forked from luck/tmp_suning_uos_patched
1df5c10a5b
..and only enable them for ia64. The functions are only valid when the whole system has been totally stopped and no scheduler activity is ongoing on any CPU, and interrupts are globally disabled. In other words, they aren't useful for anything else. So make sure that nobody can use them by mistake. Signed-off-by: Linus Torvalds <torvalds@osdl.org>
5649 lines
140 KiB
C
5649 lines
140 KiB
C
/*
|
|
* kernel/sched.c
|
|
*
|
|
* Kernel scheduler and related syscalls
|
|
*
|
|
* Copyright (C) 1991-2002 Linus Torvalds
|
|
*
|
|
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
|
|
* make semaphores SMP safe
|
|
* 1998-11-19 Implemented schedule_timeout() and related stuff
|
|
* by Andrea Arcangeli
|
|
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
|
|
* hybrid priority-list and round-robin design with
|
|
* an array-switch method of distributing timeslices
|
|
* and per-CPU runqueues. Cleanups and useful suggestions
|
|
* by Davide Libenzi, preemptible kernel bits by Robert Love.
|
|
* 2003-09-03 Interactivity tuning by Con Kolivas.
|
|
* 2004-04-02 Scheduler domains code by Nick Piggin
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/init.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/security.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/times.h>
|
|
#include <linux/acct.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <asm/unistd.h>
|
|
|
|
/*
|
|
* Convert user-nice values [ -20 ... 0 ... 19 ]
|
|
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
|
|
* and back.
|
|
*/
|
|
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
|
|
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
|
|
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
|
|
|
|
/*
|
|
* 'User priority' is the nice value converted to something we
|
|
* can work with better when scaling various scheduler parameters,
|
|
* it's a [ 0 ... 39 ] range.
|
|
*/
|
|
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
|
|
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
|
|
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
|
|
|
|
/*
|
|
* Some helpers for converting nanosecond timing to jiffy resolution
|
|
*/
|
|
#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
|
|
#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
|
|
|
|
/*
|
|
* These are the 'tuning knobs' of the scheduler:
|
|
*
|
|
* Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
|
|
* default timeslice is 100 msecs, maximum timeslice is 800 msecs.
|
|
* Timeslices get refilled after they expire.
|
|
*/
|
|
#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
|
|
#define DEF_TIMESLICE (100 * HZ / 1000)
|
|
#define ON_RUNQUEUE_WEIGHT 30
|
|
#define CHILD_PENALTY 95
|
|
#define PARENT_PENALTY 100
|
|
#define EXIT_WEIGHT 3
|
|
#define PRIO_BONUS_RATIO 25
|
|
#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
|
|
#define INTERACTIVE_DELTA 2
|
|
#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
|
|
#define STARVATION_LIMIT (MAX_SLEEP_AVG)
|
|
#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
|
|
|
|
/*
|
|
* If a task is 'interactive' then we reinsert it in the active
|
|
* array after it has expired its current timeslice. (it will not
|
|
* continue to run immediately, it will still roundrobin with
|
|
* other interactive tasks.)
|
|
*
|
|
* This part scales the interactivity limit depending on niceness.
|
|
*
|
|
* We scale it linearly, offset by the INTERACTIVE_DELTA delta.
|
|
* Here are a few examples of different nice levels:
|
|
*
|
|
* TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
|
|
* TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
|
|
* TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
|
|
* TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
|
|
* TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
|
|
*
|
|
* (the X axis represents the possible -5 ... 0 ... +5 dynamic
|
|
* priority range a task can explore, a value of '1' means the
|
|
* task is rated interactive.)
|
|
*
|
|
* Ie. nice +19 tasks can never get 'interactive' enough to be
|
|
* reinserted into the active array. And only heavily CPU-hog nice -20
|
|
* tasks will be expired. Default nice 0 tasks are somewhere between,
|
|
* it takes some effort for them to get interactive, but it's not
|
|
* too hard.
|
|
*/
|
|
|
|
#define CURRENT_BONUS(p) \
|
|
(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
|
|
MAX_SLEEP_AVG)
|
|
|
|
#define GRANULARITY (10 * HZ / 1000 ? : 1)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
|
|
(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
|
|
num_online_cpus())
|
|
#else
|
|
#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
|
|
(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
|
|
#endif
|
|
|
|
#define SCALE(v1,v1_max,v2_max) \
|
|
(v1) * (v2_max) / (v1_max)
|
|
|
|
#define DELTA(p) \
|
|
(SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
|
|
|
|
#define TASK_INTERACTIVE(p) \
|
|
((p)->prio <= (p)->static_prio - DELTA(p))
|
|
|
|
#define INTERACTIVE_SLEEP(p) \
|
|
(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
|
|
(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
|
|
|
|
#define TASK_PREEMPTS_CURR(p, rq) \
|
|
((p)->prio < (rq)->curr->prio)
|
|
|
|
/*
|
|
* task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
|
|
* to time slice values: [800ms ... 100ms ... 5ms]
|
|
*
|
|
* The higher a thread's priority, the bigger timeslices
|
|
* it gets during one round of execution. But even the lowest
|
|
* priority thread gets MIN_TIMESLICE worth of execution time.
|
|
*/
|
|
|
|
#define SCALE_PRIO(x, prio) \
|
|
max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
|
|
|
|
static unsigned int task_timeslice(task_t *p)
|
|
{
|
|
if (p->static_prio < NICE_TO_PRIO(0))
|
|
return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
|
|
else
|
|
return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
|
|
}
|
|
#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
|
|
< (long long) (sd)->cache_hot_time)
|
|
|
|
/*
|
|
* These are the runqueue data structures:
|
|
*/
|
|
|
|
#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
|
|
|
|
typedef struct runqueue runqueue_t;
|
|
|
|
struct prio_array {
|
|
unsigned int nr_active;
|
|
unsigned long bitmap[BITMAP_SIZE];
|
|
struct list_head queue[MAX_PRIO];
|
|
};
|
|
|
|
/*
|
|
* This is the main, per-CPU runqueue data structure.
|
|
*
|
|
* Locking rule: those places that want to lock multiple runqueues
|
|
* (such as the load balancing or the thread migration code), lock
|
|
* acquire operations must be ordered by ascending &runqueue.
|
|
*/
|
|
struct runqueue {
|
|
spinlock_t lock;
|
|
|
|
/*
|
|
* nr_running and cpu_load should be in the same cacheline because
|
|
* remote CPUs use both these fields when doing load calculation.
|
|
*/
|
|
unsigned long nr_running;
|
|
#ifdef CONFIG_SMP
|
|
unsigned long cpu_load[3];
|
|
#endif
|
|
unsigned long long nr_switches;
|
|
|
|
/*
|
|
* This is part of a global counter where only the total sum
|
|
* over all CPUs matters. A task can increase this counter on
|
|
* one CPU and if it got migrated afterwards it may decrease
|
|
* it on another CPU. Always updated under the runqueue lock:
|
|
*/
|
|
unsigned long nr_uninterruptible;
|
|
|
|
unsigned long expired_timestamp;
|
|
unsigned long long timestamp_last_tick;
|
|
task_t *curr, *idle;
|
|
struct mm_struct *prev_mm;
|
|
prio_array_t *active, *expired, arrays[2];
|
|
int best_expired_prio;
|
|
atomic_t nr_iowait;
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct sched_domain *sd;
|
|
|
|
/* For active balancing */
|
|
int active_balance;
|
|
int push_cpu;
|
|
|
|
task_t *migration_thread;
|
|
struct list_head migration_queue;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/* latency stats */
|
|
struct sched_info rq_sched_info;
|
|
|
|
/* sys_sched_yield() stats */
|
|
unsigned long yld_exp_empty;
|
|
unsigned long yld_act_empty;
|
|
unsigned long yld_both_empty;
|
|
unsigned long yld_cnt;
|
|
|
|
/* schedule() stats */
|
|
unsigned long sched_switch;
|
|
unsigned long sched_cnt;
|
|
unsigned long sched_goidle;
|
|
|
|
/* try_to_wake_up() stats */
|
|
unsigned long ttwu_cnt;
|
|
unsigned long ttwu_local;
|
|
#endif
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct runqueue, runqueues);
|
|
|
|
/*
|
|
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
* See detach_destroy_domains: synchronize_sched for details.
|
|
*
|
|
* The domain tree of any CPU may only be accessed from within
|
|
* preempt-disabled sections.
|
|
*/
|
|
#define for_each_domain(cpu, domain) \
|
|
for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
|
|
|
|
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
|
|
#define this_rq() (&__get_cpu_var(runqueues))
|
|
#define task_rq(p) cpu_rq(task_cpu(p))
|
|
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
|
|
#ifndef prepare_arch_switch
|
|
# define prepare_arch_switch(next) do { } while (0)
|
|
#endif
|
|
#ifndef finish_arch_switch
|
|
# define finish_arch_switch(prev) do { } while (0)
|
|
#endif
|
|
|
|
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
|
|
static inline int task_running(runqueue_t *rq, task_t *p)
|
|
{
|
|
return rq->curr == p;
|
|
}
|
|
|
|
static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
|
|
{
|
|
}
|
|
|
|
static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
|
|
{
|
|
spin_unlock_irq(&rq->lock);
|
|
}
|
|
|
|
#else /* __ARCH_WANT_UNLOCKED_CTXSW */
|
|
static inline int task_running(runqueue_t *rq, task_t *p)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return p->oncpu;
|
|
#else
|
|
return rq->curr == p;
|
|
#endif
|
|
}
|
|
|
|
static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* We can optimise this out completely for !SMP, because the
|
|
* SMP rebalancing from interrupt is the only thing that cares
|
|
* here.
|
|
*/
|
|
next->oncpu = 1;
|
|
#endif
|
|
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
|
|
spin_unlock_irq(&rq->lock);
|
|
#else
|
|
spin_unlock(&rq->lock);
|
|
#endif
|
|
}
|
|
|
|
static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* After ->oncpu is cleared, the task can be moved to a different CPU.
|
|
* We must ensure this doesn't happen until the switch is completely
|
|
* finished.
|
|
*/
|
|
smp_wmb();
|
|
prev->oncpu = 0;
|
|
#endif
|
|
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
|
|
local_irq_enable();
|
|
#endif
|
|
}
|
|
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
|
|
|
|
/*
|
|
* task_rq_lock - lock the runqueue a given task resides on and disable
|
|
* interrupts. Note the ordering: we can safely lookup the task_rq without
|
|
* explicitly disabling preemption.
|
|
*/
|
|
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct runqueue *rq;
|
|
|
|
repeat_lock_task:
|
|
local_irq_save(*flags);
|
|
rq = task_rq(p);
|
|
spin_lock(&rq->lock);
|
|
if (unlikely(rq != task_rq(p))) {
|
|
spin_unlock_irqrestore(&rq->lock, *flags);
|
|
goto repeat_lock_task;
|
|
}
|
|
return rq;
|
|
}
|
|
|
|
static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
|
|
__releases(rq->lock)
|
|
{
|
|
spin_unlock_irqrestore(&rq->lock, *flags);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/*
|
|
* bump this up when changing the output format or the meaning of an existing
|
|
* format, so that tools can adapt (or abort)
|
|
*/
|
|
#define SCHEDSTAT_VERSION 12
|
|
|
|
static int show_schedstat(struct seq_file *seq, void *v)
|
|
{
|
|
int cpu;
|
|
|
|
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
|
seq_printf(seq, "timestamp %lu\n", jiffies);
|
|
for_each_online_cpu(cpu) {
|
|
runqueue_t *rq = cpu_rq(cpu);
|
|
#ifdef CONFIG_SMP
|
|
struct sched_domain *sd;
|
|
int dcnt = 0;
|
|
#endif
|
|
|
|
/* runqueue-specific stats */
|
|
seq_printf(seq,
|
|
"cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
|
|
cpu, rq->yld_both_empty,
|
|
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
|
|
rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
|
|
rq->ttwu_cnt, rq->ttwu_local,
|
|
rq->rq_sched_info.cpu_time,
|
|
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
|
|
|
|
seq_printf(seq, "\n");
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* domain-specific stats */
|
|
preempt_disable();
|
|
for_each_domain(cpu, sd) {
|
|
enum idle_type itype;
|
|
char mask_str[NR_CPUS];
|
|
|
|
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
|
|
seq_printf(seq, "domain%d %s", dcnt++, mask_str);
|
|
for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
|
|
itype++) {
|
|
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
|
|
sd->lb_cnt[itype],
|
|
sd->lb_balanced[itype],
|
|
sd->lb_failed[itype],
|
|
sd->lb_imbalance[itype],
|
|
sd->lb_gained[itype],
|
|
sd->lb_hot_gained[itype],
|
|
sd->lb_nobusyq[itype],
|
|
sd->lb_nobusyg[itype]);
|
|
}
|
|
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
|
|
sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
|
|
sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
|
|
sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
|
|
sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
|
|
}
|
|
preempt_enable();
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int schedstat_open(struct inode *inode, struct file *file)
|
|
{
|
|
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
|
char *buf = kmalloc(size, GFP_KERNEL);
|
|
struct seq_file *m;
|
|
int res;
|
|
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
res = single_open(file, show_schedstat, NULL);
|
|
if (!res) {
|
|
m = file->private_data;
|
|
m->buf = buf;
|
|
m->size = size;
|
|
} else
|
|
kfree(buf);
|
|
return res;
|
|
}
|
|
|
|
struct file_operations proc_schedstat_operations = {
|
|
.open = schedstat_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
|
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
|
#else /* !CONFIG_SCHEDSTATS */
|
|
# define schedstat_inc(rq, field) do { } while (0)
|
|
# define schedstat_add(rq, field, amt) do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* rq_lock - lock a given runqueue and disable interrupts.
|
|
*/
|
|
static inline runqueue_t *this_rq_lock(void)
|
|
__acquires(rq->lock)
|
|
{
|
|
runqueue_t *rq;
|
|
|
|
local_irq_disable();
|
|
rq = this_rq();
|
|
spin_lock(&rq->lock);
|
|
|
|
return rq;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/*
|
|
* Called when a process is dequeued from the active array and given
|
|
* the cpu. We should note that with the exception of interactive
|
|
* tasks, the expired queue will become the active queue after the active
|
|
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
|
* expired queue. (Interactive tasks may be requeued directly to the
|
|
* active queue, thus delaying tasks in the expired queue from running;
|
|
* see scheduler_tick()).
|
|
*
|
|
* This function is only called from sched_info_arrive(), rather than
|
|
* dequeue_task(). Even though a task may be queued and dequeued multiple
|
|
* times as it is shuffled about, we're really interested in knowing how
|
|
* long it was from the *first* time it was queued to the time that it
|
|
* finally hit a cpu.
|
|
*/
|
|
static inline void sched_info_dequeued(task_t *t)
|
|
{
|
|
t->sched_info.last_queued = 0;
|
|
}
|
|
|
|
/*
|
|
* Called when a task finally hits the cpu. We can now calculate how
|
|
* long it was waiting to run. We also note when it began so that we
|
|
* can keep stats on how long its timeslice is.
|
|
*/
|
|
static inline void sched_info_arrive(task_t *t)
|
|
{
|
|
unsigned long now = jiffies, diff = 0;
|
|
struct runqueue *rq = task_rq(t);
|
|
|
|
if (t->sched_info.last_queued)
|
|
diff = now - t->sched_info.last_queued;
|
|
sched_info_dequeued(t);
|
|
t->sched_info.run_delay += diff;
|
|
t->sched_info.last_arrival = now;
|
|
t->sched_info.pcnt++;
|
|
|
|
if (!rq)
|
|
return;
|
|
|
|
rq->rq_sched_info.run_delay += diff;
|
|
rq->rq_sched_info.pcnt++;
|
|
}
|
|
|
|
/*
|
|
* Called when a process is queued into either the active or expired
|
|
* array. The time is noted and later used to determine how long we
|
|
* had to wait for us to reach the cpu. Since the expired queue will
|
|
* become the active queue after active queue is empty, without dequeuing
|
|
* and requeuing any tasks, we are interested in queuing to either. It
|
|
* is unusual but not impossible for tasks to be dequeued and immediately
|
|
* requeued in the same or another array: this can happen in sched_yield(),
|
|
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
|
* to runqueue.
|
|
*
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
* the timestamp if it is already not set. It's assumed that
|
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
|
*/
|
|
static inline void sched_info_queued(task_t *t)
|
|
{
|
|
if (!t->sched_info.last_queued)
|
|
t->sched_info.last_queued = jiffies;
|
|
}
|
|
|
|
/*
|
|
* Called when a process ceases being the active-running process, either
|
|
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
|
*/
|
|
static inline void sched_info_depart(task_t *t)
|
|
{
|
|
struct runqueue *rq = task_rq(t);
|
|
unsigned long diff = jiffies - t->sched_info.last_arrival;
|
|
|
|
t->sched_info.cpu_time += diff;
|
|
|
|
if (rq)
|
|
rq->rq_sched_info.cpu_time += diff;
|
|
}
|
|
|
|
/*
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
* their time slice. (This may also be called when switching to or from
|
|
* the idle task.) We are only called when prev != next.
|
|
*/
|
|
static inline void sched_info_switch(task_t *prev, task_t *next)
|
|
{
|
|
struct runqueue *rq = task_rq(prev);
|
|
|
|
/*
|
|
* prev now departs the cpu. It's not interesting to record
|
|
* stats about how efficient we were at scheduling the idle
|
|
* process, however.
|
|
*/
|
|
if (prev != rq->idle)
|
|
sched_info_depart(prev);
|
|
|
|
if (next != rq->idle)
|
|
sched_info_arrive(next);
|
|
}
|
|
#else
|
|
#define sched_info_queued(t) do { } while (0)
|
|
#define sched_info_switch(t, next) do { } while (0)
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void dequeue_task(struct task_struct *p, prio_array_t *array)
|
|
{
|
|
array->nr_active--;
|
|
list_del(&p->run_list);
|
|
if (list_empty(array->queue + p->prio))
|
|
__clear_bit(p->prio, array->bitmap);
|
|
}
|
|
|
|
static void enqueue_task(struct task_struct *p, prio_array_t *array)
|
|
{
|
|
sched_info_queued(p);
|
|
list_add_tail(&p->run_list, array->queue + p->prio);
|
|
__set_bit(p->prio, array->bitmap);
|
|
array->nr_active++;
|
|
p->array = array;
|
|
}
|
|
|
|
/*
|
|
* Put task to the end of the run list without the overhead of dequeue
|
|
* followed by enqueue.
|
|
*/
|
|
static void requeue_task(struct task_struct *p, prio_array_t *array)
|
|
{
|
|
list_move_tail(&p->run_list, array->queue + p->prio);
|
|
}
|
|
|
|
static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
|
|
{
|
|
list_add(&p->run_list, array->queue + p->prio);
|
|
__set_bit(p->prio, array->bitmap);
|
|
array->nr_active++;
|
|
p->array = array;
|
|
}
|
|
|
|
/*
|
|
* effective_prio - return the priority that is based on the static
|
|
* priority but is modified by bonuses/penalties.
|
|
*
|
|
* We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
|
|
* into the -5 ... 0 ... +5 bonus/penalty range.
|
|
*
|
|
* We use 25% of the full 0...39 priority range so that:
|
|
*
|
|
* 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
|
|
* 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
|
|
*
|
|
* Both properties are important to certain workloads.
|
|
*/
|
|
static int effective_prio(task_t *p)
|
|
{
|
|
int bonus, prio;
|
|
|
|
if (rt_task(p))
|
|
return p->prio;
|
|
|
|
bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
|
|
|
|
prio = p->static_prio - bonus;
|
|
if (prio < MAX_RT_PRIO)
|
|
prio = MAX_RT_PRIO;
|
|
if (prio > MAX_PRIO-1)
|
|
prio = MAX_PRIO-1;
|
|
return prio;
|
|
}
|
|
|
|
/*
|
|
* __activate_task - move a task to the runqueue.
|
|
*/
|
|
static inline void __activate_task(task_t *p, runqueue_t *rq)
|
|
{
|
|
enqueue_task(p, rq->active);
|
|
rq->nr_running++;
|
|
}
|
|
|
|
/*
|
|
* __activate_idle_task - move idle task to the _front_ of runqueue.
|
|
*/
|
|
static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
|
|
{
|
|
enqueue_task_head(p, rq->active);
|
|
rq->nr_running++;
|
|
}
|
|
|
|
static int recalc_task_prio(task_t *p, unsigned long long now)
|
|
{
|
|
/* Caller must always ensure 'now >= p->timestamp' */
|
|
unsigned long long __sleep_time = now - p->timestamp;
|
|
unsigned long sleep_time;
|
|
|
|
if (__sleep_time > NS_MAX_SLEEP_AVG)
|
|
sleep_time = NS_MAX_SLEEP_AVG;
|
|
else
|
|
sleep_time = (unsigned long)__sleep_time;
|
|
|
|
if (likely(sleep_time > 0)) {
|
|
/*
|
|
* User tasks that sleep a long time are categorised as
|
|
* idle and will get just interactive status to stay active &
|
|
* prevent them suddenly becoming cpu hogs and starving
|
|
* other processes.
|
|
*/
|
|
if (p->mm && p->activated != -1 &&
|
|
sleep_time > INTERACTIVE_SLEEP(p)) {
|
|
p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
|
|
DEF_TIMESLICE);
|
|
} else {
|
|
/*
|
|
* The lower the sleep avg a task has the more
|
|
* rapidly it will rise with sleep time.
|
|
*/
|
|
sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
|
|
|
|
/*
|
|
* Tasks waking from uninterruptible sleep are
|
|
* limited in their sleep_avg rise as they
|
|
* are likely to be waiting on I/O
|
|
*/
|
|
if (p->activated == -1 && p->mm) {
|
|
if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
|
|
sleep_time = 0;
|
|
else if (p->sleep_avg + sleep_time >=
|
|
INTERACTIVE_SLEEP(p)) {
|
|
p->sleep_avg = INTERACTIVE_SLEEP(p);
|
|
sleep_time = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This code gives a bonus to interactive tasks.
|
|
*
|
|
* The boost works by updating the 'average sleep time'
|
|
* value here, based on ->timestamp. The more time a
|
|
* task spends sleeping, the higher the average gets -
|
|
* and the higher the priority boost gets as well.
|
|
*/
|
|
p->sleep_avg += sleep_time;
|
|
|
|
if (p->sleep_avg > NS_MAX_SLEEP_AVG)
|
|
p->sleep_avg = NS_MAX_SLEEP_AVG;
|
|
}
|
|
}
|
|
|
|
return effective_prio(p);
|
|
}
|
|
|
|
/*
|
|
* activate_task - move a task to the runqueue and do priority recalculation
|
|
*
|
|
* Update all the scheduling statistics stuff. (sleep average
|
|
* calculation, priority modifiers, etc.)
|
|
*/
|
|
static void activate_task(task_t *p, runqueue_t *rq, int local)
|
|
{
|
|
unsigned long long now;
|
|
|
|
now = sched_clock();
|
|
#ifdef CONFIG_SMP
|
|
if (!local) {
|
|
/* Compensate for drifting sched_clock */
|
|
runqueue_t *this_rq = this_rq();
|
|
now = (now - this_rq->timestamp_last_tick)
|
|
+ rq->timestamp_last_tick;
|
|
}
|
|
#endif
|
|
|
|
p->prio = recalc_task_prio(p, now);
|
|
|
|
/*
|
|
* This checks to make sure it's not an uninterruptible task
|
|
* that is now waking up.
|
|
*/
|
|
if (!p->activated) {
|
|
/*
|
|
* Tasks which were woken up by interrupts (ie. hw events)
|
|
* are most likely of interactive nature. So we give them
|
|
* the credit of extending their sleep time to the period
|
|
* of time they spend on the runqueue, waiting for execution
|
|
* on a CPU, first time around:
|
|
*/
|
|
if (in_interrupt())
|
|
p->activated = 2;
|
|
else {
|
|
/*
|
|
* Normal first-time wakeups get a credit too for
|
|
* on-runqueue time, but it will be weighted down:
|
|
*/
|
|
p->activated = 1;
|
|
}
|
|
}
|
|
p->timestamp = now;
|
|
|
|
__activate_task(p, rq);
|
|
}
|
|
|
|
/*
|
|
* deactivate_task - remove a task from the runqueue.
|
|
*/
|
|
static void deactivate_task(struct task_struct *p, runqueue_t *rq)
|
|
{
|
|
rq->nr_running--;
|
|
dequeue_task(p, p->array);
|
|
p->array = NULL;
|
|
}
|
|
|
|
/*
|
|
* resched_task - mark a task 'to be rescheduled now'.
|
|
*
|
|
* On UP this means the setting of the need_resched flag, on SMP it
|
|
* might also involve a cross-CPU call to trigger the scheduler on
|
|
* the target CPU.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
static void resched_task(task_t *p)
|
|
{
|
|
int need_resched, nrpolling;
|
|
|
|
assert_spin_locked(&task_rq(p)->lock);
|
|
|
|
/* minimise the chance of sending an interrupt to poll_idle() */
|
|
nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
|
|
need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
|
|
nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
|
|
|
|
if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
|
|
smp_send_reschedule(task_cpu(p));
|
|
}
|
|
#else
|
|
static inline void resched_task(task_t *p)
|
|
{
|
|
set_tsk_need_resched(p);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* task_curr - is this task currently executing on a CPU?
|
|
* @p: the task in question.
|
|
*/
|
|
inline int task_curr(const task_t *p)
|
|
{
|
|
return cpu_curr(task_cpu(p)) == p;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
typedef struct {
|
|
struct list_head list;
|
|
|
|
task_t *task;
|
|
int dest_cpu;
|
|
|
|
struct completion done;
|
|
} migration_req_t;
|
|
|
|
/*
|
|
* The task's runqueue lock must be held.
|
|
* Returns true if you have to wait for migration thread.
|
|
*/
|
|
static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
|
|
{
|
|
runqueue_t *rq = task_rq(p);
|
|
|
|
/*
|
|
* If the task is not on a runqueue (and not running), then
|
|
* it is sufficient to simply update the task's cpu field.
|
|
*/
|
|
if (!p->array && !task_running(rq, p)) {
|
|
set_task_cpu(p, dest_cpu);
|
|
return 0;
|
|
}
|
|
|
|
init_completion(&req->done);
|
|
req->task = p;
|
|
req->dest_cpu = dest_cpu;
|
|
list_add(&req->list, &rq->migration_queue);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* wait_task_inactive - wait for a thread to unschedule.
|
|
*
|
|
* The caller must ensure that the task *will* unschedule sometime soon,
|
|
* else this function might spin for a *long* time. This function can't
|
|
* be called with interrupts off, or it may introduce deadlock with
|
|
* smp_call_function() if an IPI is sent by the same process we are
|
|
* waiting to become inactive.
|
|
*/
|
|
void wait_task_inactive(task_t *p)
|
|
{
|
|
unsigned long flags;
|
|
runqueue_t *rq;
|
|
int preempted;
|
|
|
|
repeat:
|
|
rq = task_rq_lock(p, &flags);
|
|
/* Must be off runqueue entirely, not preempted. */
|
|
if (unlikely(p->array || task_running(rq, p))) {
|
|
/* If it's preempted, we yield. It could be a while. */
|
|
preempted = !task_running(rq, p);
|
|
task_rq_unlock(rq, &flags);
|
|
cpu_relax();
|
|
if (preempted)
|
|
yield();
|
|
goto repeat;
|
|
}
|
|
task_rq_unlock(rq, &flags);
|
|
}
|
|
|
|
/***
|
|
* kick_process - kick a running thread to enter/exit the kernel
|
|
* @p: the to-be-kicked thread
|
|
*
|
|
* Cause a process which is running on another CPU to enter
|
|
* kernel-mode, without any delay. (to get signals handled.)
|
|
*
|
|
* NOTE: this function doesnt have to take the runqueue lock,
|
|
* because all it wants to ensure is that the remote task enters
|
|
* the kernel. If the IPI races and the task has been migrated
|
|
* to another CPU then no harm is done and the purpose has been
|
|
* achieved as well.
|
|
*/
|
|
void kick_process(task_t *p)
|
|
{
|
|
int cpu;
|
|
|
|
preempt_disable();
|
|
cpu = task_cpu(p);
|
|
if ((cpu != smp_processor_id()) && task_curr(p))
|
|
smp_send_reschedule(cpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Return a low guess at the load of a migration-source cpu.
|
|
*
|
|
* We want to under-estimate the load of migration sources, to
|
|
* balance conservatively.
|
|
*/
|
|
static inline unsigned long source_load(int cpu, int type)
|
|
{
|
|
runqueue_t *rq = cpu_rq(cpu);
|
|
unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
|
|
if (type == 0)
|
|
return load_now;
|
|
|
|
return min(rq->cpu_load[type-1], load_now);
|
|
}
|
|
|
|
/*
|
|
* Return a high guess at the load of a migration-target cpu
|
|
*/
|
|
static inline unsigned long target_load(int cpu, int type)
|
|
{
|
|
runqueue_t *rq = cpu_rq(cpu);
|
|
unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
|
|
if (type == 0)
|
|
return load_now;
|
|
|
|
return max(rq->cpu_load[type-1], load_now);
|
|
}
|
|
|
|
/*
|
|
* find_idlest_group finds and returns the least busy CPU group within the
|
|
* domain.
|
|
*/
|
|
static struct sched_group *
|
|
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
|
|
{
|
|
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
|
|
unsigned long min_load = ULONG_MAX, this_load = 0;
|
|
int load_idx = sd->forkexec_idx;
|
|
int imbalance = 100 + (sd->imbalance_pct-100)/2;
|
|
|
|
do {
|
|
unsigned long load, avg_load;
|
|
int local_group;
|
|
int i;
|
|
|
|
/* Skip over this group if it has no CPUs allowed */
|
|
if (!cpus_intersects(group->cpumask, p->cpus_allowed))
|
|
goto nextgroup;
|
|
|
|
local_group = cpu_isset(this_cpu, group->cpumask);
|
|
|
|
/* Tally up the load of all CPUs in the group */
|
|
avg_load = 0;
|
|
|
|
for_each_cpu_mask(i, group->cpumask) {
|
|
/* Bias balancing toward cpus of our domain */
|
|
if (local_group)
|
|
load = source_load(i, load_idx);
|
|
else
|
|
load = target_load(i, load_idx);
|
|
|
|
avg_load += load;
|
|
}
|
|
|
|
/* Adjust by relative CPU power of the group */
|
|
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
|
|
|
if (local_group) {
|
|
this_load = avg_load;
|
|
this = group;
|
|
} else if (avg_load < min_load) {
|
|
min_load = avg_load;
|
|
idlest = group;
|
|
}
|
|
nextgroup:
|
|
group = group->next;
|
|
} while (group != sd->groups);
|
|
|
|
if (!idlest || 100*this_load < imbalance*min_load)
|
|
return NULL;
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* find_idlest_queue - find the idlest runqueue among the cpus in group.
|
|
*/
|
|
static int
|
|
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
|
|
{
|
|
cpumask_t tmp;
|
|
unsigned long load, min_load = ULONG_MAX;
|
|
int idlest = -1;
|
|
int i;
|
|
|
|
/* Traverse only the allowed CPUs */
|
|
cpus_and(tmp, group->cpumask, p->cpus_allowed);
|
|
|
|
for_each_cpu_mask(i, tmp) {
|
|
load = source_load(i, 0);
|
|
|
|
if (load < min_load || (load == min_load && i == this_cpu)) {
|
|
min_load = load;
|
|
idlest = i;
|
|
}
|
|
}
|
|
|
|
return idlest;
|
|
}
|
|
|
|
/*
|
|
* sched_balance_self: balance the current task (running on cpu) in domains
|
|
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
|
|
* SD_BALANCE_EXEC.
|
|
*
|
|
* Balance, ie. select the least loaded group.
|
|
*
|
|
* Returns the target CPU number, or the same CPU if no balancing is needed.
|
|
*
|
|
* preempt must be disabled.
|
|
*/
|
|
static int sched_balance_self(int cpu, int flag)
|
|
{
|
|
struct task_struct *t = current;
|
|
struct sched_domain *tmp, *sd = NULL;
|
|
|
|
for_each_domain(cpu, tmp)
|
|
if (tmp->flags & flag)
|
|
sd = tmp;
|
|
|
|
while (sd) {
|
|
cpumask_t span;
|
|
struct sched_group *group;
|
|
int new_cpu;
|
|
int weight;
|
|
|
|
span = sd->span;
|
|
group = find_idlest_group(sd, t, cpu);
|
|
if (!group)
|
|
goto nextlevel;
|
|
|
|
new_cpu = find_idlest_cpu(group, t, cpu);
|
|
if (new_cpu == -1 || new_cpu == cpu)
|
|
goto nextlevel;
|
|
|
|
/* Now try balancing at a lower domain level */
|
|
cpu = new_cpu;
|
|
nextlevel:
|
|
sd = NULL;
|
|
weight = cpus_weight(span);
|
|
for_each_domain(cpu, tmp) {
|
|
if (weight <= cpus_weight(tmp->span))
|
|
break;
|
|
if (tmp->flags & flag)
|
|
sd = tmp;
|
|
}
|
|
/* while loop will break here if sd == NULL */
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* wake_idle() will wake a task on an idle cpu if task->cpu is
|
|
* not idle and an idle cpu is available. The span of cpus to
|
|
* search starts with cpus closest then further out as needed,
|
|
* so we always favor a closer, idle cpu.
|
|
*
|
|
* Returns the CPU we should wake onto.
|
|
*/
|
|
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
|
|
static int wake_idle(int cpu, task_t *p)
|
|
{
|
|
cpumask_t tmp;
|
|
struct sched_domain *sd;
|
|
int i;
|
|
|
|
if (idle_cpu(cpu))
|
|
return cpu;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & SD_WAKE_IDLE) {
|
|
cpus_and(tmp, sd->span, p->cpus_allowed);
|
|
for_each_cpu_mask(i, tmp) {
|
|
if (idle_cpu(i))
|
|
return i;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
return cpu;
|
|
}
|
|
#else
|
|
static inline int wake_idle(int cpu, task_t *p)
|
|
{
|
|
return cpu;
|
|
}
|
|
#endif
|
|
|
|
/***
|
|
* try_to_wake_up - wake up a thread
|
|
* @p: the to-be-woken-up thread
|
|
* @state: the mask of task states that can be woken
|
|
* @sync: do a synchronous wakeup?
|
|
*
|
|
* Put it on the run-queue if it's not already there. The "current"
|
|
* thread is always on the run-queue (except when the actual
|
|
* re-schedule is in progress), and as such you're allowed to do
|
|
* the simpler "current->state = TASK_RUNNING" to mark yourself
|
|
* runnable without the overhead of this.
|
|
*
|
|
* returns failure only if the task is already active.
|
|
*/
|
|
static int try_to_wake_up(task_t *p, unsigned int state, int sync)
|
|
{
|
|
int cpu, this_cpu, success = 0;
|
|
unsigned long flags;
|
|
long old_state;
|
|
runqueue_t *rq;
|
|
#ifdef CONFIG_SMP
|
|
unsigned long load, this_load;
|
|
struct sched_domain *sd, *this_sd = NULL;
|
|
int new_cpu;
|
|
#endif
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
old_state = p->state;
|
|
if (!(old_state & state))
|
|
goto out;
|
|
|
|
if (p->array)
|
|
goto out_running;
|
|
|
|
cpu = task_cpu(p);
|
|
this_cpu = smp_processor_id();
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (unlikely(task_running(rq, p)))
|
|
goto out_activate;
|
|
|
|
new_cpu = cpu;
|
|
|
|
schedstat_inc(rq, ttwu_cnt);
|
|
if (cpu == this_cpu) {
|
|
schedstat_inc(rq, ttwu_local);
|
|
goto out_set_cpu;
|
|
}
|
|
|
|
for_each_domain(this_cpu, sd) {
|
|
if (cpu_isset(cpu, sd->span)) {
|
|
schedstat_inc(sd, ttwu_wake_remote);
|
|
this_sd = sd;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
|
|
goto out_set_cpu;
|
|
|
|
/*
|
|
* Check for affine wakeup and passive balancing possibilities.
|
|
*/
|
|
if (this_sd) {
|
|
int idx = this_sd->wake_idx;
|
|
unsigned int imbalance;
|
|
|
|
imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
|
|
|
|
load = source_load(cpu, idx);
|
|
this_load = target_load(this_cpu, idx);
|
|
|
|
new_cpu = this_cpu; /* Wake to this CPU if we can */
|
|
|
|
if (this_sd->flags & SD_WAKE_AFFINE) {
|
|
unsigned long tl = this_load;
|
|
/*
|
|
* If sync wakeup then subtract the (maximum possible)
|
|
* effect of the currently running task from the load
|
|
* of the current CPU:
|
|
*/
|
|
if (sync)
|
|
tl -= SCHED_LOAD_SCALE;
|
|
|
|
if ((tl <= load &&
|
|
tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
|
|
100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
|
|
/*
|
|
* This domain has SD_WAKE_AFFINE and
|
|
* p is cache cold in this domain, and
|
|
* there is no bad imbalance.
|
|
*/
|
|
schedstat_inc(this_sd, ttwu_move_affine);
|
|
goto out_set_cpu;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start passive balancing when half the imbalance_pct
|
|
* limit is reached.
|
|
*/
|
|
if (this_sd->flags & SD_WAKE_BALANCE) {
|
|
if (imbalance*this_load <= 100*load) {
|
|
schedstat_inc(this_sd, ttwu_move_balance);
|
|
goto out_set_cpu;
|
|
}
|
|
}
|
|
}
|
|
|
|
new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
|
|
out_set_cpu:
|
|
new_cpu = wake_idle(new_cpu, p);
|
|
if (new_cpu != cpu) {
|
|
set_task_cpu(p, new_cpu);
|
|
task_rq_unlock(rq, &flags);
|
|
/* might preempt at this point */
|
|
rq = task_rq_lock(p, &flags);
|
|
old_state = p->state;
|
|
if (!(old_state & state))
|
|
goto out;
|
|
if (p->array)
|
|
goto out_running;
|
|
|
|
this_cpu = smp_processor_id();
|
|
cpu = task_cpu(p);
|
|
}
|
|
|
|
out_activate:
|
|
#endif /* CONFIG_SMP */
|
|
if (old_state == TASK_UNINTERRUPTIBLE) {
|
|
rq->nr_uninterruptible--;
|
|
/*
|
|
* Tasks on involuntary sleep don't earn
|
|
* sleep_avg beyond just interactive state.
|
|
*/
|
|
p->activated = -1;
|
|
}
|
|
|
|
/*
|
|
* Tasks that have marked their sleep as noninteractive get
|
|
* woken up without updating their sleep average. (i.e. their
|
|
* sleep is handled in a priority-neutral manner, no priority
|
|
* boost and no penalty.)
|
|
*/
|
|
if (old_state & TASK_NONINTERACTIVE)
|
|
__activate_task(p, rq);
|
|
else
|
|
activate_task(p, rq, cpu == this_cpu);
|
|
/*
|
|
* Sync wakeups (i.e. those types of wakeups where the waker
|
|
* has indicated that it will leave the CPU in short order)
|
|
* don't trigger a preemption, if the woken up task will run on
|
|
* this cpu. (in this case the 'I will reschedule' promise of
|
|
* the waker guarantees that the freshly woken up task is going
|
|
* to be considered on this CPU.)
|
|
*/
|
|
if (!sync || cpu != this_cpu) {
|
|
if (TASK_PREEMPTS_CURR(p, rq))
|
|
resched_task(rq->curr);
|
|
}
|
|
success = 1;
|
|
|
|
out_running:
|
|
p->state = TASK_RUNNING;
|
|
out:
|
|
task_rq_unlock(rq, &flags);
|
|
|
|
return success;
|
|
}
|
|
|
|
int fastcall wake_up_process(task_t *p)
|
|
{
|
|
return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
|
|
TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
|
|
}
|
|
|
|
EXPORT_SYMBOL(wake_up_process);
|
|
|
|
int fastcall wake_up_state(task_t *p, unsigned int state)
|
|
{
|
|
return try_to_wake_up(p, state, 0);
|
|
}
|
|
|
|
/*
|
|
* Perform scheduler related setup for a newly forked process p.
|
|
* p is forked by current.
|
|
*/
|
|
void fastcall sched_fork(task_t *p, int clone_flags)
|
|
{
|
|
int cpu = get_cpu();
|
|
|
|
#ifdef CONFIG_SMP
|
|
cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
|
|
#endif
|
|
set_task_cpu(p, cpu);
|
|
|
|
/*
|
|
* We mark the process as running here, but have not actually
|
|
* inserted it onto the runqueue yet. This guarantees that
|
|
* nobody will actually run it, and a signal or other external
|
|
* event cannot wake it up and insert it on the runqueue either.
|
|
*/
|
|
p->state = TASK_RUNNING;
|
|
INIT_LIST_HEAD(&p->run_list);
|
|
p->array = NULL;
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
memset(&p->sched_info, 0, sizeof(p->sched_info));
|
|
#endif
|
|
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
|
|
p->oncpu = 0;
|
|
#endif
|
|
#ifdef CONFIG_PREEMPT
|
|
/* Want to start with kernel preemption disabled. */
|
|
p->thread_info->preempt_count = 1;
|
|
#endif
|
|
/*
|
|
* Share the timeslice between parent and child, thus the
|
|
* total amount of pending timeslices in the system doesn't change,
|
|
* resulting in more scheduling fairness.
|
|
*/
|
|
local_irq_disable();
|
|
p->time_slice = (current->time_slice + 1) >> 1;
|
|
/*
|
|
* The remainder of the first timeslice might be recovered by
|
|
* the parent if the child exits early enough.
|
|
*/
|
|
p->first_time_slice = 1;
|
|
current->time_slice >>= 1;
|
|
p->timestamp = sched_clock();
|
|
if (unlikely(!current->time_slice)) {
|
|
/*
|
|
* This case is rare, it happens when the parent has only
|
|
* a single jiffy left from its timeslice. Taking the
|
|
* runqueue lock is not a problem.
|
|
*/
|
|
current->time_slice = 1;
|
|
scheduler_tick();
|
|
}
|
|
local_irq_enable();
|
|
put_cpu();
|
|
}
|
|
|
|
/*
|
|
* wake_up_new_task - wake up a newly created task for the first time.
|
|
*
|
|
* This function will do some initial scheduler statistics housekeeping
|
|
* that must be done for every newly created context, then puts the task
|
|
* on the runqueue and wakes it.
|
|
*/
|
|
void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
|
|
{
|
|
unsigned long flags;
|
|
int this_cpu, cpu;
|
|
runqueue_t *rq, *this_rq;
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
BUG_ON(p->state != TASK_RUNNING);
|
|
this_cpu = smp_processor_id();
|
|
cpu = task_cpu(p);
|
|
|
|
/*
|
|
* We decrease the sleep average of forking parents
|
|
* and children as well, to keep max-interactive tasks
|
|
* from forking tasks that are max-interactive. The parent
|
|
* (current) is done further down, under its lock.
|
|
*/
|
|
p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
|
|
CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
|
|
|
|
p->prio = effective_prio(p);
|
|
|
|
if (likely(cpu == this_cpu)) {
|
|
if (!(clone_flags & CLONE_VM)) {
|
|
/*
|
|
* The VM isn't cloned, so we're in a good position to
|
|
* do child-runs-first in anticipation of an exec. This
|
|
* usually avoids a lot of COW overhead.
|
|
*/
|
|
if (unlikely(!current->array))
|
|
__activate_task(p, rq);
|
|
else {
|
|
p->prio = current->prio;
|
|
list_add_tail(&p->run_list, ¤t->run_list);
|
|
p->array = current->array;
|
|
p->array->nr_active++;
|
|
rq->nr_running++;
|
|
}
|
|
set_need_resched();
|
|
} else
|
|
/* Run child last */
|
|
__activate_task(p, rq);
|
|
/*
|
|
* We skip the following code due to cpu == this_cpu
|
|
*
|
|
* task_rq_unlock(rq, &flags);
|
|
* this_rq = task_rq_lock(current, &flags);
|
|
*/
|
|
this_rq = rq;
|
|
} else {
|
|
this_rq = cpu_rq(this_cpu);
|
|
|
|
/*
|
|
* Not the local CPU - must adjust timestamp. This should
|
|
* get optimised away in the !CONFIG_SMP case.
|
|
*/
|
|
p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
|
|
+ rq->timestamp_last_tick;
|
|
__activate_task(p, rq);
|
|
if (TASK_PREEMPTS_CURR(p, rq))
|
|
resched_task(rq->curr);
|
|
|
|
/*
|
|
* Parent and child are on different CPUs, now get the
|
|
* parent runqueue to update the parent's ->sleep_avg:
|
|
*/
|
|
task_rq_unlock(rq, &flags);
|
|
this_rq = task_rq_lock(current, &flags);
|
|
}
|
|
current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
|
|
PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
|
|
task_rq_unlock(this_rq, &flags);
|
|
}
|
|
|
|
/*
|
|
* Potentially available exiting-child timeslices are
|
|
* retrieved here - this way the parent does not get
|
|
* penalized for creating too many threads.
|
|
*
|
|
* (this cannot be used to 'generate' timeslices
|
|
* artificially, because any timeslice recovered here
|
|
* was given away by the parent in the first place.)
|
|
*/
|
|
void fastcall sched_exit(task_t *p)
|
|
{
|
|
unsigned long flags;
|
|
runqueue_t *rq;
|
|
|
|
/*
|
|
* If the child was a (relative-) CPU hog then decrease
|
|
* the sleep_avg of the parent as well.
|
|
*/
|
|
rq = task_rq_lock(p->parent, &flags);
|
|
if (p->first_time_slice) {
|
|
p->parent->time_slice += p->time_slice;
|
|
if (unlikely(p->parent->time_slice > task_timeslice(p)))
|
|
p->parent->time_slice = task_timeslice(p);
|
|
}
|
|
if (p->sleep_avg < p->parent->sleep_avg)
|
|
p->parent->sleep_avg = p->parent->sleep_avg /
|
|
(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
|
|
(EXIT_WEIGHT + 1);
|
|
task_rq_unlock(rq, &flags);
|
|
}
|
|
|
|
/**
|
|
* prepare_task_switch - prepare to switch tasks
|
|
* @rq: the runqueue preparing to switch
|
|
* @next: the task we are going to switch to.
|
|
*
|
|
* This is called with the rq lock held and interrupts off. It must
|
|
* be paired with a subsequent finish_task_switch after the context
|
|
* switch.
|
|
*
|
|
* prepare_task_switch sets up locking and calls architecture specific
|
|
* hooks.
|
|
*/
|
|
static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
|
|
{
|
|
prepare_lock_switch(rq, next);
|
|
prepare_arch_switch(next);
|
|
}
|
|
|
|
/**
|
|
* finish_task_switch - clean up after a task-switch
|
|
* @rq: runqueue associated with task-switch
|
|
* @prev: the thread we just switched away from.
|
|
*
|
|
* finish_task_switch must be called after the context switch, paired
|
|
* with a prepare_task_switch call before the context switch.
|
|
* finish_task_switch will reconcile locking set up by prepare_task_switch,
|
|
* and do any other architecture-specific cleanup actions.
|
|
*
|
|
* Note that we may have delayed dropping an mm in context_switch(). If
|
|
* so, we finish that here outside of the runqueue lock. (Doing it
|
|
* with the lock held can cause deadlocks; see schedule() for
|
|
* details.)
|
|
*/
|
|
static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
|
|
__releases(rq->lock)
|
|
{
|
|
struct mm_struct *mm = rq->prev_mm;
|
|
unsigned long prev_task_flags;
|
|
|
|
rq->prev_mm = NULL;
|
|
|
|
/*
|
|
* A task struct has one reference for the use as "current".
|
|
* If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
|
|
* calls schedule one last time. The schedule call will never return,
|
|
* and the scheduled task must drop that reference.
|
|
* The test for EXIT_ZOMBIE must occur while the runqueue locks are
|
|
* still held, otherwise prev could be scheduled on another cpu, die
|
|
* there before we look at prev->state, and then the reference would
|
|
* be dropped twice.
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
|
*/
|
|
prev_task_flags = prev->flags;
|
|
#ifdef CONFIG_DEBUG_SPINLOCK
|
|
/* this is a valid case when another task releases the spinlock */
|
|
rq->lock.owner = current;
|
|
#endif
|
|
finish_arch_switch(prev);
|
|
finish_lock_switch(rq, prev);
|
|
if (mm)
|
|
mmdrop(mm);
|
|
if (unlikely(prev_task_flags & PF_DEAD))
|
|
put_task_struct(prev);
|
|
}
|
|
|
|
/**
|
|
* schedule_tail - first thing a freshly forked thread must call.
|
|
* @prev: the thread we just switched away from.
|
|
*/
|
|
asmlinkage void schedule_tail(task_t *prev)
|
|
__releases(rq->lock)
|
|
{
|
|
runqueue_t *rq = this_rq();
|
|
finish_task_switch(rq, prev);
|
|
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
|
|
/* In this case, finish_task_switch does not reenable preemption */
|
|
preempt_enable();
|
|
#endif
|
|
if (current->set_child_tid)
|
|
put_user(current->pid, current->set_child_tid);
|
|
}
|
|
|
|
/*
|
|
* context_switch - switch to the new MM and the new
|
|
* thread's register state.
|
|
*/
|
|
static inline
|
|
task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
|
|
{
|
|
struct mm_struct *mm = next->mm;
|
|
struct mm_struct *oldmm = prev->active_mm;
|
|
|
|
if (unlikely(!mm)) {
|
|
next->active_mm = oldmm;
|
|
atomic_inc(&oldmm->mm_count);
|
|
enter_lazy_tlb(oldmm, next);
|
|
} else
|
|
switch_mm(oldmm, mm, next);
|
|
|
|
if (unlikely(!prev->mm)) {
|
|
prev->active_mm = NULL;
|
|
WARN_ON(rq->prev_mm);
|
|
rq->prev_mm = oldmm;
|
|
}
|
|
|
|
/* Here we just switch the register state and the stack. */
|
|
switch_to(prev, next, prev);
|
|
|
|
return prev;
|
|
}
|
|
|
|
/*
|
|
* nr_running, nr_uninterruptible and nr_context_switches:
|
|
*
|
|
* externally visible scheduler statistics: current number of runnable
|
|
* threads, current number of uninterruptible-sleeping threads, total
|
|
* number of context switches performed since bootup.
|
|
*/
|
|
unsigned long nr_running(void)
|
|
{
|
|
unsigned long i, sum = 0;
|
|
|
|
for_each_online_cpu(i)
|
|
sum += cpu_rq(i)->nr_running;
|
|
|
|
return sum;
|
|
}
|
|
|
|
unsigned long nr_uninterruptible(void)
|
|
{
|
|
unsigned long i, sum = 0;
|
|
|
|
for_each_cpu(i)
|
|
sum += cpu_rq(i)->nr_uninterruptible;
|
|
|
|
/*
|
|
* Since we read the counters lockless, it might be slightly
|
|
* inaccurate. Do not allow it to go below zero though:
|
|
*/
|
|
if (unlikely((long)sum < 0))
|
|
sum = 0;
|
|
|
|
return sum;
|
|
}
|
|
|
|
unsigned long long nr_context_switches(void)
|
|
{
|
|
unsigned long long i, sum = 0;
|
|
|
|
for_each_cpu(i)
|
|
sum += cpu_rq(i)->nr_switches;
|
|
|
|
return sum;
|
|
}
|
|
|
|
unsigned long nr_iowait(void)
|
|
{
|
|
unsigned long i, sum = 0;
|
|
|
|
for_each_cpu(i)
|
|
sum += atomic_read(&cpu_rq(i)->nr_iowait);
|
|
|
|
return sum;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
if (rq1 == rq2) {
|
|
spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
} else {
|
|
if (rq1 < rq2) {
|
|
spin_lock(&rq1->lock);
|
|
spin_lock(&rq2->lock);
|
|
} else {
|
|
spin_lock(&rq2->lock);
|
|
spin_lock(&rq1->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
spin_unlock(&rq1->lock);
|
|
if (rq1 != rq2)
|
|
spin_unlock(&rq2->lock);
|
|
else
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
/*
|
|
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
|
|
*/
|
|
static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
if (unlikely(!spin_trylock(&busiest->lock))) {
|
|
if (busiest < this_rq) {
|
|
spin_unlock(&this_rq->lock);
|
|
spin_lock(&busiest->lock);
|
|
spin_lock(&this_rq->lock);
|
|
} else
|
|
spin_lock(&busiest->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If dest_cpu is allowed for this process, migrate the task to it.
|
|
* This is accomplished by forcing the cpu_allowed mask to only
|
|
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
|
|
* the cpu_allowed mask is restored.
|
|
*/
|
|
static void sched_migrate_task(task_t *p, int dest_cpu)
|
|
{
|
|
migration_req_t req;
|
|
runqueue_t *rq;
|
|
unsigned long flags;
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
if (!cpu_isset(dest_cpu, p->cpus_allowed)
|
|
|| unlikely(cpu_is_offline(dest_cpu)))
|
|
goto out;
|
|
|
|
/* force the process onto the specified CPU */
|
|
if (migrate_task(p, dest_cpu, &req)) {
|
|
/* Need to wait for migration thread (might exit: take ref). */
|
|
struct task_struct *mt = rq->migration_thread;
|
|
get_task_struct(mt);
|
|
task_rq_unlock(rq, &flags);
|
|
wake_up_process(mt);
|
|
put_task_struct(mt);
|
|
wait_for_completion(&req.done);
|
|
return;
|
|
}
|
|
out:
|
|
task_rq_unlock(rq, &flags);
|
|
}
|
|
|
|
/*
|
|
* sched_exec - execve() is a valuable balancing opportunity, because at
|
|
* this point the task has the smallest effective memory and cache footprint.
|
|
*/
|
|
void sched_exec(void)
|
|
{
|
|
int new_cpu, this_cpu = get_cpu();
|
|
new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
|
|
put_cpu();
|
|
if (new_cpu != this_cpu)
|
|
sched_migrate_task(current, new_cpu);
|
|
}
|
|
|
|
/*
|
|
* pull_task - move a task from a remote runqueue to the local runqueue.
|
|
* Both runqueues must be locked.
|
|
*/
|
|
static inline
|
|
void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
|
|
runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
|
|
{
|
|
dequeue_task(p, src_array);
|
|
src_rq->nr_running--;
|
|
set_task_cpu(p, this_cpu);
|
|
this_rq->nr_running++;
|
|
enqueue_task(p, this_array);
|
|
p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
|
|
+ this_rq->timestamp_last_tick;
|
|
/*
|
|
* Note that idle threads have a prio of MAX_PRIO, for this test
|
|
* to be always true for them.
|
|
*/
|
|
if (TASK_PREEMPTS_CURR(p, this_rq))
|
|
resched_task(this_rq->curr);
|
|
}
|
|
|
|
/*
|
|
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
|
|
*/
|
|
static inline
|
|
int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
|
|
struct sched_domain *sd, enum idle_type idle,
|
|
int *all_pinned)
|
|
{
|
|
/*
|
|
* We do not migrate tasks that are:
|
|
* 1) running (obviously), or
|
|
* 2) cannot be migrated to this CPU due to cpus_allowed, or
|
|
* 3) are cache-hot on their current CPU.
|
|
*/
|
|
if (!cpu_isset(this_cpu, p->cpus_allowed))
|
|
return 0;
|
|
*all_pinned = 0;
|
|
|
|
if (task_running(rq, p))
|
|
return 0;
|
|
|
|
/*
|
|
* Aggressive migration if:
|
|
* 1) task is cache cold, or
|
|
* 2) too many balance attempts have failed.
|
|
*/
|
|
|
|
if (sd->nr_balance_failed > sd->cache_nice_tries)
|
|
return 1;
|
|
|
|
if (task_hot(p, rq->timestamp_last_tick, sd))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
|
|
* as part of a balancing operation within "domain". Returns the number of
|
|
* tasks moved.
|
|
*
|
|
* Called with both runqueues locked.
|
|
*/
|
|
static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
|
|
unsigned long max_nr_move, struct sched_domain *sd,
|
|
enum idle_type idle, int *all_pinned)
|
|
{
|
|
prio_array_t *array, *dst_array;
|
|
struct list_head *head, *curr;
|
|
int idx, pulled = 0, pinned = 0;
|
|
task_t *tmp;
|
|
|
|
if (max_nr_move == 0)
|
|
goto out;
|
|
|
|
pinned = 1;
|
|
|
|
/*
|
|
* We first consider expired tasks. Those will likely not be
|
|
* executed in the near future, and they are most likely to
|
|
* be cache-cold, thus switching CPUs has the least effect
|
|
* on them.
|
|
*/
|
|
if (busiest->expired->nr_active) {
|
|
array = busiest->expired;
|
|
dst_array = this_rq->expired;
|
|
} else {
|
|
array = busiest->active;
|
|
dst_array = this_rq->active;
|
|
}
|
|
|
|
new_array:
|
|
/* Start searching at priority 0: */
|
|
idx = 0;
|
|
skip_bitmap:
|
|
if (!idx)
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
else
|
|
idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
|
|
if (idx >= MAX_PRIO) {
|
|
if (array == busiest->expired && busiest->active->nr_active) {
|
|
array = busiest->active;
|
|
dst_array = this_rq->active;
|
|
goto new_array;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
head = array->queue + idx;
|
|
curr = head->prev;
|
|
skip_queue:
|
|
tmp = list_entry(curr, task_t, run_list);
|
|
|
|
curr = curr->prev;
|
|
|
|
if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
|
|
if (curr != head)
|
|
goto skip_queue;
|
|
idx++;
|
|
goto skip_bitmap;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
if (task_hot(tmp, busiest->timestamp_last_tick, sd))
|
|
schedstat_inc(sd, lb_hot_gained[idle]);
|
|
#endif
|
|
|
|
pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
|
|
pulled++;
|
|
|
|
/* We only want to steal up to the prescribed number of tasks. */
|
|
if (pulled < max_nr_move) {
|
|
if (curr != head)
|
|
goto skip_queue;
|
|
idx++;
|
|
goto skip_bitmap;
|
|
}
|
|
out:
|
|
/*
|
|
* Right now, this is the only place pull_task() is called,
|
|
* so we can safely collect pull_task() stats here rather than
|
|
* inside pull_task().
|
|
*/
|
|
schedstat_add(sd, lb_gained[idle], pulled);
|
|
|
|
if (all_pinned)
|
|
*all_pinned = pinned;
|
|
return pulled;
|
|
}
|
|
|
|
/*
|
|
* find_busiest_group finds and returns the busiest CPU group within the
|
|
* domain. It calculates and returns the number of tasks which should be
|
|
* moved to restore balance via the imbalance parameter.
|
|
*/
|
|
static struct sched_group *
|
|
find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
unsigned long *imbalance, enum idle_type idle, int *sd_idle)
|
|
{
|
|
struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
|
|
unsigned long max_load, avg_load, total_load, this_load, total_pwr;
|
|
unsigned long max_pull;
|
|
int load_idx;
|
|
|
|
max_load = this_load = total_load = total_pwr = 0;
|
|
if (idle == NOT_IDLE)
|
|
load_idx = sd->busy_idx;
|
|
else if (idle == NEWLY_IDLE)
|
|
load_idx = sd->newidle_idx;
|
|
else
|
|
load_idx = sd->idle_idx;
|
|
|
|
do {
|
|
unsigned long load;
|
|
int local_group;
|
|
int i;
|
|
|
|
local_group = cpu_isset(this_cpu, group->cpumask);
|
|
|
|
/* Tally up the load of all CPUs in the group */
|
|
avg_load = 0;
|
|
|
|
for_each_cpu_mask(i, group->cpumask) {
|
|
if (*sd_idle && !idle_cpu(i))
|
|
*sd_idle = 0;
|
|
|
|
/* Bias balancing toward cpus of our domain */
|
|
if (local_group)
|
|
load = target_load(i, load_idx);
|
|
else
|
|
load = source_load(i, load_idx);
|
|
|
|
avg_load += load;
|
|
}
|
|
|
|
total_load += avg_load;
|
|
total_pwr += group->cpu_power;
|
|
|
|
/* Adjust by relative CPU power of the group */
|
|
avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
|
|
|
|
if (local_group) {
|
|
this_load = avg_load;
|
|
this = group;
|
|
} else if (avg_load > max_load) {
|
|
max_load = avg_load;
|
|
busiest = group;
|
|
}
|
|
group = group->next;
|
|
} while (group != sd->groups);
|
|
|
|
if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
|
|
goto out_balanced;
|
|
|
|
avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
|
|
|
|
if (this_load >= avg_load ||
|
|
100*max_load <= sd->imbalance_pct*this_load)
|
|
goto out_balanced;
|
|
|
|
/*
|
|
* We're trying to get all the cpus to the average_load, so we don't
|
|
* want to push ourselves above the average load, nor do we wish to
|
|
* reduce the max loaded cpu below the average load, as either of these
|
|
* actions would just result in more rebalancing later, and ping-pong
|
|
* tasks around. Thus we look for the minimum possible imbalance.
|
|
* Negative imbalances (*we* are more loaded than anyone else) will
|
|
* be counted as no imbalance for these purposes -- we can't fix that
|
|
* by pulling tasks to us. Be careful of negative numbers as they'll
|
|
* appear as very large values with unsigned longs.
|
|
*/
|
|
|
|
/* Don't want to pull so many tasks that a group would go idle */
|
|
max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
|
|
|
|
/* How much load to actually move to equalise the imbalance */
|
|
*imbalance = min(max_pull * busiest->cpu_power,
|
|
(avg_load - this_load) * this->cpu_power)
|
|
/ SCHED_LOAD_SCALE;
|
|
|
|
if (*imbalance < SCHED_LOAD_SCALE) {
|
|
unsigned long pwr_now = 0, pwr_move = 0;
|
|
unsigned long tmp;
|
|
|
|
if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
|
|
*imbalance = 1;
|
|
return busiest;
|
|
}
|
|
|
|
/*
|
|
* OK, we don't have enough imbalance to justify moving tasks,
|
|
* however we may be able to increase total CPU power used by
|
|
* moving them.
|
|
*/
|
|
|
|
pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
|
|
pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
|
|
pwr_now /= SCHED_LOAD_SCALE;
|
|
|
|
/* Amount of load we'd subtract */
|
|
tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
|
|
if (max_load > tmp)
|
|
pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
|
|
max_load - tmp);
|
|
|
|
/* Amount of load we'd add */
|
|
if (max_load*busiest->cpu_power <
|
|
SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
|
|
tmp = max_load*busiest->cpu_power/this->cpu_power;
|
|
else
|
|
tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
|
|
pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
|
|
pwr_move /= SCHED_LOAD_SCALE;
|
|
|
|
/* Move if we gain throughput */
|
|
if (pwr_move <= pwr_now)
|
|
goto out_balanced;
|
|
|
|
*imbalance = 1;
|
|
return busiest;
|
|
}
|
|
|
|
/* Get rid of the scaling factor, rounding down as we divide */
|
|
*imbalance = *imbalance / SCHED_LOAD_SCALE;
|
|
return busiest;
|
|
|
|
out_balanced:
|
|
|
|
*imbalance = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find_busiest_queue - find the busiest runqueue among the cpus in group.
|
|
*/
|
|
static runqueue_t *find_busiest_queue(struct sched_group *group)
|
|
{
|
|
unsigned long load, max_load = 0;
|
|
runqueue_t *busiest = NULL;
|
|
int i;
|
|
|
|
for_each_cpu_mask(i, group->cpumask) {
|
|
load = source_load(i, 0);
|
|
|
|
if (load > max_load) {
|
|
max_load = load;
|
|
busiest = cpu_rq(i);
|
|
}
|
|
}
|
|
|
|
return busiest;
|
|
}
|
|
|
|
/*
|
|
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
|
|
* so long as it is large enough.
|
|
*/
|
|
#define MAX_PINNED_INTERVAL 512
|
|
|
|
/*
|
|
* Check this_cpu to ensure it is balanced within domain. Attempt to move
|
|
* tasks if there is an imbalance.
|
|
*
|
|
* Called with this_rq unlocked.
|
|
*/
|
|
static int load_balance(int this_cpu, runqueue_t *this_rq,
|
|
struct sched_domain *sd, enum idle_type idle)
|
|
{
|
|
struct sched_group *group;
|
|
runqueue_t *busiest;
|
|
unsigned long imbalance;
|
|
int nr_moved, all_pinned = 0;
|
|
int active_balance = 0;
|
|
int sd_idle = 0;
|
|
|
|
if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
|
|
sd_idle = 1;
|
|
|
|
schedstat_inc(sd, lb_cnt[idle]);
|
|
|
|
group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
|
|
if (!group) {
|
|
schedstat_inc(sd, lb_nobusyg[idle]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
busiest = find_busiest_queue(group);
|
|
if (!busiest) {
|
|
schedstat_inc(sd, lb_nobusyq[idle]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
BUG_ON(busiest == this_rq);
|
|
|
|
schedstat_add(sd, lb_imbalance[idle], imbalance);
|
|
|
|
nr_moved = 0;
|
|
if (busiest->nr_running > 1) {
|
|
/*
|
|
* Attempt to move tasks. If find_busiest_group has found
|
|
* an imbalance but busiest->nr_running <= 1, the group is
|
|
* still unbalanced. nr_moved simply stays zero, so it is
|
|
* correctly treated as an imbalance.
|
|
*/
|
|
double_rq_lock(this_rq, busiest);
|
|
nr_moved = move_tasks(this_rq, this_cpu, busiest,
|
|
imbalance, sd, idle, &all_pinned);
|
|
double_rq_unlock(this_rq, busiest);
|
|
|
|
/* All tasks on this runqueue were pinned by CPU affinity */
|
|
if (unlikely(all_pinned))
|
|
goto out_balanced;
|
|
}
|
|
|
|
if (!nr_moved) {
|
|
schedstat_inc(sd, lb_failed[idle]);
|
|
sd->nr_balance_failed++;
|
|
|
|
if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
|
|
|
|
spin_lock(&busiest->lock);
|
|
|
|
/* don't kick the migration_thread, if the curr
|
|
* task on busiest cpu can't be moved to this_cpu
|
|
*/
|
|
if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
|
|
spin_unlock(&busiest->lock);
|
|
all_pinned = 1;
|
|
goto out_one_pinned;
|
|
}
|
|
|
|
if (!busiest->active_balance) {
|
|
busiest->active_balance = 1;
|
|
busiest->push_cpu = this_cpu;
|
|
active_balance = 1;
|
|
}
|
|
spin_unlock(&busiest->lock);
|
|
if (active_balance)
|
|
wake_up_process(busiest->migration_thread);
|
|
|
|
/*
|
|
* We've kicked active balancing, reset the failure
|
|
* counter.
|
|
*/
|
|
sd->nr_balance_failed = sd->cache_nice_tries+1;
|
|
}
|
|
} else
|
|
sd->nr_balance_failed = 0;
|
|
|
|
if (likely(!active_balance)) {
|
|
/* We were unbalanced, so reset the balancing interval */
|
|
sd->balance_interval = sd->min_interval;
|
|
} else {
|
|
/*
|
|
* If we've begun active balancing, start to back off. This
|
|
* case may not be covered by the all_pinned logic if there
|
|
* is only 1 task on the busy runqueue (because we don't call
|
|
* move_tasks).
|
|
*/
|
|
if (sd->balance_interval < sd->max_interval)
|
|
sd->balance_interval *= 2;
|
|
}
|
|
|
|
if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
|
|
return -1;
|
|
return nr_moved;
|
|
|
|
out_balanced:
|
|
schedstat_inc(sd, lb_balanced[idle]);
|
|
|
|
sd->nr_balance_failed = 0;
|
|
|
|
out_one_pinned:
|
|
/* tune up the balancing interval */
|
|
if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
|
|
(sd->balance_interval < sd->max_interval))
|
|
sd->balance_interval *= 2;
|
|
|
|
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check this_cpu to ensure it is balanced within domain. Attempt to move
|
|
* tasks if there is an imbalance.
|
|
*
|
|
* Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
|
|
* this_rq is locked.
|
|
*/
|
|
static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
|
|
struct sched_domain *sd)
|
|
{
|
|
struct sched_group *group;
|
|
runqueue_t *busiest = NULL;
|
|
unsigned long imbalance;
|
|
int nr_moved = 0;
|
|
int sd_idle = 0;
|
|
|
|
if (sd->flags & SD_SHARE_CPUPOWER)
|
|
sd_idle = 1;
|
|
|
|
schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
|
|
group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
|
|
if (!group) {
|
|
schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
busiest = find_busiest_queue(group);
|
|
if (!busiest) {
|
|
schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
|
|
goto out_balanced;
|
|
}
|
|
|
|
BUG_ON(busiest == this_rq);
|
|
|
|
schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
|
|
|
|
nr_moved = 0;
|
|
if (busiest->nr_running > 1) {
|
|
/* Attempt to move tasks */
|
|
double_lock_balance(this_rq, busiest);
|
|
nr_moved = move_tasks(this_rq, this_cpu, busiest,
|
|
imbalance, sd, NEWLY_IDLE, NULL);
|
|
spin_unlock(&busiest->lock);
|
|
}
|
|
|
|
if (!nr_moved) {
|
|
schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
|
|
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
|
|
return -1;
|
|
} else
|
|
sd->nr_balance_failed = 0;
|
|
|
|
return nr_moved;
|
|
|
|
out_balanced:
|
|
schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
|
|
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
|
|
return -1;
|
|
sd->nr_balance_failed = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* idle_balance is called by schedule() if this_cpu is about to become
|
|
* idle. Attempts to pull tasks from other CPUs.
|
|
*/
|
|
static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
for_each_domain(this_cpu, sd) {
|
|
if (sd->flags & SD_BALANCE_NEWIDLE) {
|
|
if (load_balance_newidle(this_cpu, this_rq, sd)) {
|
|
/* We've pulled tasks over so stop searching */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* active_load_balance is run by migration threads. It pushes running tasks
|
|
* off the busiest CPU onto idle CPUs. It requires at least 1 task to be
|
|
* running on each physical CPU where possible, and avoids physical /
|
|
* logical imbalances.
|
|
*
|
|
* Called with busiest_rq locked.
|
|
*/
|
|
static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
|
|
{
|
|
struct sched_domain *sd;
|
|
runqueue_t *target_rq;
|
|
int target_cpu = busiest_rq->push_cpu;
|
|
|
|
if (busiest_rq->nr_running <= 1)
|
|
/* no task to move */
|
|
return;
|
|
|
|
target_rq = cpu_rq(target_cpu);
|
|
|
|
/*
|
|
* This condition is "impossible", if it occurs
|
|
* we need to fix it. Originally reported by
|
|
* Bjorn Helgaas on a 128-cpu setup.
|
|
*/
|
|
BUG_ON(busiest_rq == target_rq);
|
|
|
|
/* move a task from busiest_rq to target_rq */
|
|
double_lock_balance(busiest_rq, target_rq);
|
|
|
|
/* Search for an sd spanning us and the target CPU. */
|
|
for_each_domain(target_cpu, sd)
|
|
if ((sd->flags & SD_LOAD_BALANCE) &&
|
|
cpu_isset(busiest_cpu, sd->span))
|
|
break;
|
|
|
|
if (unlikely(sd == NULL))
|
|
goto out;
|
|
|
|
schedstat_inc(sd, alb_cnt);
|
|
|
|
if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
|
|
schedstat_inc(sd, alb_pushed);
|
|
else
|
|
schedstat_inc(sd, alb_failed);
|
|
out:
|
|
spin_unlock(&target_rq->lock);
|
|
}
|
|
|
|
/*
|
|
* rebalance_tick will get called every timer tick, on every CPU.
|
|
*
|
|
* It checks each scheduling domain to see if it is due to be balanced,
|
|
* and initiates a balancing operation if so.
|
|
*
|
|
* Balancing parameters are set up in arch_init_sched_domains.
|
|
*/
|
|
|
|
/* Don't have all balancing operations going off at once */
|
|
#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
|
|
|
|
static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
|
|
enum idle_type idle)
|
|
{
|
|
unsigned long old_load, this_load;
|
|
unsigned long j = jiffies + CPU_OFFSET(this_cpu);
|
|
struct sched_domain *sd;
|
|
int i;
|
|
|
|
this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
|
|
/* Update our load */
|
|
for (i = 0; i < 3; i++) {
|
|
unsigned long new_load = this_load;
|
|
int scale = 1 << i;
|
|
old_load = this_rq->cpu_load[i];
|
|
/*
|
|
* Round up the averaging division if load is increasing. This
|
|
* prevents us from getting stuck on 9 if the load is 10, for
|
|
* example.
|
|
*/
|
|
if (new_load > old_load)
|
|
new_load += scale-1;
|
|
this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
|
|
}
|
|
|
|
for_each_domain(this_cpu, sd) {
|
|
unsigned long interval;
|
|
|
|
if (!(sd->flags & SD_LOAD_BALANCE))
|
|
continue;
|
|
|
|
interval = sd->balance_interval;
|
|
if (idle != SCHED_IDLE)
|
|
interval *= sd->busy_factor;
|
|
|
|
/* scale ms to jiffies */
|
|
interval = msecs_to_jiffies(interval);
|
|
if (unlikely(!interval))
|
|
interval = 1;
|
|
|
|
if (j - sd->last_balance >= interval) {
|
|
if (load_balance(this_cpu, this_rq, sd, idle)) {
|
|
/*
|
|
* We've pulled tasks over so either we're no
|
|
* longer idle, or one of our SMT siblings is
|
|
* not idle.
|
|
*/
|
|
idle = NOT_IDLE;
|
|
}
|
|
sd->last_balance += interval;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
* on UP we do not need to balance between CPUs:
|
|
*/
|
|
static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
|
|
{
|
|
}
|
|
static inline void idle_balance(int cpu, runqueue_t *rq)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static inline int wake_priority_sleeper(runqueue_t *rq)
|
|
{
|
|
int ret = 0;
|
|
#ifdef CONFIG_SCHED_SMT
|
|
spin_lock(&rq->lock);
|
|
/*
|
|
* If an SMT sibling task has been put to sleep for priority
|
|
* reasons reschedule the idle task to see if it can now run.
|
|
*/
|
|
if (rq->nr_running) {
|
|
resched_task(rq->idle);
|
|
ret = 1;
|
|
}
|
|
spin_unlock(&rq->lock);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
DEFINE_PER_CPU(struct kernel_stat, kstat);
|
|
|
|
EXPORT_PER_CPU_SYMBOL(kstat);
|
|
|
|
/*
|
|
* This is called on clock ticks and on context switches.
|
|
* Bank in p->sched_time the ns elapsed since the last tick or switch.
|
|
*/
|
|
static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
|
|
unsigned long long now)
|
|
{
|
|
unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
|
|
p->sched_time += now - last;
|
|
}
|
|
|
|
/*
|
|
* Return current->sched_time plus any more ns on the sched_clock
|
|
* that have not yet been banked.
|
|
*/
|
|
unsigned long long current_sched_time(const task_t *tsk)
|
|
{
|
|
unsigned long long ns;
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
|
|
ns = tsk->sched_time + (sched_clock() - ns);
|
|
local_irq_restore(flags);
|
|
return ns;
|
|
}
|
|
|
|
/*
|
|
* We place interactive tasks back into the active array, if possible.
|
|
*
|
|
* To guarantee that this does not starve expired tasks we ignore the
|
|
* interactivity of a task if the first expired task had to wait more
|
|
* than a 'reasonable' amount of time. This deadline timeout is
|
|
* load-dependent, as the frequency of array switched decreases with
|
|
* increasing number of running tasks. We also ignore the interactivity
|
|
* if a better static_prio task has expired:
|
|
*/
|
|
#define EXPIRED_STARVING(rq) \
|
|
((STARVATION_LIMIT && ((rq)->expired_timestamp && \
|
|
(jiffies - (rq)->expired_timestamp >= \
|
|
STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
|
|
((rq)->curr->static_prio > (rq)->best_expired_prio))
|
|
|
|
/*
|
|
* Account user cpu time to a process.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @hardirq_offset: the offset to subtract from hardirq_count()
|
|
* @cputime: the cpu time spent in user space since the last update
|
|
*/
|
|
void account_user_time(struct task_struct *p, cputime_t cputime)
|
|
{
|
|
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
cputime64_t tmp;
|
|
|
|
p->utime = cputime_add(p->utime, cputime);
|
|
|
|
/* Add user time to cpustat. */
|
|
tmp = cputime_to_cputime64(cputime);
|
|
if (TASK_NICE(p) > 0)
|
|
cpustat->nice = cputime64_add(cpustat->nice, tmp);
|
|
else
|
|
cpustat->user = cputime64_add(cpustat->user, tmp);
|
|
}
|
|
|
|
/*
|
|
* Account system cpu time to a process.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @hardirq_offset: the offset to subtract from hardirq_count()
|
|
* @cputime: the cpu time spent in kernel space since the last update
|
|
*/
|
|
void account_system_time(struct task_struct *p, int hardirq_offset,
|
|
cputime_t cputime)
|
|
{
|
|
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
runqueue_t *rq = this_rq();
|
|
cputime64_t tmp;
|
|
|
|
p->stime = cputime_add(p->stime, cputime);
|
|
|
|
/* Add system time to cpustat. */
|
|
tmp = cputime_to_cputime64(cputime);
|
|
if (hardirq_count() - hardirq_offset)
|
|
cpustat->irq = cputime64_add(cpustat->irq, tmp);
|
|
else if (softirq_count())
|
|
cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
|
|
else if (p != rq->idle)
|
|
cpustat->system = cputime64_add(cpustat->system, tmp);
|
|
else if (atomic_read(&rq->nr_iowait) > 0)
|
|
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
|
|
else
|
|
cpustat->idle = cputime64_add(cpustat->idle, tmp);
|
|
/* Account for system time used */
|
|
acct_update_integrals(p);
|
|
/* Update rss highwater mark */
|
|
update_mem_hiwater(p);
|
|
}
|
|
|
|
/*
|
|
* Account for involuntary wait time.
|
|
* @p: the process from which the cpu time has been stolen
|
|
* @steal: the cpu time spent in involuntary wait
|
|
*/
|
|
void account_steal_time(struct task_struct *p, cputime_t steal)
|
|
{
|
|
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
cputime64_t tmp = cputime_to_cputime64(steal);
|
|
runqueue_t *rq = this_rq();
|
|
|
|
if (p == rq->idle) {
|
|
p->stime = cputime_add(p->stime, steal);
|
|
if (atomic_read(&rq->nr_iowait) > 0)
|
|
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
|
|
else
|
|
cpustat->idle = cputime64_add(cpustat->idle, tmp);
|
|
} else
|
|
cpustat->steal = cputime64_add(cpustat->steal, tmp);
|
|
}
|
|
|
|
/*
|
|
* This function gets called by the timer code, with HZ frequency.
|
|
* We call it with interrupts disabled.
|
|
*
|
|
* It also gets called by the fork code, when changing the parent's
|
|
* timeslices.
|
|
*/
|
|
void scheduler_tick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
runqueue_t *rq = this_rq();
|
|
task_t *p = current;
|
|
unsigned long long now = sched_clock();
|
|
|
|
update_cpu_clock(p, rq, now);
|
|
|
|
rq->timestamp_last_tick = now;
|
|
|
|
if (p == rq->idle) {
|
|
if (wake_priority_sleeper(rq))
|
|
goto out;
|
|
rebalance_tick(cpu, rq, SCHED_IDLE);
|
|
return;
|
|
}
|
|
|
|
/* Task might have expired already, but not scheduled off yet */
|
|
if (p->array != rq->active) {
|
|
set_tsk_need_resched(p);
|
|
goto out;
|
|
}
|
|
spin_lock(&rq->lock);
|
|
/*
|
|
* The task was running during this tick - update the
|
|
* time slice counter. Note: we do not update a thread's
|
|
* priority until it either goes to sleep or uses up its
|
|
* timeslice. This makes it possible for interactive tasks
|
|
* to use up their timeslices at their highest priority levels.
|
|
*/
|
|
if (rt_task(p)) {
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if ((p->policy == SCHED_RR) && !--p->time_slice) {
|
|
p->time_slice = task_timeslice(p);
|
|
p->first_time_slice = 0;
|
|
set_tsk_need_resched(p);
|
|
|
|
/* put it at the end of the queue: */
|
|
requeue_task(p, rq->active);
|
|
}
|
|
goto out_unlock;
|
|
}
|
|
if (!--p->time_slice) {
|
|
dequeue_task(p, rq->active);
|
|
set_tsk_need_resched(p);
|
|
p->prio = effective_prio(p);
|
|
p->time_slice = task_timeslice(p);
|
|
p->first_time_slice = 0;
|
|
|
|
if (!rq->expired_timestamp)
|
|
rq->expired_timestamp = jiffies;
|
|
if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
|
|
enqueue_task(p, rq->expired);
|
|
if (p->static_prio < rq->best_expired_prio)
|
|
rq->best_expired_prio = p->static_prio;
|
|
} else
|
|
enqueue_task(p, rq->active);
|
|
} else {
|
|
/*
|
|
* Prevent a too long timeslice allowing a task to monopolize
|
|
* the CPU. We do this by splitting up the timeslice into
|
|
* smaller pieces.
|
|
*
|
|
* Note: this does not mean the task's timeslices expire or
|
|
* get lost in any way, they just might be preempted by
|
|
* another task of equal priority. (one with higher
|
|
* priority would have preempted this task already.) We
|
|
* requeue this task to the end of the list on this priority
|
|
* level, which is in essence a round-robin of tasks with
|
|
* equal priority.
|
|
*
|
|
* This only applies to tasks in the interactive
|
|
* delta range with at least TIMESLICE_GRANULARITY to requeue.
|
|
*/
|
|
if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
|
|
p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
|
|
(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
|
|
(p->array == rq->active)) {
|
|
|
|
requeue_task(p, rq->active);
|
|
set_tsk_need_resched(p);
|
|
}
|
|
}
|
|
out_unlock:
|
|
spin_unlock(&rq->lock);
|
|
out:
|
|
rebalance_tick(cpu, rq, NOT_IDLE);
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
static inline void wakeup_busy_runqueue(runqueue_t *rq)
|
|
{
|
|
/* If an SMT runqueue is sleeping due to priority reasons wake it up */
|
|
if (rq->curr == rq->idle && rq->nr_running)
|
|
resched_task(rq->idle);
|
|
}
|
|
|
|
static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
|
|
{
|
|
struct sched_domain *tmp, *sd = NULL;
|
|
cpumask_t sibling_map;
|
|
int i;
|
|
|
|
for_each_domain(this_cpu, tmp)
|
|
if (tmp->flags & SD_SHARE_CPUPOWER)
|
|
sd = tmp;
|
|
|
|
if (!sd)
|
|
return;
|
|
|
|
/*
|
|
* Unlock the current runqueue because we have to lock in
|
|
* CPU order to avoid deadlocks. Caller knows that we might
|
|
* unlock. We keep IRQs disabled.
|
|
*/
|
|
spin_unlock(&this_rq->lock);
|
|
|
|
sibling_map = sd->span;
|
|
|
|
for_each_cpu_mask(i, sibling_map)
|
|
spin_lock(&cpu_rq(i)->lock);
|
|
/*
|
|
* We clear this CPU from the mask. This both simplifies the
|
|
* inner loop and keps this_rq locked when we exit:
|
|
*/
|
|
cpu_clear(this_cpu, sibling_map);
|
|
|
|
for_each_cpu_mask(i, sibling_map) {
|
|
runqueue_t *smt_rq = cpu_rq(i);
|
|
|
|
wakeup_busy_runqueue(smt_rq);
|
|
}
|
|
|
|
for_each_cpu_mask(i, sibling_map)
|
|
spin_unlock(&cpu_rq(i)->lock);
|
|
/*
|
|
* We exit with this_cpu's rq still held and IRQs
|
|
* still disabled:
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* number of 'lost' timeslices this task wont be able to fully
|
|
* utilize, if another task runs on a sibling. This models the
|
|
* slowdown effect of other tasks running on siblings:
|
|
*/
|
|
static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
|
|
{
|
|
return p->time_slice * (100 - sd->per_cpu_gain) / 100;
|
|
}
|
|
|
|
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
|
|
{
|
|
struct sched_domain *tmp, *sd = NULL;
|
|
cpumask_t sibling_map;
|
|
prio_array_t *array;
|
|
int ret = 0, i;
|
|
task_t *p;
|
|
|
|
for_each_domain(this_cpu, tmp)
|
|
if (tmp->flags & SD_SHARE_CPUPOWER)
|
|
sd = tmp;
|
|
|
|
if (!sd)
|
|
return 0;
|
|
|
|
/*
|
|
* The same locking rules and details apply as for
|
|
* wake_sleeping_dependent():
|
|
*/
|
|
spin_unlock(&this_rq->lock);
|
|
sibling_map = sd->span;
|
|
for_each_cpu_mask(i, sibling_map)
|
|
spin_lock(&cpu_rq(i)->lock);
|
|
cpu_clear(this_cpu, sibling_map);
|
|
|
|
/*
|
|
* Establish next task to be run - it might have gone away because
|
|
* we released the runqueue lock above:
|
|
*/
|
|
if (!this_rq->nr_running)
|
|
goto out_unlock;
|
|
array = this_rq->active;
|
|
if (!array->nr_active)
|
|
array = this_rq->expired;
|
|
BUG_ON(!array->nr_active);
|
|
|
|
p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
|
|
task_t, run_list);
|
|
|
|
for_each_cpu_mask(i, sibling_map) {
|
|
runqueue_t *smt_rq = cpu_rq(i);
|
|
task_t *smt_curr = smt_rq->curr;
|
|
|
|
/* Kernel threads do not participate in dependent sleeping */
|
|
if (!p->mm || !smt_curr->mm || rt_task(p))
|
|
goto check_smt_task;
|
|
|
|
/*
|
|
* If a user task with lower static priority than the
|
|
* running task on the SMT sibling is trying to schedule,
|
|
* delay it till there is proportionately less timeslice
|
|
* left of the sibling task to prevent a lower priority
|
|
* task from using an unfair proportion of the
|
|
* physical cpu's resources. -ck
|
|
*/
|
|
if (rt_task(smt_curr)) {
|
|
/*
|
|
* With real time tasks we run non-rt tasks only
|
|
* per_cpu_gain% of the time.
|
|
*/
|
|
if ((jiffies % DEF_TIMESLICE) >
|
|
(sd->per_cpu_gain * DEF_TIMESLICE / 100))
|
|
ret = 1;
|
|
} else
|
|
if (smt_curr->static_prio < p->static_prio &&
|
|
!TASK_PREEMPTS_CURR(p, smt_rq) &&
|
|
smt_slice(smt_curr, sd) > task_timeslice(p))
|
|
ret = 1;
|
|
|
|
check_smt_task:
|
|
if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
|
|
rt_task(smt_curr))
|
|
continue;
|
|
if (!p->mm) {
|
|
wakeup_busy_runqueue(smt_rq);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Reschedule a lower priority task on the SMT sibling for
|
|
* it to be put to sleep, or wake it up if it has been put to
|
|
* sleep for priority reasons to see if it should run now.
|
|
*/
|
|
if (rt_task(p)) {
|
|
if ((jiffies % DEF_TIMESLICE) >
|
|
(sd->per_cpu_gain * DEF_TIMESLICE / 100))
|
|
resched_task(smt_curr);
|
|
} else {
|
|
if (TASK_PREEMPTS_CURR(p, smt_rq) &&
|
|
smt_slice(p, sd) > task_timeslice(smt_curr))
|
|
resched_task(smt_curr);
|
|
else
|
|
wakeup_busy_runqueue(smt_rq);
|
|
}
|
|
}
|
|
out_unlock:
|
|
for_each_cpu_mask(i, sibling_map)
|
|
spin_unlock(&cpu_rq(i)->lock);
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
|
|
{
|
|
}
|
|
|
|
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
|
|
|
|
void fastcall add_preempt_count(int val)
|
|
{
|
|
/*
|
|
* Underflow?
|
|
*/
|
|
BUG_ON((preempt_count() < 0));
|
|
preempt_count() += val;
|
|
/*
|
|
* Spinlock count overflowing soon?
|
|
*/
|
|
BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
|
|
}
|
|
EXPORT_SYMBOL(add_preempt_count);
|
|
|
|
void fastcall sub_preempt_count(int val)
|
|
{
|
|
/*
|
|
* Underflow?
|
|
*/
|
|
BUG_ON(val > preempt_count());
|
|
/*
|
|
* Is the spinlock portion underflowing?
|
|
*/
|
|
BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
|
|
preempt_count() -= val;
|
|
}
|
|
EXPORT_SYMBOL(sub_preempt_count);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* schedule() is the main scheduler function.
|
|
*/
|
|
asmlinkage void __sched schedule(void)
|
|
{
|
|
long *switch_count;
|
|
task_t *prev, *next;
|
|
runqueue_t *rq;
|
|
prio_array_t *array;
|
|
struct list_head *queue;
|
|
unsigned long long now;
|
|
unsigned long run_time;
|
|
int cpu, idx, new_prio;
|
|
|
|
/*
|
|
* Test if we are atomic. Since do_exit() needs to call into
|
|
* schedule() atomically, we ignore that path for now.
|
|
* Otherwise, whine if we are scheduling when we should not be.
|
|
*/
|
|
if (likely(!current->exit_state)) {
|
|
if (unlikely(in_atomic())) {
|
|
printk(KERN_ERR "scheduling while atomic: "
|
|
"%s/0x%08x/%d\n",
|
|
current->comm, preempt_count(), current->pid);
|
|
dump_stack();
|
|
}
|
|
}
|
|
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
|
|
|
|
need_resched:
|
|
preempt_disable();
|
|
prev = current;
|
|
release_kernel_lock(prev);
|
|
need_resched_nonpreemptible:
|
|
rq = this_rq();
|
|
|
|
/*
|
|
* The idle thread is not allowed to schedule!
|
|
* Remove this check after it has been exercised a bit.
|
|
*/
|
|
if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
|
|
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
|
dump_stack();
|
|
}
|
|
|
|
schedstat_inc(rq, sched_cnt);
|
|
now = sched_clock();
|
|
if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
|
|
run_time = now - prev->timestamp;
|
|
if (unlikely((long long)(now - prev->timestamp) < 0))
|
|
run_time = 0;
|
|
} else
|
|
run_time = NS_MAX_SLEEP_AVG;
|
|
|
|
/*
|
|
* Tasks charged proportionately less run_time at high sleep_avg to
|
|
* delay them losing their interactive status
|
|
*/
|
|
run_time /= (CURRENT_BONUS(prev) ? : 1);
|
|
|
|
spin_lock_irq(&rq->lock);
|
|
|
|
if (unlikely(prev->flags & PF_DEAD))
|
|
prev->state = EXIT_DEAD;
|
|
|
|
switch_count = &prev->nivcsw;
|
|
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
|
|
switch_count = &prev->nvcsw;
|
|
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
|
|
unlikely(signal_pending(prev))))
|
|
prev->state = TASK_RUNNING;
|
|
else {
|
|
if (prev->state == TASK_UNINTERRUPTIBLE)
|
|
rq->nr_uninterruptible++;
|
|
deactivate_task(prev, rq);
|
|
}
|
|
}
|
|
|
|
cpu = smp_processor_id();
|
|
if (unlikely(!rq->nr_running)) {
|
|
go_idle:
|
|
idle_balance(cpu, rq);
|
|
if (!rq->nr_running) {
|
|
next = rq->idle;
|
|
rq->expired_timestamp = 0;
|
|
wake_sleeping_dependent(cpu, rq);
|
|
/*
|
|
* wake_sleeping_dependent() might have released
|
|
* the runqueue, so break out if we got new
|
|
* tasks meanwhile:
|
|
*/
|
|
if (!rq->nr_running)
|
|
goto switch_tasks;
|
|
}
|
|
} else {
|
|
if (dependent_sleeper(cpu, rq)) {
|
|
next = rq->idle;
|
|
goto switch_tasks;
|
|
}
|
|
/*
|
|
* dependent_sleeper() releases and reacquires the runqueue
|
|
* lock, hence go into the idle loop if the rq went
|
|
* empty meanwhile:
|
|
*/
|
|
if (unlikely(!rq->nr_running))
|
|
goto go_idle;
|
|
}
|
|
|
|
array = rq->active;
|
|
if (unlikely(!array->nr_active)) {
|
|
/*
|
|
* Switch the active and expired arrays.
|
|
*/
|
|
schedstat_inc(rq, sched_switch);
|
|
rq->active = rq->expired;
|
|
rq->expired = array;
|
|
array = rq->active;
|
|
rq->expired_timestamp = 0;
|
|
rq->best_expired_prio = MAX_PRIO;
|
|
}
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
queue = array->queue + idx;
|
|
next = list_entry(queue->next, task_t, run_list);
|
|
|
|
if (!rt_task(next) && next->activated > 0) {
|
|
unsigned long long delta = now - next->timestamp;
|
|
if (unlikely((long long)(now - next->timestamp) < 0))
|
|
delta = 0;
|
|
|
|
if (next->activated == 1)
|
|
delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
|
|
|
|
array = next->array;
|
|
new_prio = recalc_task_prio(next, next->timestamp + delta);
|
|
|
|
if (unlikely(next->prio != new_prio)) {
|
|
dequeue_task(next, array);
|
|
next->prio = new_prio;
|
|
enqueue_task(next, array);
|
|
} else
|
|
requeue_task(next, array);
|
|
}
|
|
next->activated = 0;
|
|
switch_tasks:
|
|
if (next == rq->idle)
|
|
schedstat_inc(rq, sched_goidle);
|
|
prefetch(next);
|
|
prefetch_stack(next);
|
|
clear_tsk_need_resched(prev);
|
|
rcu_qsctr_inc(task_cpu(prev));
|
|
|
|
update_cpu_clock(prev, rq, now);
|
|
|
|
prev->sleep_avg -= run_time;
|
|
if ((long)prev->sleep_avg <= 0)
|
|
prev->sleep_avg = 0;
|
|
prev->timestamp = prev->last_ran = now;
|
|
|
|
sched_info_switch(prev, next);
|
|
if (likely(prev != next)) {
|
|
next->timestamp = now;
|
|
rq->nr_switches++;
|
|
rq->curr = next;
|
|
++*switch_count;
|
|
|
|
prepare_task_switch(rq, next);
|
|
prev = context_switch(rq, prev, next);
|
|
barrier();
|
|
/*
|
|
* this_rq must be evaluated again because prev may have moved
|
|
* CPUs since it called schedule(), thus the 'rq' on its stack
|
|
* frame will be invalid.
|
|
*/
|
|
finish_task_switch(this_rq(), prev);
|
|
} else
|
|
spin_unlock_irq(&rq->lock);
|
|
|
|
prev = current;
|
|
if (unlikely(reacquire_kernel_lock(prev) < 0))
|
|
goto need_resched_nonpreemptible;
|
|
preempt_enable_no_resched();
|
|
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
|
|
goto need_resched;
|
|
}
|
|
|
|
EXPORT_SYMBOL(schedule);
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
/*
|
|
* this is is the entry point to schedule() from in-kernel preemption
|
|
* off of preempt_enable. Kernel preemptions off return from interrupt
|
|
* occur there and call schedule directly.
|
|
*/
|
|
asmlinkage void __sched preempt_schedule(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
struct task_struct *task = current;
|
|
int saved_lock_depth;
|
|
#endif
|
|
/*
|
|
* If there is a non-zero preempt_count or interrupts are disabled,
|
|
* we do not want to preempt the current task. Just return..
|
|
*/
|
|
if (unlikely(ti->preempt_count || irqs_disabled()))
|
|
return;
|
|
|
|
need_resched:
|
|
add_preempt_count(PREEMPT_ACTIVE);
|
|
/*
|
|
* We keep the big kernel semaphore locked, but we
|
|
* clear ->lock_depth so that schedule() doesnt
|
|
* auto-release the semaphore:
|
|
*/
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
saved_lock_depth = task->lock_depth;
|
|
task->lock_depth = -1;
|
|
#endif
|
|
schedule();
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
task->lock_depth = saved_lock_depth;
|
|
#endif
|
|
sub_preempt_count(PREEMPT_ACTIVE);
|
|
|
|
/* we could miss a preemption opportunity between schedule and now */
|
|
barrier();
|
|
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
|
|
goto need_resched;
|
|
}
|
|
|
|
EXPORT_SYMBOL(preempt_schedule);
|
|
|
|
/*
|
|
* this is is the entry point to schedule() from kernel preemption
|
|
* off of irq context.
|
|
* Note, that this is called and return with irqs disabled. This will
|
|
* protect us against recursive calling from irq.
|
|
*/
|
|
asmlinkage void __sched preempt_schedule_irq(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
struct task_struct *task = current;
|
|
int saved_lock_depth;
|
|
#endif
|
|
/* Catch callers which need to be fixed*/
|
|
BUG_ON(ti->preempt_count || !irqs_disabled());
|
|
|
|
need_resched:
|
|
add_preempt_count(PREEMPT_ACTIVE);
|
|
/*
|
|
* We keep the big kernel semaphore locked, but we
|
|
* clear ->lock_depth so that schedule() doesnt
|
|
* auto-release the semaphore:
|
|
*/
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
saved_lock_depth = task->lock_depth;
|
|
task->lock_depth = -1;
|
|
#endif
|
|
local_irq_enable();
|
|
schedule();
|
|
local_irq_disable();
|
|
#ifdef CONFIG_PREEMPT_BKL
|
|
task->lock_depth = saved_lock_depth;
|
|
#endif
|
|
sub_preempt_count(PREEMPT_ACTIVE);
|
|
|
|
/* we could miss a preemption opportunity between schedule and now */
|
|
barrier();
|
|
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
|
|
goto need_resched;
|
|
}
|
|
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
|
|
void *key)
|
|
{
|
|
task_t *p = curr->private;
|
|
return try_to_wake_up(p, mode, sync);
|
|
}
|
|
|
|
EXPORT_SYMBOL(default_wake_function);
|
|
|
|
/*
|
|
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
|
|
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
|
|
* number) then we wake all the non-exclusive tasks and one exclusive task.
|
|
*
|
|
* There are circumstances in which we can try to wake a task which has already
|
|
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
|
|
* zero in this (rare) case, and we handle it by continuing to scan the queue.
|
|
*/
|
|
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
|
|
int nr_exclusive, int sync, void *key)
|
|
{
|
|
struct list_head *tmp, *next;
|
|
|
|
list_for_each_safe(tmp, next, &q->task_list) {
|
|
wait_queue_t *curr;
|
|
unsigned flags;
|
|
curr = list_entry(tmp, wait_queue_t, task_list);
|
|
flags = curr->flags;
|
|
if (curr->func(curr, mode, sync, key) &&
|
|
(flags & WQ_FLAG_EXCLUSIVE) &&
|
|
!--nr_exclusive)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __wake_up - wake up threads blocked on a waitqueue.
|
|
* @q: the waitqueue
|
|
* @mode: which threads
|
|
* @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
* @key: is directly passed to the wakeup function
|
|
*/
|
|
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
|
|
int nr_exclusive, void *key)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__wake_up_common(q, mode, nr_exclusive, 0, key);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
|
|
EXPORT_SYMBOL(__wake_up);
|
|
|
|
/*
|
|
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
|
|
*/
|
|
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
|
|
{
|
|
__wake_up_common(q, mode, 1, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* __wake_up_sync - wake up threads blocked on a waitqueue.
|
|
* @q: the waitqueue
|
|
* @mode: which threads
|
|
* @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
*
|
|
* The sync wakeup differs that the waker knows that it will schedule
|
|
* away soon, so while the target thread will be woken up, it will not
|
|
* be migrated to another CPU - ie. the two threads are 'synchronized'
|
|
* with each other. This can prevent needless bouncing between CPUs.
|
|
*
|
|
* On UP it can prevent extra preemption.
|
|
*/
|
|
void fastcall
|
|
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
|
|
{
|
|
unsigned long flags;
|
|
int sync = 1;
|
|
|
|
if (unlikely(!q))
|
|
return;
|
|
|
|
if (unlikely(!nr_exclusive))
|
|
sync = 0;
|
|
|
|
spin_lock_irqsave(&q->lock, flags);
|
|
__wake_up_common(q, mode, nr_exclusive, sync, NULL);
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
|
|
|
|
void fastcall complete(struct completion *x)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&x->wait.lock, flags);
|
|
x->done++;
|
|
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
|
|
1, 0, NULL);
|
|
spin_unlock_irqrestore(&x->wait.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(complete);
|
|
|
|
void fastcall complete_all(struct completion *x)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&x->wait.lock, flags);
|
|
x->done += UINT_MAX/2;
|
|
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
|
|
0, 0, NULL);
|
|
spin_unlock_irqrestore(&x->wait.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(complete_all);
|
|
|
|
void fastcall __sched wait_for_completion(struct completion *x)
|
|
{
|
|
might_sleep();
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!x->done) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
wait.flags |= WQ_FLAG_EXCLUSIVE;
|
|
__add_wait_queue_tail(&x->wait, &wait);
|
|
do {
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&x->wait.lock);
|
|
schedule();
|
|
spin_lock_irq(&x->wait.lock);
|
|
} while (!x->done);
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
}
|
|
x->done--;
|
|
spin_unlock_irq(&x->wait.lock);
|
|
}
|
|
EXPORT_SYMBOL(wait_for_completion);
|
|
|
|
unsigned long fastcall __sched
|
|
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
|
|
{
|
|
might_sleep();
|
|
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!x->done) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
wait.flags |= WQ_FLAG_EXCLUSIVE;
|
|
__add_wait_queue_tail(&x->wait, &wait);
|
|
do {
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&x->wait.lock);
|
|
timeout = schedule_timeout(timeout);
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!timeout) {
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
goto out;
|
|
}
|
|
} while (!x->done);
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
}
|
|
x->done--;
|
|
out:
|
|
spin_unlock_irq(&x->wait.lock);
|
|
return timeout;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_completion_timeout);
|
|
|
|
int fastcall __sched wait_for_completion_interruptible(struct completion *x)
|
|
{
|
|
int ret = 0;
|
|
|
|
might_sleep();
|
|
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!x->done) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
wait.flags |= WQ_FLAG_EXCLUSIVE;
|
|
__add_wait_queue_tail(&x->wait, &wait);
|
|
do {
|
|
if (signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
goto out;
|
|
}
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_unlock_irq(&x->wait.lock);
|
|
schedule();
|
|
spin_lock_irq(&x->wait.lock);
|
|
} while (!x->done);
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
}
|
|
x->done--;
|
|
out:
|
|
spin_unlock_irq(&x->wait.lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_completion_interruptible);
|
|
|
|
unsigned long fastcall __sched
|
|
wait_for_completion_interruptible_timeout(struct completion *x,
|
|
unsigned long timeout)
|
|
{
|
|
might_sleep();
|
|
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!x->done) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
wait.flags |= WQ_FLAG_EXCLUSIVE;
|
|
__add_wait_queue_tail(&x->wait, &wait);
|
|
do {
|
|
if (signal_pending(current)) {
|
|
timeout = -ERESTARTSYS;
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
goto out;
|
|
}
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_unlock_irq(&x->wait.lock);
|
|
timeout = schedule_timeout(timeout);
|
|
spin_lock_irq(&x->wait.lock);
|
|
if (!timeout) {
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
goto out;
|
|
}
|
|
} while (!x->done);
|
|
__remove_wait_queue(&x->wait, &wait);
|
|
}
|
|
x->done--;
|
|
out:
|
|
spin_unlock_irq(&x->wait.lock);
|
|
return timeout;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
|
|
|
|
|
|
#define SLEEP_ON_VAR \
|
|
unsigned long flags; \
|
|
wait_queue_t wait; \
|
|
init_waitqueue_entry(&wait, current);
|
|
|
|
#define SLEEP_ON_HEAD \
|
|
spin_lock_irqsave(&q->lock,flags); \
|
|
__add_wait_queue(q, &wait); \
|
|
spin_unlock(&q->lock);
|
|
|
|
#define SLEEP_ON_TAIL \
|
|
spin_lock_irq(&q->lock); \
|
|
__remove_wait_queue(q, &wait); \
|
|
spin_unlock_irqrestore(&q->lock, flags);
|
|
|
|
void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
|
|
{
|
|
SLEEP_ON_VAR
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
|
|
SLEEP_ON_HEAD
|
|
schedule();
|
|
SLEEP_ON_TAIL
|
|
}
|
|
|
|
EXPORT_SYMBOL(interruptible_sleep_on);
|
|
|
|
long fastcall __sched
|
|
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
|
{
|
|
SLEEP_ON_VAR
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
|
|
SLEEP_ON_HEAD
|
|
timeout = schedule_timeout(timeout);
|
|
SLEEP_ON_TAIL
|
|
|
|
return timeout;
|
|
}
|
|
|
|
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
|
|
|
|
void fastcall __sched sleep_on(wait_queue_head_t *q)
|
|
{
|
|
SLEEP_ON_VAR
|
|
|
|
current->state = TASK_UNINTERRUPTIBLE;
|
|
|
|
SLEEP_ON_HEAD
|
|
schedule();
|
|
SLEEP_ON_TAIL
|
|
}
|
|
|
|
EXPORT_SYMBOL(sleep_on);
|
|
|
|
long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
|
{
|
|
SLEEP_ON_VAR
|
|
|
|
current->state = TASK_UNINTERRUPTIBLE;
|
|
|
|
SLEEP_ON_HEAD
|
|
timeout = schedule_timeout(timeout);
|
|
SLEEP_ON_TAIL
|
|
|
|
return timeout;
|
|
}
|
|
|
|
EXPORT_SYMBOL(sleep_on_timeout);
|
|
|
|
void set_user_nice(task_t *p, long nice)
|
|
{
|
|
unsigned long flags;
|
|
prio_array_t *array;
|
|
runqueue_t *rq;
|
|
int old_prio, new_prio, delta;
|
|
|
|
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
|
|
return;
|
|
/*
|
|
* We have to be careful, if called from sys_setpriority(),
|
|
* the task might be in the middle of scheduling on another CPU.
|
|
*/
|
|
rq = task_rq_lock(p, &flags);
|
|
/*
|
|
* The RT priorities are set via sched_setscheduler(), but we still
|
|
* allow the 'normal' nice value to be set - but as expected
|
|
* it wont have any effect on scheduling until the task is
|
|
* not SCHED_NORMAL:
|
|
*/
|
|
if (rt_task(p)) {
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
goto out_unlock;
|
|
}
|
|
array = p->array;
|
|
if (array)
|
|
dequeue_task(p, array);
|
|
|
|
old_prio = p->prio;
|
|
new_prio = NICE_TO_PRIO(nice);
|
|
delta = new_prio - old_prio;
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
p->prio += delta;
|
|
|
|
if (array) {
|
|
enqueue_task(p, array);
|
|
/*
|
|
* If the task increased its priority or is running and
|
|
* lowered its priority, then reschedule its CPU:
|
|
*/
|
|
if (delta < 0 || (delta > 0 && task_running(rq, p)))
|
|
resched_task(rq->curr);
|
|
}
|
|
out_unlock:
|
|
task_rq_unlock(rq, &flags);
|
|
}
|
|
|
|
EXPORT_SYMBOL(set_user_nice);
|
|
|
|
/*
|
|
* can_nice - check if a task can reduce its nice value
|
|
* @p: task
|
|
* @nice: nice value
|
|
*/
|
|
int can_nice(const task_t *p, const int nice)
|
|
{
|
|
/* convert nice value [19,-20] to rlimit style value [1,40] */
|
|
int nice_rlim = 20 - nice;
|
|
return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
|
|
capable(CAP_SYS_NICE));
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_NICE
|
|
|
|
/*
|
|
* sys_nice - change the priority of the current process.
|
|
* @increment: priority increment
|
|
*
|
|
* sys_setpriority is a more generic, but much slower function that
|
|
* does similar things.
|
|
*/
|
|
asmlinkage long sys_nice(int increment)
|
|
{
|
|
int retval;
|
|
long nice;
|
|
|
|
/*
|
|
* Setpriority might change our priority at the same moment.
|
|
* We don't have to worry. Conceptually one call occurs first
|
|
* and we have a single winner.
|
|
*/
|
|
if (increment < -40)
|
|
increment = -40;
|
|
if (increment > 40)
|
|
increment = 40;
|
|
|
|
nice = PRIO_TO_NICE(current->static_prio) + increment;
|
|
if (nice < -20)
|
|
nice = -20;
|
|
if (nice > 19)
|
|
nice = 19;
|
|
|
|
if (increment < 0 && !can_nice(current, nice))
|
|
return -EPERM;
|
|
|
|
retval = security_task_setnice(current, nice);
|
|
if (retval)
|
|
return retval;
|
|
|
|
set_user_nice(current, nice);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* task_prio - return the priority value of a given task.
|
|
* @p: the task in question.
|
|
*
|
|
* This is the priority value as seen by users in /proc.
|
|
* RT tasks are offset by -200. Normal tasks are centered
|
|
* around 0, value goes from -16 to +15.
|
|
*/
|
|
int task_prio(const task_t *p)
|
|
{
|
|
return p->prio - MAX_RT_PRIO;
|
|
}
|
|
|
|
/**
|
|
* task_nice - return the nice value of a given task.
|
|
* @p: the task in question.
|
|
*/
|
|
int task_nice(const task_t *p)
|
|
{
|
|
return TASK_NICE(p);
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_nice);
|
|
|
|
/**
|
|
* idle_cpu - is a given cpu idle currently?
|
|
* @cpu: the processor in question.
|
|
*/
|
|
int idle_cpu(int cpu)
|
|
{
|
|
return cpu_curr(cpu) == cpu_rq(cpu)->idle;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(idle_cpu);
|
|
|
|
/**
|
|
* idle_task - return the idle task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
*/
|
|
task_t *idle_task(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->idle;
|
|
}
|
|
|
|
/**
|
|
* find_process_by_pid - find a process with a matching PID value.
|
|
* @pid: the pid in question.
|
|
*/
|
|
static inline task_t *find_process_by_pid(pid_t pid)
|
|
{
|
|
return pid ? find_task_by_pid(pid) : current;
|
|
}
|
|
|
|
/* Actually do priority change: must hold rq lock. */
|
|
static void __setscheduler(struct task_struct *p, int policy, int prio)
|
|
{
|
|
BUG_ON(p->array);
|
|
p->policy = policy;
|
|
p->rt_priority = prio;
|
|
if (policy != SCHED_NORMAL)
|
|
p->prio = MAX_RT_PRIO-1 - p->rt_priority;
|
|
else
|
|
p->prio = p->static_prio;
|
|
}
|
|
|
|
/**
|
|
* sched_setscheduler - change the scheduling policy and/or RT priority of
|
|
* a thread.
|
|
* @p: the task in question.
|
|
* @policy: new policy.
|
|
* @param: structure containing the new RT priority.
|
|
*/
|
|
int sched_setscheduler(struct task_struct *p, int policy,
|
|
struct sched_param *param)
|
|
{
|
|
int retval;
|
|
int oldprio, oldpolicy = -1;
|
|
prio_array_t *array;
|
|
unsigned long flags;
|
|
runqueue_t *rq;
|
|
|
|
recheck:
|
|
/* double check policy once rq lock held */
|
|
if (policy < 0)
|
|
policy = oldpolicy = p->policy;
|
|
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
|
|
policy != SCHED_NORMAL)
|
|
return -EINVAL;
|
|
/*
|
|
* Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
|
|
*/
|
|
if (param->sched_priority < 0 ||
|
|
(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
|
|
(!p->mm && param->sched_priority > MAX_RT_PRIO-1))
|
|
return -EINVAL;
|
|
if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Allow unprivileged RT tasks to decrease priority:
|
|
*/
|
|
if (!capable(CAP_SYS_NICE)) {
|
|
/* can't change policy */
|
|
if (policy != p->policy &&
|
|
!p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
|
|
return -EPERM;
|
|
/* can't increase priority */
|
|
if (policy != SCHED_NORMAL &&
|
|
param->sched_priority > p->rt_priority &&
|
|
param->sched_priority >
|
|
p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
|
|
return -EPERM;
|
|
/* can't change other user's priorities */
|
|
if ((current->euid != p->euid) &&
|
|
(current->euid != p->uid))
|
|
return -EPERM;
|
|
}
|
|
|
|
retval = security_task_setscheduler(p, policy, param);
|
|
if (retval)
|
|
return retval;
|
|
/*
|
|
* To be able to change p->policy safely, the apropriate
|
|
* runqueue lock must be held.
|
|
*/
|
|
rq = task_rq_lock(p, &flags);
|
|
/* recheck policy now with rq lock held */
|
|
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
|
|
policy = oldpolicy = -1;
|
|
task_rq_unlock(rq, &flags);
|
|
goto recheck;
|
|
}
|
|
array = p->array;
|
|
if (array)
|
|
deactivate_task(p, rq);
|
|
oldprio = p->prio;
|
|
__setscheduler(p, policy, param->sched_priority);
|
|
if (array) {
|
|
__activate_task(p, rq);
|
|
/*
|
|
* Reschedule if we are currently running on this runqueue and
|
|
* our priority decreased, or if we are not currently running on
|
|
* this runqueue and our priority is higher than the current's
|
|
*/
|
|
if (task_running(rq, p)) {
|
|
if (p->prio > oldprio)
|
|
resched_task(rq->curr);
|
|
} else if (TASK_PREEMPTS_CURR(p, rq))
|
|
resched_task(rq->curr);
|
|
}
|
|
task_rq_unlock(rq, &flags);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_setscheduler);
|
|
|
|
static int
|
|
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
|
|
{
|
|
int retval;
|
|
struct sched_param lparam;
|
|
struct task_struct *p;
|
|
|
|
if (!param || pid < 0)
|
|
return -EINVAL;
|
|
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
|
|
return -EFAULT;
|
|
read_lock_irq(&tasklist_lock);
|
|
p = find_process_by_pid(pid);
|
|
if (!p) {
|
|
read_unlock_irq(&tasklist_lock);
|
|
return -ESRCH;
|
|
}
|
|
retval = sched_setscheduler(p, policy, &lparam);
|
|
read_unlock_irq(&tasklist_lock);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
|
|
* @pid: the pid in question.
|
|
* @policy: new policy.
|
|
* @param: structure containing the new RT priority.
|
|
*/
|
|
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
|
|
struct sched_param __user *param)
|
|
{
|
|
return do_sched_setscheduler(pid, policy, param);
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setparam - set/change the RT priority of a thread
|
|
* @pid: the pid in question.
|
|
* @param: structure containing the new RT priority.
|
|
*/
|
|
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
|
|
{
|
|
return do_sched_setscheduler(pid, -1, param);
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
|
|
* @pid: the pid in question.
|
|
*/
|
|
asmlinkage long sys_sched_getscheduler(pid_t pid)
|
|
{
|
|
int retval = -EINVAL;
|
|
task_t *p;
|
|
|
|
if (pid < 0)
|
|
goto out_nounlock;
|
|
|
|
retval = -ESRCH;
|
|
read_lock(&tasklist_lock);
|
|
p = find_process_by_pid(pid);
|
|
if (p) {
|
|
retval = security_task_getscheduler(p);
|
|
if (!retval)
|
|
retval = p->policy;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
out_nounlock:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getscheduler - get the RT priority of a thread
|
|
* @pid: the pid in question.
|
|
* @param: structure containing the RT priority.
|
|
*/
|
|
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
|
|
{
|
|
struct sched_param lp;
|
|
int retval = -EINVAL;
|
|
task_t *p;
|
|
|
|
if (!param || pid < 0)
|
|
goto out_nounlock;
|
|
|
|
read_lock(&tasklist_lock);
|
|
p = find_process_by_pid(pid);
|
|
retval = -ESRCH;
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
lp.sched_priority = p->rt_priority;
|
|
read_unlock(&tasklist_lock);
|
|
|
|
/*
|
|
* This one might sleep, we cannot do it with a spinlock held ...
|
|
*/
|
|
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
|
|
|
out_nounlock:
|
|
return retval;
|
|
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
return retval;
|
|
}
|
|
|
|
long sched_setaffinity(pid_t pid, cpumask_t new_mask)
|
|
{
|
|
task_t *p;
|
|
int retval;
|
|
cpumask_t cpus_allowed;
|
|
|
|
lock_cpu_hotplug();
|
|
read_lock(&tasklist_lock);
|
|
|
|
p = find_process_by_pid(pid);
|
|
if (!p) {
|
|
read_unlock(&tasklist_lock);
|
|
unlock_cpu_hotplug();
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* It is not safe to call set_cpus_allowed with the
|
|
* tasklist_lock held. We will bump the task_struct's
|
|
* usage count and then drop tasklist_lock.
|
|
*/
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
retval = -EPERM;
|
|
if ((current->euid != p->euid) && (current->euid != p->uid) &&
|
|
!capable(CAP_SYS_NICE))
|
|
goto out_unlock;
|
|
|
|
cpus_allowed = cpuset_cpus_allowed(p);
|
|
cpus_and(new_mask, new_mask, cpus_allowed);
|
|
retval = set_cpus_allowed(p, new_mask);
|
|
|
|
out_unlock:
|
|
put_task_struct(p);
|
|
unlock_cpu_hotplug();
|
|
return retval;
|
|
}
|
|
|
|
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
|
|
cpumask_t *new_mask)
|
|
{
|
|
if (len < sizeof(cpumask_t)) {
|
|
memset(new_mask, 0, sizeof(cpumask_t));
|
|
} else if (len > sizeof(cpumask_t)) {
|
|
len = sizeof(cpumask_t);
|
|
}
|
|
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_setaffinity - set the cpu affinity of a process
|
|
* @pid: pid of the process
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
* @user_mask_ptr: user-space pointer to the new cpu mask
|
|
*/
|
|
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
|
|
unsigned long __user *user_mask_ptr)
|
|
{
|
|
cpumask_t new_mask;
|
|
int retval;
|
|
|
|
retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
|
|
if (retval)
|
|
return retval;
|
|
|
|
return sched_setaffinity(pid, new_mask);
|
|
}
|
|
|
|
/*
|
|
* Represents all cpu's present in the system
|
|
* In systems capable of hotplug, this map could dynamically grow
|
|
* as new cpu's are detected in the system via any platform specific
|
|
* method, such as ACPI for e.g.
|
|
*/
|
|
|
|
cpumask_t cpu_present_map;
|
|
EXPORT_SYMBOL(cpu_present_map);
|
|
|
|
#ifndef CONFIG_SMP
|
|
cpumask_t cpu_online_map = CPU_MASK_ALL;
|
|
cpumask_t cpu_possible_map = CPU_MASK_ALL;
|
|
#endif
|
|
|
|
long sched_getaffinity(pid_t pid, cpumask_t *mask)
|
|
{
|
|
int retval;
|
|
task_t *p;
|
|
|
|
lock_cpu_hotplug();
|
|
read_lock(&tasklist_lock);
|
|
|
|
retval = -ESRCH;
|
|
p = find_process_by_pid(pid);
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = 0;
|
|
cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
|
|
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
unlock_cpu_hotplug();
|
|
if (retval)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_getaffinity - get the cpu affinity of a process
|
|
* @pid: pid of the process
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
* @user_mask_ptr: user-space pointer to hold the current cpu mask
|
|
*/
|
|
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
|
|
unsigned long __user *user_mask_ptr)
|
|
{
|
|
int ret;
|
|
cpumask_t mask;
|
|
|
|
if (len < sizeof(cpumask_t))
|
|
return -EINVAL;
|
|
|
|
ret = sched_getaffinity(pid, &mask);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
|
|
return -EFAULT;
|
|
|
|
return sizeof(cpumask_t);
|
|
}
|
|
|
|
/**
|
|
* sys_sched_yield - yield the current processor to other threads.
|
|
*
|
|
* this function yields the current CPU by moving the calling thread
|
|
* to the expired array. If there are no other threads running on this
|
|
* CPU then this function will return.
|
|
*/
|
|
asmlinkage long sys_sched_yield(void)
|
|
{
|
|
runqueue_t *rq = this_rq_lock();
|
|
prio_array_t *array = current->array;
|
|
prio_array_t *target = rq->expired;
|
|
|
|
schedstat_inc(rq, yld_cnt);
|
|
/*
|
|
* We implement yielding by moving the task into the expired
|
|
* queue.
|
|
*
|
|
* (special rule: RT tasks will just roundrobin in the active
|
|
* array.)
|
|
*/
|
|
if (rt_task(current))
|
|
target = rq->active;
|
|
|
|
if (array->nr_active == 1) {
|
|
schedstat_inc(rq, yld_act_empty);
|
|
if (!rq->expired->nr_active)
|
|
schedstat_inc(rq, yld_both_empty);
|
|
} else if (!rq->expired->nr_active)
|
|
schedstat_inc(rq, yld_exp_empty);
|
|
|
|
if (array != target) {
|
|
dequeue_task(current, array);
|
|
enqueue_task(current, target);
|
|
} else
|
|
/*
|
|
* requeue_task is cheaper so perform that if possible.
|
|
*/
|
|
requeue_task(current, array);
|
|
|
|
/*
|
|
* Since we are going to call schedule() anyway, there's
|
|
* no need to preempt or enable interrupts:
|
|
*/
|
|
__release(rq->lock);
|
|
_raw_spin_unlock(&rq->lock);
|
|
preempt_enable_no_resched();
|
|
|
|
schedule();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void __cond_resched(void)
|
|
{
|
|
/*
|
|
* The BKS might be reacquired before we have dropped
|
|
* PREEMPT_ACTIVE, which could trigger a second
|
|
* cond_resched() call.
|
|
*/
|
|
if (unlikely(preempt_count()))
|
|
return;
|
|
do {
|
|
add_preempt_count(PREEMPT_ACTIVE);
|
|
schedule();
|
|
sub_preempt_count(PREEMPT_ACTIVE);
|
|
} while (need_resched());
|
|
}
|
|
|
|
int __sched cond_resched(void)
|
|
{
|
|
if (need_resched()) {
|
|
__cond_resched();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cond_resched);
|
|
|
|
/*
|
|
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
|
|
* call schedule, and on return reacquire the lock.
|
|
*
|
|
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
|
|
* operations here to prevent schedule() from being called twice (once via
|
|
* spin_unlock(), once by hand).
|
|
*/
|
|
int cond_resched_lock(spinlock_t *lock)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (need_lockbreak(lock)) {
|
|
spin_unlock(lock);
|
|
cpu_relax();
|
|
ret = 1;
|
|
spin_lock(lock);
|
|
}
|
|
if (need_resched()) {
|
|
_raw_spin_unlock(lock);
|
|
preempt_enable_no_resched();
|
|
__cond_resched();
|
|
ret = 1;
|
|
spin_lock(lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cond_resched_lock);
|
|
|
|
int __sched cond_resched_softirq(void)
|
|
{
|
|
BUG_ON(!in_softirq());
|
|
|
|
if (need_resched()) {
|
|
__local_bh_enable();
|
|
__cond_resched();
|
|
local_bh_disable();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(cond_resched_softirq);
|
|
|
|
|
|
/**
|
|
* yield - yield the current processor to other threads.
|
|
*
|
|
* this is a shortcut for kernel-space yielding - it marks the
|
|
* thread runnable and calls sys_sched_yield().
|
|
*/
|
|
void __sched yield(void)
|
|
{
|
|
set_current_state(TASK_RUNNING);
|
|
sys_sched_yield();
|
|
}
|
|
|
|
EXPORT_SYMBOL(yield);
|
|
|
|
/*
|
|
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
|
|
* that process accounting knows that this is a task in IO wait state.
|
|
*
|
|
* But don't do that if it is a deliberate, throttling IO wait (this task
|
|
* has set its backing_dev_info: the queue against which it should throttle)
|
|
*/
|
|
void __sched io_schedule(void)
|
|
{
|
|
struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
|
|
|
|
atomic_inc(&rq->nr_iowait);
|
|
schedule();
|
|
atomic_dec(&rq->nr_iowait);
|
|
}
|
|
|
|
EXPORT_SYMBOL(io_schedule);
|
|
|
|
long __sched io_schedule_timeout(long timeout)
|
|
{
|
|
struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
|
|
long ret;
|
|
|
|
atomic_inc(&rq->nr_iowait);
|
|
ret = schedule_timeout(timeout);
|
|
atomic_dec(&rq->nr_iowait);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_get_priority_max - return maximum RT priority.
|
|
* @policy: scheduling class.
|
|
*
|
|
* this syscall returns the maximum rt_priority that can be used
|
|
* by a given scheduling class.
|
|
*/
|
|
asmlinkage long sys_sched_get_priority_max(int policy)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
switch (policy) {
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
ret = MAX_USER_RT_PRIO-1;
|
|
break;
|
|
case SCHED_NORMAL:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_get_priority_min - return minimum RT priority.
|
|
* @policy: scheduling class.
|
|
*
|
|
* this syscall returns the minimum rt_priority that can be used
|
|
* by a given scheduling class.
|
|
*/
|
|
asmlinkage long sys_sched_get_priority_min(int policy)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
switch (policy) {
|
|
case SCHED_FIFO:
|
|
case SCHED_RR:
|
|
ret = 1;
|
|
break;
|
|
case SCHED_NORMAL:
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_sched_rr_get_interval - return the default timeslice of a process.
|
|
* @pid: pid of the process.
|
|
* @interval: userspace pointer to the timeslice value.
|
|
*
|
|
* this syscall writes the default timeslice value of a given process
|
|
* into the user-space timespec buffer. A value of '0' means infinity.
|
|
*/
|
|
asmlinkage
|
|
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
|
|
{
|
|
int retval = -EINVAL;
|
|
struct timespec t;
|
|
task_t *p;
|
|
|
|
if (pid < 0)
|
|
goto out_nounlock;
|
|
|
|
retval = -ESRCH;
|
|
read_lock(&tasklist_lock);
|
|
p = find_process_by_pid(pid);
|
|
if (!p)
|
|
goto out_unlock;
|
|
|
|
retval = security_task_getscheduler(p);
|
|
if (retval)
|
|
goto out_unlock;
|
|
|
|
jiffies_to_timespec(p->policy & SCHED_FIFO ?
|
|
0 : task_timeslice(p), &t);
|
|
read_unlock(&tasklist_lock);
|
|
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
|
out_nounlock:
|
|
return retval;
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
return retval;
|
|
}
|
|
|
|
static inline struct task_struct *eldest_child(struct task_struct *p)
|
|
{
|
|
if (list_empty(&p->children)) return NULL;
|
|
return list_entry(p->children.next,struct task_struct,sibling);
|
|
}
|
|
|
|
static inline struct task_struct *older_sibling(struct task_struct *p)
|
|
{
|
|
if (p->sibling.prev==&p->parent->children) return NULL;
|
|
return list_entry(p->sibling.prev,struct task_struct,sibling);
|
|
}
|
|
|
|
static inline struct task_struct *younger_sibling(struct task_struct *p)
|
|
{
|
|
if (p->sibling.next==&p->parent->children) return NULL;
|
|
return list_entry(p->sibling.next,struct task_struct,sibling);
|
|
}
|
|
|
|
static void show_task(task_t *p)
|
|
{
|
|
task_t *relative;
|
|
unsigned state;
|
|
unsigned long free = 0;
|
|
static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
|
|
|
|
printk("%-13.13s ", p->comm);
|
|
state = p->state ? __ffs(p->state) + 1 : 0;
|
|
if (state < ARRAY_SIZE(stat_nam))
|
|
printk(stat_nam[state]);
|
|
else
|
|
printk("?");
|
|
#if (BITS_PER_LONG == 32)
|
|
if (state == TASK_RUNNING)
|
|
printk(" running ");
|
|
else
|
|
printk(" %08lX ", thread_saved_pc(p));
|
|
#else
|
|
if (state == TASK_RUNNING)
|
|
printk(" running task ");
|
|
else
|
|
printk(" %016lx ", thread_saved_pc(p));
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
{
|
|
unsigned long *n = (unsigned long *) (p->thread_info+1);
|
|
while (!*n)
|
|
n++;
|
|
free = (unsigned long) n - (unsigned long)(p->thread_info+1);
|
|
}
|
|
#endif
|
|
printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
|
|
if ((relative = eldest_child(p)))
|
|
printk("%5d ", relative->pid);
|
|
else
|
|
printk(" ");
|
|
if ((relative = younger_sibling(p)))
|
|
printk("%7d", relative->pid);
|
|
else
|
|
printk(" ");
|
|
if ((relative = older_sibling(p)))
|
|
printk(" %5d", relative->pid);
|
|
else
|
|
printk(" ");
|
|
if (!p->mm)
|
|
printk(" (L-TLB)\n");
|
|
else
|
|
printk(" (NOTLB)\n");
|
|
|
|
if (state != TASK_RUNNING)
|
|
show_stack(p, NULL);
|
|
}
|
|
|
|
void show_state(void)
|
|
{
|
|
task_t *g, *p;
|
|
|
|
#if (BITS_PER_LONG == 32)
|
|
printk("\n"
|
|
" sibling\n");
|
|
printk(" task PC pid father child younger older\n");
|
|
#else
|
|
printk("\n"
|
|
" sibling\n");
|
|
printk(" task PC pid father child younger older\n");
|
|
#endif
|
|
read_lock(&tasklist_lock);
|
|
do_each_thread(g, p) {
|
|
/*
|
|
* reset the NMI-timeout, listing all files on a slow
|
|
* console might take alot of time:
|
|
*/
|
|
touch_nmi_watchdog();
|
|
show_task(p);
|
|
} while_each_thread(g, p);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/**
|
|
* init_idle - set up an idle thread for a given CPU
|
|
* @idle: task in question
|
|
* @cpu: cpu the idle task belongs to
|
|
*
|
|
* NOTE: this function does not set the idle thread's NEED_RESCHED
|
|
* flag, to make booting more robust.
|
|
*/
|
|
void __devinit init_idle(task_t *idle, int cpu)
|
|
{
|
|
runqueue_t *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
idle->sleep_avg = 0;
|
|
idle->array = NULL;
|
|
idle->prio = MAX_PRIO;
|
|
idle->state = TASK_RUNNING;
|
|
idle->cpus_allowed = cpumask_of_cpu(cpu);
|
|
set_task_cpu(idle, cpu);
|
|
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
rq->curr = rq->idle = idle;
|
|
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
|
|
idle->oncpu = 1;
|
|
#endif
|
|
spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
/* Set the preempt count _outside_ the spinlocks! */
|
|
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
|
|
idle->thread_info->preempt_count = (idle->lock_depth >= 0);
|
|
#else
|
|
idle->thread_info->preempt_count = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* In a system that switches off the HZ timer nohz_cpu_mask
|
|
* indicates which cpus entered this state. This is used
|
|
* in the rcu update to wait only for active cpus. For system
|
|
* which do not switch off the HZ timer nohz_cpu_mask should
|
|
* always be CPU_MASK_NONE.
|
|
*/
|
|
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This is how migration works:
|
|
*
|
|
* 1) we queue a migration_req_t structure in the source CPU's
|
|
* runqueue and wake up that CPU's migration thread.
|
|
* 2) we down() the locked semaphore => thread blocks.
|
|
* 3) migration thread wakes up (implicitly it forces the migrated
|
|
* thread off the CPU)
|
|
* 4) it gets the migration request and checks whether the migrated
|
|
* task is still in the wrong runqueue.
|
|
* 5) if it's in the wrong runqueue then the migration thread removes
|
|
* it and puts it into the right queue.
|
|
* 6) migration thread up()s the semaphore.
|
|
* 7) we wake up and the migration is done.
|
|
*/
|
|
|
|
/*
|
|
* Change a given task's CPU affinity. Migrate the thread to a
|
|
* proper CPU and schedule it away if the CPU it's executing on
|
|
* is removed from the allowed bitmask.
|
|
*
|
|
* NOTE: the caller must have a valid reference to the task, the
|
|
* task must not exit() & deallocate itself prematurely. The
|
|
* call is not atomic; no spinlocks may be held.
|
|
*/
|
|
int set_cpus_allowed(task_t *p, cpumask_t new_mask)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
migration_req_t req;
|
|
runqueue_t *rq;
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
if (!cpus_intersects(new_mask, cpu_online_map)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
p->cpus_allowed = new_mask;
|
|
/* Can the task run on the task's current CPU? If so, we're done */
|
|
if (cpu_isset(task_cpu(p), new_mask))
|
|
goto out;
|
|
|
|
if (migrate_task(p, any_online_cpu(new_mask), &req)) {
|
|
/* Need help from migration thread: drop lock and wait. */
|
|
task_rq_unlock(rq, &flags);
|
|
wake_up_process(rq->migration_thread);
|
|
wait_for_completion(&req.done);
|
|
tlb_migrate_finish(p->mm);
|
|
return 0;
|
|
}
|
|
out:
|
|
task_rq_unlock(rq, &flags);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(set_cpus_allowed);
|
|
|
|
/*
|
|
* Move (not current) task off this cpu, onto dest cpu. We're doing
|
|
* this because either it can't run here any more (set_cpus_allowed()
|
|
* away from this CPU, or CPU going down), or because we're
|
|
* attempting to rebalance this task on exec (sched_exec).
|
|
*
|
|
* So we race with normal scheduler movements, but that's OK, as long
|
|
* as the task is no longer on this CPU.
|
|
*/
|
|
static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
|
|
{
|
|
runqueue_t *rq_dest, *rq_src;
|
|
|
|
if (unlikely(cpu_is_offline(dest_cpu)))
|
|
return;
|
|
|
|
rq_src = cpu_rq(src_cpu);
|
|
rq_dest = cpu_rq(dest_cpu);
|
|
|
|
double_rq_lock(rq_src, rq_dest);
|
|
/* Already moved. */
|
|
if (task_cpu(p) != src_cpu)
|
|
goto out;
|
|
/* Affinity changed (again). */
|
|
if (!cpu_isset(dest_cpu, p->cpus_allowed))
|
|
goto out;
|
|
|
|
set_task_cpu(p, dest_cpu);
|
|
if (p->array) {
|
|
/*
|
|
* Sync timestamp with rq_dest's before activating.
|
|
* The same thing could be achieved by doing this step
|
|
* afterwards, and pretending it was a local activate.
|
|
* This way is cleaner and logically correct.
|
|
*/
|
|
p->timestamp = p->timestamp - rq_src->timestamp_last_tick
|
|
+ rq_dest->timestamp_last_tick;
|
|
deactivate_task(p, rq_src);
|
|
activate_task(p, rq_dest, 0);
|
|
if (TASK_PREEMPTS_CURR(p, rq_dest))
|
|
resched_task(rq_dest->curr);
|
|
}
|
|
|
|
out:
|
|
double_rq_unlock(rq_src, rq_dest);
|
|
}
|
|
|
|
/*
|
|
* migration_thread - this is a highprio system thread that performs
|
|
* thread migration by bumping thread off CPU then 'pushing' onto
|
|
* another runqueue.
|
|
*/
|
|
static int migration_thread(void *data)
|
|
{
|
|
runqueue_t *rq;
|
|
int cpu = (long)data;
|
|
|
|
rq = cpu_rq(cpu);
|
|
BUG_ON(rq->migration_thread != current);
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
while (!kthread_should_stop()) {
|
|
struct list_head *head;
|
|
migration_req_t *req;
|
|
|
|
try_to_freeze();
|
|
|
|
spin_lock_irq(&rq->lock);
|
|
|
|
if (cpu_is_offline(cpu)) {
|
|
spin_unlock_irq(&rq->lock);
|
|
goto wait_to_die;
|
|
}
|
|
|
|
if (rq->active_balance) {
|
|
active_load_balance(rq, cpu);
|
|
rq->active_balance = 0;
|
|
}
|
|
|
|
head = &rq->migration_queue;
|
|
|
|
if (list_empty(head)) {
|
|
spin_unlock_irq(&rq->lock);
|
|
schedule();
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
continue;
|
|
}
|
|
req = list_entry(head->next, migration_req_t, list);
|
|
list_del_init(head->next);
|
|
|
|
spin_unlock(&rq->lock);
|
|
__migrate_task(req->task, cpu, req->dest_cpu);
|
|
local_irq_enable();
|
|
|
|
complete(&req->done);
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
|
|
wait_to_die:
|
|
/* Wait for kthread_stop */
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
while (!kthread_should_stop()) {
|
|
schedule();
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* Figure out where task on dead CPU should go, use force if neccessary. */
|
|
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
|
|
{
|
|
int dest_cpu;
|
|
cpumask_t mask;
|
|
|
|
/* On same node? */
|
|
mask = node_to_cpumask(cpu_to_node(dead_cpu));
|
|
cpus_and(mask, mask, tsk->cpus_allowed);
|
|
dest_cpu = any_online_cpu(mask);
|
|
|
|
/* On any allowed CPU? */
|
|
if (dest_cpu == NR_CPUS)
|
|
dest_cpu = any_online_cpu(tsk->cpus_allowed);
|
|
|
|
/* No more Mr. Nice Guy. */
|
|
if (dest_cpu == NR_CPUS) {
|
|
cpus_setall(tsk->cpus_allowed);
|
|
dest_cpu = any_online_cpu(tsk->cpus_allowed);
|
|
|
|
/*
|
|
* Don't tell them about moving exiting tasks or
|
|
* kernel threads (both mm NULL), since they never
|
|
* leave kernel.
|
|
*/
|
|
if (tsk->mm && printk_ratelimit())
|
|
printk(KERN_INFO "process %d (%s) no "
|
|
"longer affine to cpu%d\n",
|
|
tsk->pid, tsk->comm, dead_cpu);
|
|
}
|
|
__migrate_task(tsk, dead_cpu, dest_cpu);
|
|
}
|
|
|
|
/*
|
|
* While a dead CPU has no uninterruptible tasks queued at this point,
|
|
* it might still have a nonzero ->nr_uninterruptible counter, because
|
|
* for performance reasons the counter is not stricly tracking tasks to
|
|
* their home CPUs. So we just add the counter to another CPU's counter,
|
|
* to keep the global sum constant after CPU-down:
|
|
*/
|
|
static void migrate_nr_uninterruptible(runqueue_t *rq_src)
|
|
{
|
|
runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
double_rq_lock(rq_src, rq_dest);
|
|
rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
|
|
rq_src->nr_uninterruptible = 0;
|
|
double_rq_unlock(rq_src, rq_dest);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Run through task list and migrate tasks from the dead cpu. */
|
|
static void migrate_live_tasks(int src_cpu)
|
|
{
|
|
struct task_struct *tsk, *t;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
do_each_thread(t, tsk) {
|
|
if (tsk == current)
|
|
continue;
|
|
|
|
if (task_cpu(tsk) == src_cpu)
|
|
move_task_off_dead_cpu(src_cpu, tsk);
|
|
} while_each_thread(t, tsk);
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
|
|
/* Schedules idle task to be the next runnable task on current CPU.
|
|
* It does so by boosting its priority to highest possible and adding it to
|
|
* the _front_ of runqueue. Used by CPU offline code.
|
|
*/
|
|
void sched_idle_next(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
runqueue_t *rq = this_rq();
|
|
struct task_struct *p = rq->idle;
|
|
unsigned long flags;
|
|
|
|
/* cpu has to be offline */
|
|
BUG_ON(cpu_online(cpu));
|
|
|
|
/* Strictly not necessary since rest of the CPUs are stopped by now
|
|
* and interrupts disabled on current cpu.
|
|
*/
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
/* Add idle task to _front_ of it's priority queue */
|
|
__activate_idle_task(p, rq);
|
|
|
|
spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
/* Ensures that the idle task is using init_mm right before its cpu goes
|
|
* offline.
|
|
*/
|
|
void idle_task_exit(void)
|
|
{
|
|
struct mm_struct *mm = current->active_mm;
|
|
|
|
BUG_ON(cpu_online(smp_processor_id()));
|
|
|
|
if (mm != &init_mm)
|
|
switch_mm(mm, &init_mm, current);
|
|
mmdrop(mm);
|
|
}
|
|
|
|
static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
|
|
{
|
|
struct runqueue *rq = cpu_rq(dead_cpu);
|
|
|
|
/* Must be exiting, otherwise would be on tasklist. */
|
|
BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
|
|
|
|
/* Cannot have done final schedule yet: would have vanished. */
|
|
BUG_ON(tsk->flags & PF_DEAD);
|
|
|
|
get_task_struct(tsk);
|
|
|
|
/*
|
|
* Drop lock around migration; if someone else moves it,
|
|
* that's OK. No task can be added to this CPU, so iteration is
|
|
* fine.
|
|
*/
|
|
spin_unlock_irq(&rq->lock);
|
|
move_task_off_dead_cpu(dead_cpu, tsk);
|
|
spin_lock_irq(&rq->lock);
|
|
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
/* release_task() removes task from tasklist, so we won't find dead tasks. */
|
|
static void migrate_dead_tasks(unsigned int dead_cpu)
|
|
{
|
|
unsigned arr, i;
|
|
struct runqueue *rq = cpu_rq(dead_cpu);
|
|
|
|
for (arr = 0; arr < 2; arr++) {
|
|
for (i = 0; i < MAX_PRIO; i++) {
|
|
struct list_head *list = &rq->arrays[arr].queue[i];
|
|
while (!list_empty(list))
|
|
migrate_dead(dead_cpu,
|
|
list_entry(list->next, task_t,
|
|
run_list));
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* migration_call - callback that gets triggered when a CPU is added.
|
|
* Here we can start up the necessary migration thread for the new CPU.
|
|
*/
|
|
static int migration_call(struct notifier_block *nfb, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int cpu = (long)hcpu;
|
|
struct task_struct *p;
|
|
struct runqueue *rq;
|
|
unsigned long flags;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
|
|
if (IS_ERR(p))
|
|
return NOTIFY_BAD;
|
|
p->flags |= PF_NOFREEZE;
|
|
kthread_bind(p, cpu);
|
|
/* Must be high prio: stop_machine expects to yield to it. */
|
|
rq = task_rq_lock(p, &flags);
|
|
__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
task_rq_unlock(rq, &flags);
|
|
cpu_rq(cpu)->migration_thread = p;
|
|
break;
|
|
case CPU_ONLINE:
|
|
/* Strictly unneccessary, as first user will wake it. */
|
|
wake_up_process(cpu_rq(cpu)->migration_thread);
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_UP_CANCELED:
|
|
/* Unbind it from offline cpu so it can run. Fall thru. */
|
|
kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
|
|
kthread_stop(cpu_rq(cpu)->migration_thread);
|
|
cpu_rq(cpu)->migration_thread = NULL;
|
|
break;
|
|
case CPU_DEAD:
|
|
migrate_live_tasks(cpu);
|
|
rq = cpu_rq(cpu);
|
|
kthread_stop(rq->migration_thread);
|
|
rq->migration_thread = NULL;
|
|
/* Idle task back to normal (off runqueue, low prio) */
|
|
rq = task_rq_lock(rq->idle, &flags);
|
|
deactivate_task(rq->idle, rq);
|
|
rq->idle->static_prio = MAX_PRIO;
|
|
__setscheduler(rq->idle, SCHED_NORMAL, 0);
|
|
migrate_dead_tasks(cpu);
|
|
task_rq_unlock(rq, &flags);
|
|
migrate_nr_uninterruptible(rq);
|
|
BUG_ON(rq->nr_running != 0);
|
|
|
|
/* No need to migrate the tasks: it was best-effort if
|
|
* they didn't do lock_cpu_hotplug(). Just wake up
|
|
* the requestors. */
|
|
spin_lock_irq(&rq->lock);
|
|
while (!list_empty(&rq->migration_queue)) {
|
|
migration_req_t *req;
|
|
req = list_entry(rq->migration_queue.next,
|
|
migration_req_t, list);
|
|
list_del_init(&req->list);
|
|
complete(&req->done);
|
|
}
|
|
spin_unlock_irq(&rq->lock);
|
|
break;
|
|
#endif
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/* Register at highest priority so that task migration (migrate_all_tasks)
|
|
* happens before everything else.
|
|
*/
|
|
static struct notifier_block __devinitdata migration_notifier = {
|
|
.notifier_call = migration_call,
|
|
.priority = 10
|
|
};
|
|
|
|
int __init migration_init(void)
|
|
{
|
|
void *cpu = (void *)(long)smp_processor_id();
|
|
/* Start one for boot CPU. */
|
|
migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
|
|
migration_call(&migration_notifier, CPU_ONLINE, cpu);
|
|
register_cpu_notifier(&migration_notifier);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
#undef SCHED_DOMAIN_DEBUG
|
|
#ifdef SCHED_DOMAIN_DEBUG
|
|
static void sched_domain_debug(struct sched_domain *sd, int cpu)
|
|
{
|
|
int level = 0;
|
|
|
|
if (!sd) {
|
|
printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
|
|
return;
|
|
}
|
|
|
|
printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
|
|
|
|
do {
|
|
int i;
|
|
char str[NR_CPUS];
|
|
struct sched_group *group = sd->groups;
|
|
cpumask_t groupmask;
|
|
|
|
cpumask_scnprintf(str, NR_CPUS, sd->span);
|
|
cpus_clear(groupmask);
|
|
|
|
printk(KERN_DEBUG);
|
|
for (i = 0; i < level + 1; i++)
|
|
printk(" ");
|
|
printk("domain %d: ", level);
|
|
|
|
if (!(sd->flags & SD_LOAD_BALANCE)) {
|
|
printk("does not load-balance\n");
|
|
if (sd->parent)
|
|
printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
|
|
break;
|
|
}
|
|
|
|
printk("span %s\n", str);
|
|
|
|
if (!cpu_isset(cpu, sd->span))
|
|
printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
|
|
if (!cpu_isset(cpu, group->cpumask))
|
|
printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
|
|
|
|
printk(KERN_DEBUG);
|
|
for (i = 0; i < level + 2; i++)
|
|
printk(" ");
|
|
printk("groups:");
|
|
do {
|
|
if (!group) {
|
|
printk("\n");
|
|
printk(KERN_ERR "ERROR: group is NULL\n");
|
|
break;
|
|
}
|
|
|
|
if (!group->cpu_power) {
|
|
printk("\n");
|
|
printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
|
|
}
|
|
|
|
if (!cpus_weight(group->cpumask)) {
|
|
printk("\n");
|
|
printk(KERN_ERR "ERROR: empty group\n");
|
|
}
|
|
|
|
if (cpus_intersects(groupmask, group->cpumask)) {
|
|
printk("\n");
|
|
printk(KERN_ERR "ERROR: repeated CPUs\n");
|
|
}
|
|
|
|
cpus_or(groupmask, groupmask, group->cpumask);
|
|
|
|
cpumask_scnprintf(str, NR_CPUS, group->cpumask);
|
|
printk(" %s", str);
|
|
|
|
group = group->next;
|
|
} while (group != sd->groups);
|
|
printk("\n");
|
|
|
|
if (!cpus_equal(sd->span, groupmask))
|
|
printk(KERN_ERR "ERROR: groups don't span domain->span\n");
|
|
|
|
level++;
|
|
sd = sd->parent;
|
|
|
|
if (sd) {
|
|
if (!cpus_subset(groupmask, sd->span))
|
|
printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
|
|
}
|
|
|
|
} while (sd);
|
|
}
|
|
#else
|
|
#define sched_domain_debug(sd, cpu) {}
|
|
#endif
|
|
|
|
static int sd_degenerate(struct sched_domain *sd)
|
|
{
|
|
if (cpus_weight(sd->span) == 1)
|
|
return 1;
|
|
|
|
/* Following flags need at least 2 groups */
|
|
if (sd->flags & (SD_LOAD_BALANCE |
|
|
SD_BALANCE_NEWIDLE |
|
|
SD_BALANCE_FORK |
|
|
SD_BALANCE_EXEC)) {
|
|
if (sd->groups != sd->groups->next)
|
|
return 0;
|
|
}
|
|
|
|
/* Following flags don't use groups */
|
|
if (sd->flags & (SD_WAKE_IDLE |
|
|
SD_WAKE_AFFINE |
|
|
SD_WAKE_BALANCE))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sd_parent_degenerate(struct sched_domain *sd,
|
|
struct sched_domain *parent)
|
|
{
|
|
unsigned long cflags = sd->flags, pflags = parent->flags;
|
|
|
|
if (sd_degenerate(parent))
|
|
return 1;
|
|
|
|
if (!cpus_equal(sd->span, parent->span))
|
|
return 0;
|
|
|
|
/* Does parent contain flags not in child? */
|
|
/* WAKE_BALANCE is a subset of WAKE_AFFINE */
|
|
if (cflags & SD_WAKE_AFFINE)
|
|
pflags &= ~SD_WAKE_BALANCE;
|
|
/* Flags needing groups don't count if only 1 group in parent */
|
|
if (parent->groups == parent->groups->next) {
|
|
pflags &= ~(SD_LOAD_BALANCE |
|
|
SD_BALANCE_NEWIDLE |
|
|
SD_BALANCE_FORK |
|
|
SD_BALANCE_EXEC);
|
|
}
|
|
if (~cflags & pflags)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
|
|
* hold the hotplug lock.
|
|
*/
|
|
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
|
|
{
|
|
runqueue_t *rq = cpu_rq(cpu);
|
|
struct sched_domain *tmp;
|
|
|
|
/* Remove the sched domains which do not contribute to scheduling. */
|
|
for (tmp = sd; tmp; tmp = tmp->parent) {
|
|
struct sched_domain *parent = tmp->parent;
|
|
if (!parent)
|
|
break;
|
|
if (sd_parent_degenerate(tmp, parent))
|
|
tmp->parent = parent->parent;
|
|
}
|
|
|
|
if (sd && sd_degenerate(sd))
|
|
sd = sd->parent;
|
|
|
|
sched_domain_debug(sd, cpu);
|
|
|
|
rcu_assign_pointer(rq->sd, sd);
|
|
}
|
|
|
|
/* cpus with isolated domains */
|
|
static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
|
|
|
|
/* Setup the mask of cpus configured for isolated domains */
|
|
static int __init isolated_cpu_setup(char *str)
|
|
{
|
|
int ints[NR_CPUS], i;
|
|
|
|
str = get_options(str, ARRAY_SIZE(ints), ints);
|
|
cpus_clear(cpu_isolated_map);
|
|
for (i = 1; i <= ints[0]; i++)
|
|
if (ints[i] < NR_CPUS)
|
|
cpu_set(ints[i], cpu_isolated_map);
|
|
return 1;
|
|
}
|
|
|
|
__setup ("isolcpus=", isolated_cpu_setup);
|
|
|
|
/*
|
|
* init_sched_build_groups takes an array of groups, the cpumask we wish
|
|
* to span, and a pointer to a function which identifies what group a CPU
|
|
* belongs to. The return value of group_fn must be a valid index into the
|
|
* groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
|
|
* keep track of groups covered with a cpumask_t).
|
|
*
|
|
* init_sched_build_groups will build a circular linked list of the groups
|
|
* covered by the given span, and will set each group's ->cpumask correctly,
|
|
* and ->cpu_power to 0.
|
|
*/
|
|
static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
|
|
int (*group_fn)(int cpu))
|
|
{
|
|
struct sched_group *first = NULL, *last = NULL;
|
|
cpumask_t covered = CPU_MASK_NONE;
|
|
int i;
|
|
|
|
for_each_cpu_mask(i, span) {
|
|
int group = group_fn(i);
|
|
struct sched_group *sg = &groups[group];
|
|
int j;
|
|
|
|
if (cpu_isset(i, covered))
|
|
continue;
|
|
|
|
sg->cpumask = CPU_MASK_NONE;
|
|
sg->cpu_power = 0;
|
|
|
|
for_each_cpu_mask(j, span) {
|
|
if (group_fn(j) != group)
|
|
continue;
|
|
|
|
cpu_set(j, covered);
|
|
cpu_set(j, sg->cpumask);
|
|
}
|
|
if (!first)
|
|
first = sg;
|
|
if (last)
|
|
last->next = sg;
|
|
last = sg;
|
|
}
|
|
last->next = first;
|
|
}
|
|
|
|
#define SD_NODES_PER_DOMAIN 16
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/**
|
|
* find_next_best_node - find the next node to include in a sched_domain
|
|
* @node: node whose sched_domain we're building
|
|
* @used_nodes: nodes already in the sched_domain
|
|
*
|
|
* Find the next node to include in a given scheduling domain. Simply
|
|
* finds the closest node not already in the @used_nodes map.
|
|
*
|
|
* Should use nodemask_t.
|
|
*/
|
|
static int find_next_best_node(int node, unsigned long *used_nodes)
|
|
{
|
|
int i, n, val, min_val, best_node = 0;
|
|
|
|
min_val = INT_MAX;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
/* Start at @node */
|
|
n = (node + i) % MAX_NUMNODES;
|
|
|
|
if (!nr_cpus_node(n))
|
|
continue;
|
|
|
|
/* Skip already used nodes */
|
|
if (test_bit(n, used_nodes))
|
|
continue;
|
|
|
|
/* Simple min distance search */
|
|
val = node_distance(node, n);
|
|
|
|
if (val < min_val) {
|
|
min_val = val;
|
|
best_node = n;
|
|
}
|
|
}
|
|
|
|
set_bit(best_node, used_nodes);
|
|
return best_node;
|
|
}
|
|
|
|
/**
|
|
* sched_domain_node_span - get a cpumask for a node's sched_domain
|
|
* @node: node whose cpumask we're constructing
|
|
* @size: number of nodes to include in this span
|
|
*
|
|
* Given a node, construct a good cpumask for its sched_domain to span. It
|
|
* should be one that prevents unnecessary balancing, but also spreads tasks
|
|
* out optimally.
|
|
*/
|
|
static cpumask_t sched_domain_node_span(int node)
|
|
{
|
|
int i;
|
|
cpumask_t span, nodemask;
|
|
DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
|
|
|
|
cpus_clear(span);
|
|
bitmap_zero(used_nodes, MAX_NUMNODES);
|
|
|
|
nodemask = node_to_cpumask(node);
|
|
cpus_or(span, span, nodemask);
|
|
set_bit(node, used_nodes);
|
|
|
|
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
|
|
int next_node = find_next_best_node(node, used_nodes);
|
|
nodemask = node_to_cpumask(next_node);
|
|
cpus_or(span, span, nodemask);
|
|
}
|
|
|
|
return span;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
|
|
* can switch it on easily if needed.
|
|
*/
|
|
#ifdef CONFIG_SCHED_SMT
|
|
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
|
|
static struct sched_group sched_group_cpus[NR_CPUS];
|
|
static int cpu_to_cpu_group(int cpu)
|
|
{
|
|
return cpu;
|
|
}
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
|
|
static struct sched_group sched_group_phys[NR_CPUS];
|
|
static int cpu_to_phys_group(int cpu)
|
|
{
|
|
#ifdef CONFIG_SCHED_SMT
|
|
return first_cpu(cpu_sibling_map[cpu]);
|
|
#else
|
|
return cpu;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* The init_sched_build_groups can't handle what we want to do with node
|
|
* groups, so roll our own. Now each node has its own list of groups which
|
|
* gets dynamically allocated.
|
|
*/
|
|
static DEFINE_PER_CPU(struct sched_domain, node_domains);
|
|
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
|
|
|
|
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
|
|
static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
|
|
|
|
static int cpu_to_allnodes_group(int cpu)
|
|
{
|
|
return cpu_to_node(cpu);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Build sched domains for a given set of cpus and attach the sched domains
|
|
* to the individual cpus
|
|
*/
|
|
void build_sched_domains(const cpumask_t *cpu_map)
|
|
{
|
|
int i;
|
|
#ifdef CONFIG_NUMA
|
|
struct sched_group **sched_group_nodes = NULL;
|
|
struct sched_group *sched_group_allnodes = NULL;
|
|
|
|
/*
|
|
* Allocate the per-node list of sched groups
|
|
*/
|
|
sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
|
|
GFP_ATOMIC);
|
|
if (!sched_group_nodes) {
|
|
printk(KERN_WARNING "Can not alloc sched group node list\n");
|
|
return;
|
|
}
|
|
sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
|
|
#endif
|
|
|
|
/*
|
|
* Set up domains for cpus specified by the cpu_map.
|
|
*/
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
int group;
|
|
struct sched_domain *sd = NULL, *p;
|
|
cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
|
|
|
|
cpus_and(nodemask, nodemask, *cpu_map);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
if (cpus_weight(*cpu_map)
|
|
> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
|
|
if (!sched_group_allnodes) {
|
|
sched_group_allnodes
|
|
= kmalloc(sizeof(struct sched_group)
|
|
* MAX_NUMNODES,
|
|
GFP_KERNEL);
|
|
if (!sched_group_allnodes) {
|
|
printk(KERN_WARNING
|
|
"Can not alloc allnodes sched group\n");
|
|
break;
|
|
}
|
|
sched_group_allnodes_bycpu[i]
|
|
= sched_group_allnodes;
|
|
}
|
|
sd = &per_cpu(allnodes_domains, i);
|
|
*sd = SD_ALLNODES_INIT;
|
|
sd->span = *cpu_map;
|
|
group = cpu_to_allnodes_group(i);
|
|
sd->groups = &sched_group_allnodes[group];
|
|
p = sd;
|
|
} else
|
|
p = NULL;
|
|
|
|
sd = &per_cpu(node_domains, i);
|
|
*sd = SD_NODE_INIT;
|
|
sd->span = sched_domain_node_span(cpu_to_node(i));
|
|
sd->parent = p;
|
|
cpus_and(sd->span, sd->span, *cpu_map);
|
|
#endif
|
|
|
|
p = sd;
|
|
sd = &per_cpu(phys_domains, i);
|
|
group = cpu_to_phys_group(i);
|
|
*sd = SD_CPU_INIT;
|
|
sd->span = nodemask;
|
|
sd->parent = p;
|
|
sd->groups = &sched_group_phys[group];
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
p = sd;
|
|
sd = &per_cpu(cpu_domains, i);
|
|
group = cpu_to_cpu_group(i);
|
|
*sd = SD_SIBLING_INIT;
|
|
sd->span = cpu_sibling_map[i];
|
|
cpus_and(sd->span, sd->span, *cpu_map);
|
|
sd->parent = p;
|
|
sd->groups = &sched_group_cpus[group];
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
/* Set up CPU (sibling) groups */
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
cpumask_t this_sibling_map = cpu_sibling_map[i];
|
|
cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
|
|
if (i != first_cpu(this_sibling_map))
|
|
continue;
|
|
|
|
init_sched_build_groups(sched_group_cpus, this_sibling_map,
|
|
&cpu_to_cpu_group);
|
|
}
|
|
#endif
|
|
|
|
/* Set up physical groups */
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
cpumask_t nodemask = node_to_cpumask(i);
|
|
|
|
cpus_and(nodemask, nodemask, *cpu_map);
|
|
if (cpus_empty(nodemask))
|
|
continue;
|
|
|
|
init_sched_build_groups(sched_group_phys, nodemask,
|
|
&cpu_to_phys_group);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/* Set up node groups */
|
|
if (sched_group_allnodes)
|
|
init_sched_build_groups(sched_group_allnodes, *cpu_map,
|
|
&cpu_to_allnodes_group);
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
/* Set up node groups */
|
|
struct sched_group *sg, *prev;
|
|
cpumask_t nodemask = node_to_cpumask(i);
|
|
cpumask_t domainspan;
|
|
cpumask_t covered = CPU_MASK_NONE;
|
|
int j;
|
|
|
|
cpus_and(nodemask, nodemask, *cpu_map);
|
|
if (cpus_empty(nodemask)) {
|
|
sched_group_nodes[i] = NULL;
|
|
continue;
|
|
}
|
|
|
|
domainspan = sched_domain_node_span(i);
|
|
cpus_and(domainspan, domainspan, *cpu_map);
|
|
|
|
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
|
|
sched_group_nodes[i] = sg;
|
|
for_each_cpu_mask(j, nodemask) {
|
|
struct sched_domain *sd;
|
|
sd = &per_cpu(node_domains, j);
|
|
sd->groups = sg;
|
|
if (sd->groups == NULL) {
|
|
/* Turn off balancing if we have no groups */
|
|
sd->flags = 0;
|
|
}
|
|
}
|
|
if (!sg) {
|
|
printk(KERN_WARNING
|
|
"Can not alloc domain group for node %d\n", i);
|
|
continue;
|
|
}
|
|
sg->cpu_power = 0;
|
|
sg->cpumask = nodemask;
|
|
cpus_or(covered, covered, nodemask);
|
|
prev = sg;
|
|
|
|
for (j = 0; j < MAX_NUMNODES; j++) {
|
|
cpumask_t tmp, notcovered;
|
|
int n = (i + j) % MAX_NUMNODES;
|
|
|
|
cpus_complement(notcovered, covered);
|
|
cpus_and(tmp, notcovered, *cpu_map);
|
|
cpus_and(tmp, tmp, domainspan);
|
|
if (cpus_empty(tmp))
|
|
break;
|
|
|
|
nodemask = node_to_cpumask(n);
|
|
cpus_and(tmp, tmp, nodemask);
|
|
if (cpus_empty(tmp))
|
|
continue;
|
|
|
|
sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
|
|
if (!sg) {
|
|
printk(KERN_WARNING
|
|
"Can not alloc domain group for node %d\n", j);
|
|
break;
|
|
}
|
|
sg->cpu_power = 0;
|
|
sg->cpumask = tmp;
|
|
cpus_or(covered, covered, tmp);
|
|
prev->next = sg;
|
|
prev = sg;
|
|
}
|
|
prev->next = sched_group_nodes[i];
|
|
}
|
|
#endif
|
|
|
|
/* Calculate CPU power for physical packages and nodes */
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
int power;
|
|
struct sched_domain *sd;
|
|
#ifdef CONFIG_SCHED_SMT
|
|
sd = &per_cpu(cpu_domains, i);
|
|
power = SCHED_LOAD_SCALE;
|
|
sd->groups->cpu_power = power;
|
|
#endif
|
|
|
|
sd = &per_cpu(phys_domains, i);
|
|
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
|
|
(cpus_weight(sd->groups->cpumask)-1) / 10;
|
|
sd->groups->cpu_power = power;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
sd = &per_cpu(allnodes_domains, i);
|
|
if (sd->groups) {
|
|
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
|
|
(cpus_weight(sd->groups->cpumask)-1) / 10;
|
|
sd->groups->cpu_power = power;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
struct sched_group *sg = sched_group_nodes[i];
|
|
int j;
|
|
|
|
if (sg == NULL)
|
|
continue;
|
|
next_sg:
|
|
for_each_cpu_mask(j, sg->cpumask) {
|
|
struct sched_domain *sd;
|
|
int power;
|
|
|
|
sd = &per_cpu(phys_domains, j);
|
|
if (j != first_cpu(sd->groups->cpumask)) {
|
|
/*
|
|
* Only add "power" once for each
|
|
* physical package.
|
|
*/
|
|
continue;
|
|
}
|
|
power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
|
|
(cpus_weight(sd->groups->cpumask)-1) / 10;
|
|
|
|
sg->cpu_power += power;
|
|
}
|
|
sg = sg->next;
|
|
if (sg != sched_group_nodes[i])
|
|
goto next_sg;
|
|
}
|
|
#endif
|
|
|
|
/* Attach the domains */
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
struct sched_domain *sd;
|
|
#ifdef CONFIG_SCHED_SMT
|
|
sd = &per_cpu(cpu_domains, i);
|
|
#else
|
|
sd = &per_cpu(phys_domains, i);
|
|
#endif
|
|
cpu_attach_domain(sd, i);
|
|
}
|
|
}
|
|
/*
|
|
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
|
|
*/
|
|
static void arch_init_sched_domains(const cpumask_t *cpu_map)
|
|
{
|
|
cpumask_t cpu_default_map;
|
|
|
|
/*
|
|
* Setup mask for cpus without special case scheduling requirements.
|
|
* For now this just excludes isolated cpus, but could be used to
|
|
* exclude other special cases in the future.
|
|
*/
|
|
cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
|
|
|
|
build_sched_domains(&cpu_default_map);
|
|
}
|
|
|
|
static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int i;
|
|
int cpu;
|
|
|
|
for_each_cpu_mask(cpu, *cpu_map) {
|
|
struct sched_group *sched_group_allnodes
|
|
= sched_group_allnodes_bycpu[cpu];
|
|
struct sched_group **sched_group_nodes
|
|
= sched_group_nodes_bycpu[cpu];
|
|
|
|
if (sched_group_allnodes) {
|
|
kfree(sched_group_allnodes);
|
|
sched_group_allnodes_bycpu[cpu] = NULL;
|
|
}
|
|
|
|
if (!sched_group_nodes)
|
|
continue;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
cpumask_t nodemask = node_to_cpumask(i);
|
|
struct sched_group *oldsg, *sg = sched_group_nodes[i];
|
|
|
|
cpus_and(nodemask, nodemask, *cpu_map);
|
|
if (cpus_empty(nodemask))
|
|
continue;
|
|
|
|
if (sg == NULL)
|
|
continue;
|
|
sg = sg->next;
|
|
next_sg:
|
|
oldsg = sg;
|
|
sg = sg->next;
|
|
kfree(oldsg);
|
|
if (oldsg != sched_group_nodes[i])
|
|
goto next_sg;
|
|
}
|
|
kfree(sched_group_nodes);
|
|
sched_group_nodes_bycpu[cpu] = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Detach sched domains from a group of cpus specified in cpu_map
|
|
* These cpus will now be attached to the NULL domain
|
|
*/
|
|
static inline void detach_destroy_domains(const cpumask_t *cpu_map)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu_mask(i, *cpu_map)
|
|
cpu_attach_domain(NULL, i);
|
|
synchronize_sched();
|
|
arch_destroy_sched_domains(cpu_map);
|
|
}
|
|
|
|
/*
|
|
* Partition sched domains as specified by the cpumasks below.
|
|
* This attaches all cpus from the cpumasks to the NULL domain,
|
|
* waits for a RCU quiescent period, recalculates sched
|
|
* domain information and then attaches them back to the
|
|
* correct sched domains
|
|
* Call with hotplug lock held
|
|
*/
|
|
void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
|
|
{
|
|
cpumask_t change_map;
|
|
|
|
cpus_and(*partition1, *partition1, cpu_online_map);
|
|
cpus_and(*partition2, *partition2, cpu_online_map);
|
|
cpus_or(change_map, *partition1, *partition2);
|
|
|
|
/* Detach sched domains from all of the affected cpus */
|
|
detach_destroy_domains(&change_map);
|
|
if (!cpus_empty(*partition1))
|
|
build_sched_domains(partition1);
|
|
if (!cpus_empty(*partition2))
|
|
build_sched_domains(partition2);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Force a reinitialization of the sched domains hierarchy. The domains
|
|
* and groups cannot be updated in place without racing with the balancing
|
|
* code, so we temporarily attach all running cpus to the NULL domain
|
|
* which will prevent rebalancing while the sched domains are recalculated.
|
|
*/
|
|
static int update_sched_domains(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_DOWN_PREPARE:
|
|
detach_destroy_domains(&cpu_online_map);
|
|
return NOTIFY_OK;
|
|
|
|
case CPU_UP_CANCELED:
|
|
case CPU_DOWN_FAILED:
|
|
case CPU_ONLINE:
|
|
case CPU_DEAD:
|
|
/*
|
|
* Fall through and re-initialise the domains.
|
|
*/
|
|
break;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/* The hotplug lock is already held by cpu_up/cpu_down */
|
|
arch_init_sched_domains(&cpu_online_map);
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
#endif
|
|
|
|
void __init sched_init_smp(void)
|
|
{
|
|
lock_cpu_hotplug();
|
|
arch_init_sched_domains(&cpu_online_map);
|
|
unlock_cpu_hotplug();
|
|
/* XXX: Theoretical race here - CPU may be hotplugged now */
|
|
hotcpu_notifier(update_sched_domains, 0);
|
|
}
|
|
#else
|
|
void __init sched_init_smp(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
int in_sched_functions(unsigned long addr)
|
|
{
|
|
/* Linker adds these: start and end of __sched functions */
|
|
extern char __sched_text_start[], __sched_text_end[];
|
|
return in_lock_functions(addr) ||
|
|
(addr >= (unsigned long)__sched_text_start
|
|
&& addr < (unsigned long)__sched_text_end);
|
|
}
|
|
|
|
void __init sched_init(void)
|
|
{
|
|
runqueue_t *rq;
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
prio_array_t *array;
|
|
|
|
rq = cpu_rq(i);
|
|
spin_lock_init(&rq->lock);
|
|
rq->nr_running = 0;
|
|
rq->active = rq->arrays;
|
|
rq->expired = rq->arrays + 1;
|
|
rq->best_expired_prio = MAX_PRIO;
|
|
|
|
#ifdef CONFIG_SMP
|
|
rq->sd = NULL;
|
|
for (j = 1; j < 3; j++)
|
|
rq->cpu_load[j] = 0;
|
|
rq->active_balance = 0;
|
|
rq->push_cpu = 0;
|
|
rq->migration_thread = NULL;
|
|
INIT_LIST_HEAD(&rq->migration_queue);
|
|
#endif
|
|
atomic_set(&rq->nr_iowait, 0);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
array = rq->arrays + j;
|
|
for (k = 0; k < MAX_PRIO; k++) {
|
|
INIT_LIST_HEAD(array->queue + k);
|
|
__clear_bit(k, array->bitmap);
|
|
}
|
|
// delimiter for bitsearch
|
|
__set_bit(MAX_PRIO, array->bitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The boot idle thread does lazy MMU switching as well:
|
|
*/
|
|
atomic_inc(&init_mm.mm_count);
|
|
enter_lazy_tlb(&init_mm, current);
|
|
|
|
/*
|
|
* Make us the idle thread. Technically, schedule() should not be
|
|
* called from this thread, however somewhere below it might be,
|
|
* but because we are the idle thread, we just pick up running again
|
|
* when this runqueue becomes "idle".
|
|
*/
|
|
init_idle(current, smp_processor_id());
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
|
|
void __might_sleep(char *file, int line)
|
|
{
|
|
#if defined(in_atomic)
|
|
static unsigned long prev_jiffy; /* ratelimiting */
|
|
|
|
if ((in_atomic() || irqs_disabled()) &&
|
|
system_state == SYSTEM_RUNNING && !oops_in_progress) {
|
|
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
|
|
return;
|
|
prev_jiffy = jiffies;
|
|
printk(KERN_ERR "Debug: sleeping function called from invalid"
|
|
" context at %s:%d\n", file, line);
|
|
printk("in_atomic():%d, irqs_disabled():%d\n",
|
|
in_atomic(), irqs_disabled());
|
|
dump_stack();
|
|
}
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(__might_sleep);
|
|
#endif
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
void normalize_rt_tasks(void)
|
|
{
|
|
struct task_struct *p;
|
|
prio_array_t *array;
|
|
unsigned long flags;
|
|
runqueue_t *rq;
|
|
|
|
read_lock_irq(&tasklist_lock);
|
|
for_each_process (p) {
|
|
if (!rt_task(p))
|
|
continue;
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
|
array = p->array;
|
|
if (array)
|
|
deactivate_task(p, task_rq(p));
|
|
__setscheduler(p, SCHED_NORMAL, 0);
|
|
if (array) {
|
|
__activate_task(p, task_rq(p));
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
task_rq_unlock(rq, &flags);
|
|
}
|
|
read_unlock_irq(&tasklist_lock);
|
|
}
|
|
|
|
#endif /* CONFIG_MAGIC_SYSRQ */
|
|
|
|
#ifdef CONFIG_IA64
|
|
/*
|
|
* These functions are only useful for the IA64 MCA handling.
|
|
*
|
|
* They can only be called when the whole system has been
|
|
* stopped - every CPU needs to be quiescent, and no scheduling
|
|
* activity can take place. Using them for anything else would
|
|
* be a serious bug, and as a result, they aren't even visible
|
|
* under any other configuration.
|
|
*/
|
|
|
|
/**
|
|
* curr_task - return the current task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
*
|
|
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
*/
|
|
task_t *curr_task(int cpu)
|
|
{
|
|
return cpu_curr(cpu);
|
|
}
|
|
|
|
/**
|
|
* set_curr_task - set the current task for a given cpu.
|
|
* @cpu: the processor in question.
|
|
* @p: the task pointer to set.
|
|
*
|
|
* Description: This function must only be used when non-maskable interrupts
|
|
* are serviced on a separate stack. It allows the architecture to switch the
|
|
* notion of the current task on a cpu in a non-blocking manner. This function
|
|
* must be called with all CPU's synchronized, and interrupts disabled, the
|
|
* and caller must save the original value of the current task (see
|
|
* curr_task() above) and restore that value before reenabling interrupts and
|
|
* re-starting the system.
|
|
*
|
|
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
*/
|
|
void set_curr_task(int cpu, task_t *p)
|
|
{
|
|
cpu_curr(cpu) = p;
|
|
}
|
|
|
|
#endif
|