrupts
|
|
*/
|
|
if (device->cap & IOAT_CAP_DWBES) {
|
|
list_for_each_entry(c, &dma->channels, device_node) {
|
|
chan = to_chan_common(c);
|
|
errmask = readl(chan->reg_base +
|
|
IOAT_CHANERR_MASK_OFFSET);
|
|
errmask |= IOAT_CHANERR_XOR_P_OR_CRC_ERR |
|
|
IOAT_CHANERR_XOR_Q_ERR;
|
|
writel(errmask, chan->reg_base +
|
|
IOAT_CHANERR_MASK_OFFSET);
|
|
}
|
|
}
|
|
}
|
|
|
|
int ioat3_dma_probe(struct ioatdma_device *device, int dca)
|
|
{
|
|
struct pci_dev *pdev = device->pdev;
|
|
int dca_en = system_has_dca_enabled(pdev);
|
|
struct dma_device *dma;
|
|
struct dma_chan *c;
|
|
struct ioat_chan_common *chan;
|
|
bool is_raid_device = false;
|
|
int err;
|
|
|
|
device->enumerate_channels = ioat2_enumerate_channels;
|
|
device->reset_hw = ioat3_reset_hw;
|
|
device->self_test = ioat3_dma_self_test;
|
|
device->intr_quirk = ioat3_intr_quirk;
|
|
dma = &device->common;
|
|
dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
|
|
dma->device_issue_pending = ioat2_issue_pending;
|
|
dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
|
|
dma->device_free_chan_resources = ioat2_free_chan_resources;
|
|
|
|
dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
|
|
dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
|
|
|
|
device->cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
|
|
|
|
if (is_xeon_cb32(pdev) || is_bwd_noraid(pdev))
|
|
device->cap &= ~(IOAT_CAP_XOR | IOAT_CAP_PQ | IOAT_CAP_RAID16SS);
|
|
|
|
/* dca is incompatible with raid operations */
|
|
if (dca_en && (device->cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
|
|
device->cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
|
|
|
|
if (device->cap & IOAT_CAP_XOR) {
|
|
is_raid_device = true;
|
|
dma->max_xor = 8;
|
|
|
|
dma_cap_set(DMA_XOR, dma->cap_mask);
|
|
dma->device_prep_dma_xor = ioat3_prep_xor;
|
|
|
|
dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
|
|
dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
|
|
}
|
|
|
|
if (device->cap & IOAT_CAP_PQ) {
|
|
is_raid_device = true;
|
|
|
|
dma->device_prep_dma_pq = ioat3_prep_pq;
|
|
dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
|
|
dma_cap_set(DMA_PQ, dma->cap_mask);
|
|
dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
|
|
|
|
if (device->cap & IOAT_CAP_RAID16SS) {
|
|
dma_set_maxpq(dma, 16, 0);
|
|
} else {
|
|
dma_set_maxpq(dma, 8, 0);
|
|
}
|
|
|
|
if (!(device->cap & IOAT_CAP_XOR)) {
|
|
dma->device_prep_dma_xor = ioat3_prep_pqxor;
|
|
dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
|
|
dma_cap_set(DMA_XOR, dma->cap_mask);
|
|
dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
|
|
|
|
if (device->cap & IOAT_CAP_RAID16SS) {
|
|
dma->max_xor = 16;
|
|
} else {
|
|
dma->max_xor = 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
dma->device_tx_status = ioat3_tx_status;
|
|
device->cleanup_fn = ioat3_cleanup_event;
|
|
device->timer_fn = ioat3_timer_event;
|
|
|
|
/* starting with CB3.3 super extended descriptors are supported */
|
|
if (device->cap & IOAT_CAP_RAID16SS) {
|
|
char pool_name[14];
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_SED_POOLS; i++) {
|
|
snprintf(pool_name, 14, "ioat_hw%d_sed", i);
|
|
|
|
/* allocate SED DMA pool */
|
|
device->sed_hw_pool[i] = dmam_pool_create(pool_name,
|
|
&pdev->dev,
|
|
SED_SIZE * (i + 1), 64, 0);
|
|
if (!device->sed_hw_pool[i])
|
|
return -ENOMEM;
|
|
|
|
}
|
|
}
|
|
|
|
err = ioat_probe(device);
|
|
if (err)
|
|
return err;
|
|
|
|
list_for_each_entry(c, &dma->channels, device_node) {
|
|
chan = to_chan_common(c);
|
|
writel(IOAT_DMA_DCA_ANY_CPU,
|
|
chan->reg_base + IOAT_DCACTRL_OFFSET);
|
|
}
|
|
|
|
err = ioat_register(device);
|
|
if (err)
|
|
return err;
|
|
|
|
ioat_kobject_add(device, &ioat2_ktype);
|
|
|
|
if (dca)
|
|
device->dca = ioat3_dca_init(pdev, device->reg_base);
|
|
|
|
return 0;
|
|
}
|