kernel_optimize_test/fs/ocfs2/aops.h
Mark Fasheh 1d410a6e33 ocfs2: Small refactor of truncate zeroing code
We'll want to reuse most of this when pushing inline data back out to an
extent. Keeping this part as a seperate patch helps to keep the upcoming
changes for write support uncluttered.

The core portion of ocfs2_zero_cluster_pages() responsible for making sure a
page is mapped and properly dirtied is abstracted out into it's own
function, ocfs2_map_and_dirty_page(). Actual functionality doesn't change,
though zeroing becomes optional.

We also turn part of ocfs2_free_write_ctxt() into  a common function for
unlocking and freeing a page array. This operation is very common (and
uniform) for Ocfs2 cluster sizes greater than page size, so it makes sense
to keep the code in one place.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
2007-10-12 11:54:35 -07:00

80 lines
2.7 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* Copyright (C) 2002, 2004, 2005 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef OCFS2_AOPS_H
#define OCFS2_AOPS_H
int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
unsigned from, unsigned to);
handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
struct page *page,
unsigned from,
unsigned to);
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
struct inode *inode, unsigned int from,
unsigned int to, int new);
void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages);
int walk_page_buffers( handle_t *handle,
struct buffer_head *head,
unsigned from,
unsigned to,
int *partial,
int (*fn)( handle_t *handle,
struct buffer_head *bh));
int ocfs2_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
int ocfs2_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
int ocfs2_write_end_nolock(struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
int ocfs2_write_begin_nolock(struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata,
struct buffer_head *di_bh, struct page *mmap_page);
/* all ocfs2_dio_end_io()'s fault */
#define ocfs2_iocb_is_rw_locked(iocb) \
test_bit(0, (unsigned long *)&iocb->private)
static inline void ocfs2_iocb_set_rw_locked(struct kiocb *iocb, int level)
{
set_bit(0, (unsigned long *)&iocb->private);
if (level)
set_bit(1, (unsigned long *)&iocb->private);
else
clear_bit(1, (unsigned long *)&iocb->private);
}
#define ocfs2_iocb_clear_rw_locked(iocb) \
clear_bit(0, (unsigned long *)&iocb->private)
#define ocfs2_iocb_rw_locked_level(iocb) \
test_bit(1, (unsigned long *)&iocb->private)
#endif /* OCFS2_FILE_H */