kernel_optimize_test/block/blk-settings.c
Neil Brown e7e72bf641 Remove blkdev warning triggered by using md
As setting and clearing queue flags now requires that we hold a spinlock
on the queue, and as blk_queue_stack_limits is called without that lock,
get the lock inside blk_queue_stack_limits.

For blk_queue_stack_limits to be able to find the right lock, each md
personality needs to set q->queue_lock to point to the appropriate lock.
Those personalities which didn't previously use a spin_lock, us
q->__queue_lock.  So always initialise that lock when allocated.

With this in place, setting/clearing of the QUEUE_FLAG_PLUGGED bit will no
longer cause warnings as it will be clear that the proper lock is held.

Thanks to Dan Williams for review and fixing the silly bugs.

Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Alistair John Strachan <alistair@devzero.co.uk>
Cc: Nick Piggin <npiggin@suse.de>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Jacek Luczak <difrost.kernel@gmail.com>
Cc: Prakash Punnoor <prakash@punnoor.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-14 19:11:15 -07:00

420 lines
13 KiB
C

/*
* Functions related to setting various queue properties from drivers
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
#include "blk.h"
unsigned long blk_max_low_pfn;
EXPORT_SYMBOL(blk_max_low_pfn);
unsigned long blk_max_pfn;
/**
* blk_queue_prep_rq - set a prepare_request function for queue
* @q: queue
* @pfn: prepare_request function
*
* It's possible for a queue to register a prepare_request callback which
* is invoked before the request is handed to the request_fn. The goal of
* the function is to prepare a request for I/O, it can be used to build a
* cdb from the request data for instance.
*
*/
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);
/**
* blk_queue_merge_bvec - set a merge_bvec function for queue
* @q: queue
* @mbfn: merge_bvec_fn
*
* Usually queues have static limitations on the max sectors or segments that
* we can put in a request. Stacking drivers may have some settings that
* are dynamic, and thus we have to query the queue whether it is ok to
* add a new bio_vec to a bio at a given offset or not. If the block device
* has such limitations, it needs to register a merge_bvec_fn to control
* the size of bio's sent to it. Note that a block device *must* allow a
* single page to be added to an empty bio. The block device driver may want
* to use the bio_split() function to deal with these bio's. By default
* no merge_bvec_fn is defined for a queue, and only the fixed limits are
* honored.
*/
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);
void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);
/**
* blk_queue_make_request - define an alternate make_request function for a device
* @q: the request queue for the device to be affected
* @mfn: the alternate make_request function
*
* Description:
* The normal way for &struct bios to be passed to a device
* driver is for them to be collected into requests on a request
* queue, and then to allow the device driver to select requests
* off that queue when it is ready. This works well for many block
* devices. However some block devices (typically virtual devices
* such as md or lvm) do not benefit from the processing on the
* request queue, and are served best by having the requests passed
* directly to them. This can be achieved by providing a function
* to blk_queue_make_request().
*
* Caveat:
* The driver that does this *must* be able to deal appropriately
* with buffers in "highmemory". This can be accomplished by either calling
* __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
* blk_queue_bounce() to create a buffer in normal memory.
**/
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
{
/*
* set defaults
*/
q->nr_requests = BLKDEV_MAX_RQ;
blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
q->make_request_fn = mfn;
q->backing_dev_info.ra_pages =
(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
q->backing_dev_info.state = 0;
q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
blk_queue_hardsect_size(q, 512);
blk_queue_dma_alignment(q, 511);
blk_queue_congestion_threshold(q);
q->nr_batching = BLK_BATCH_REQ;
q->unplug_thresh = 4; /* hmm */
q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
if (q->unplug_delay == 0)
q->unplug_delay = 1;
INIT_WORK(&q->unplug_work, blk_unplug_work);
q->unplug_timer.function = blk_unplug_timeout;
q->unplug_timer.data = (unsigned long)q;
/*
* by default assume old behaviour and bounce for any highmem page
*/
blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);
/**
* blk_queue_bounce_limit - set bounce buffer limit for queue
* @q: the request queue for the device
* @dma_addr: bus address limit
*
* Description:
* Different hardware can have different requirements as to what pages
* it can do I/O directly to. A low level driver can call
* blk_queue_bounce_limit to have lower memory pages allocated as bounce
* buffers for doing I/O to pages residing above @page.
**/
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
{
unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
int dma = 0;
q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
/* Assume anything <= 4GB can be handled by IOMMU.
Actually some IOMMUs can handle everything, but I don't
know of a way to test this here. */
if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
dma = 1;
q->bounce_pfn = max_low_pfn;
#else
if (b_pfn < blk_max_low_pfn)
dma = 1;
q->bounce_pfn = b_pfn;
#endif
if (dma) {
init_emergency_isa_pool();
q->bounce_gfp = GFP_NOIO | GFP_DMA;
q->bounce_pfn = b_pfn;
}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);
/**
* blk_queue_max_sectors - set max sectors for a request for this queue
* @q: the request queue for the device
* @max_sectors: max sectors in the usual 512b unit
*
* Description:
* Enables a low level driver to set an upper limit on the size of
* received requests.
**/
void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
{
if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_sectors);
}
if (BLK_DEF_MAX_SECTORS > max_sectors)
q->max_hw_sectors = q->max_sectors = max_sectors;
else {
q->max_sectors = BLK_DEF_MAX_SECTORS;
q->max_hw_sectors = max_sectors;
}
}
EXPORT_SYMBOL(blk_queue_max_sectors);
/**
* blk_queue_max_phys_segments - set max phys segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* physical data segments in a request. This would be the largest sized
* scatter list the driver could handle.
**/
void blk_queue_max_phys_segments(struct request_queue *q,
unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_segments);
}
q->max_phys_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_phys_segments);
/**
* blk_queue_max_hw_segments - set max hw segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* hw data segments in a request. This would be the largest number of
* address/length pairs the host adapter can actually give as once
* to the device.
**/
void blk_queue_max_hw_segments(struct request_queue *q,
unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_segments);
}
q->max_hw_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_hw_segments);
/**
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
* @q: the request queue for the device
* @max_size: max size of segment in bytes
*
* Description:
* Enables a low level driver to set an upper limit on the size of a
* coalesced segment
**/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
if (max_size < PAGE_CACHE_SIZE) {
max_size = PAGE_CACHE_SIZE;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_size);
}
q->max_segment_size = max_size;
}
EXPORT_SYMBOL(blk_queue_max_segment_size);
/**
* blk_queue_hardsect_size - set hardware sector size for the queue
* @q: the request queue for the device
* @size: the hardware sector size, in bytes
*
* Description:
* This should typically be set to the lowest possible sector size
* that the hardware can operate on (possible without reverting to
* even internal read-modify-write operations). Usually the default
* of 512 covers most hardware.
**/
void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
{
q->hardsect_size = size;
}
EXPORT_SYMBOL(blk_queue_hardsect_size);
/*
* Returns the minimum that is _not_ zero, unless both are zero.
*/
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
/**
* blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
* @t: the stacking driver (top)
* @b: the underlying device (bottom)
**/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
/* zero is "infinity" */
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments);
t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments);
t->max_segment_size = min(t->max_segment_size, b->max_segment_size);
t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
if (!t->queue_lock)
WARN_ON_ONCE(1);
else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
unsigned long flags;
spin_lock_irqsave(t->queue_lock, flags);
queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
spin_unlock_irqrestore(t->queue_lock, flags);
}
}
EXPORT_SYMBOL(blk_queue_stack_limits);
/**
* blk_queue_dma_pad - set pad mask
* @q: the request queue for the device
* @mask: pad mask
*
* Set pad mask. Direct IO requests are padded to the mask specified.
*
* Appending pad buffer to a request modifies ->data_len such that it
* includes the pad buffer. The original requested data length can be
* obtained using blk_rq_raw_data_len().
**/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);
/**
* blk_queue_dma_drain - Set up a drain buffer for excess dma.
* @q: the request queue for the device
* @dma_drain_needed: fn which returns non-zero if drain is necessary
* @buf: physically contiguous buffer
* @size: size of the buffer in bytes
*
* Some devices have excess DMA problems and can't simply discard (or
* zero fill) the unwanted piece of the transfer. They have to have a
* real area of memory to transfer it into. The use case for this is
* ATAPI devices in DMA mode. If the packet command causes a transfer
* bigger than the transfer size some HBAs will lock up if there
* aren't DMA elements to contain the excess transfer. What this API
* does is adjust the queue so that the buf is always appended
* silently to the scatterlist.
*
* Note: This routine adjusts max_hw_segments to make room for
* appending the drain buffer. If you call
* blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
* calling this routine, you must set the limit to one fewer than your
* device can support otherwise there won't be room for the drain
* buffer.
*/
int blk_queue_dma_drain(struct request_queue *q,
dma_drain_needed_fn *dma_drain_needed,
void *buf, unsigned int size)
{
if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
return -EINVAL;
/* make room for appending the drain */
--q->max_hw_segments;
--q->max_phys_segments;
q->dma_drain_needed = dma_drain_needed;
q->dma_drain_buffer = buf;
q->dma_drain_size = size;
return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
/**
* blk_queue_segment_boundary - set boundary rules for segment merging
* @q: the request queue for the device
* @mask: the memory boundary mask
**/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
if (mask < PAGE_CACHE_SIZE - 1) {
mask = PAGE_CACHE_SIZE - 1;
printk(KERN_INFO "%s: set to minimum %lx\n",
__func__, mask);
}
q->seg_boundary_mask = mask;
}
EXPORT_SYMBOL(blk_queue_segment_boundary);
/**
* blk_queue_dma_alignment - set dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* set required memory and length aligment for direct dma transactions.
* this is used when buiding direct io requests for the queue.
*
**/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);
/**
* blk_queue_update_dma_alignment - update dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* update required memory and length aligment for direct dma transactions.
* If the requested alignment is larger than the current alignment, then
* the current queue alignment is updated to the new value, otherwise it
* is left alone. The design of this is to allow multiple objects
* (driver, device, transport etc) to set their respective
* alignments without having them interfere.
*
**/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
BUG_ON(mask > PAGE_SIZE);
if (mask > q->dma_alignment)
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);
static int __init blk_settings_init(void)
{
blk_max_low_pfn = max_low_pfn - 1;
blk_max_pfn = max_pfn - 1;
return 0;
}
subsys_initcall(blk_settings_init);