kernel_optimize_test/fs/btrfs/ctree.h
Josef Bacik 291c7d2f57 Btrfs: wait on caching if we're loading the free space cache
We've been hitting panics when running xfstest 13 in a loop for long periods of
time.  And actually this problem has always existed so we've been hitting these
things randomly for a while.  Basically what happens is we get a thread coming
into the allocator and reading the space cache off of disk and adding the
entries to the free space cache as we go.  Then we get another thread that comes
in and tries to allocate from that block group.  Since block_group->cached !=
BTRFS_CACHE_NO it goes ahead and tries to do the allocation.  We do this because
if we're doing the old slow way of caching we don't want to hold people up and
wait for everything to finish.  The problem with this is we could end up
discarding the space cache at some arbitrary point in the future, which means we
could very well end up allocating space that is either bad, or when the real
caching happens it could end up thinking the space isn't in use when it really
is and cause all sorts of other problems.

The solution is to add a new flag to indicate we are loading the free space
cache from disk, and always try to cache the block group if cache->cached !=
BTRFS_CACHE_FINISHED.  That way if we are loading the space cache anybody else
who tries to allocate from the block group will have to wait until it's finished
to make sure it completes successfully.  Thanks,

Signed-off-by: Josef Bacik <josef@redhat.com>
2011-11-20 07:42:16 -05:00

2840 lines
90 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_CTREE__
#define __BTRFS_CTREE__
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/fs.h>
#include <linux/rwsem.h>
#include <linux/completion.h>
#include <linux/backing-dev.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/kobject.h>
#include <trace/events/btrfs.h>
#include <asm/kmap_types.h>
#include <linux/pagemap.h>
#include "extent_io.h"
#include "extent_map.h"
#include "async-thread.h"
#include "ioctl.h"
struct btrfs_trans_handle;
struct btrfs_transaction;
struct btrfs_pending_snapshot;
extern struct kmem_cache *btrfs_trans_handle_cachep;
extern struct kmem_cache *btrfs_transaction_cachep;
extern struct kmem_cache *btrfs_bit_radix_cachep;
extern struct kmem_cache *btrfs_path_cachep;
extern struct kmem_cache *btrfs_free_space_cachep;
struct btrfs_ordered_sum;
#define BTRFS_MAGIC "_BHRfS_M"
#define BTRFS_MAX_LEVEL 8
#define BTRFS_COMPAT_EXTENT_TREE_V0
/*
* files bigger than this get some pre-flushing when they are added
* to the ordered operations list. That way we limit the total
* work done by the commit
*/
#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
/* holds pointers to all of the tree roots */
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
/* stores information about which extents are in use, and reference counts */
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
/*
* chunk tree stores translations from logical -> physical block numbering
* the super block points to the chunk tree
*/
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
/*
* stores information about which areas of a given device are in use.
* one per device. The tree of tree roots points to the device tree
*/
#define BTRFS_DEV_TREE_OBJECTID 4ULL
/* one per subvolume, storing files and directories */
#define BTRFS_FS_TREE_OBJECTID 5ULL
/* directory objectid inside the root tree */
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
/* holds checksums of all the data extents */
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
/* orhpan objectid for tracking unlinked/truncated files */
#define BTRFS_ORPHAN_OBJECTID -5ULL
/* does write ahead logging to speed up fsyncs */
#define BTRFS_TREE_LOG_OBJECTID -6ULL
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
/* for space balancing */
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
/*
* extent checksums all have this objectid
* this allows them to share the logging tree
* for fsyncs
*/
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
/* For storing free space cache */
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
/*
* The inode number assigned to the special inode for sotring
* free ino cache
*/
#define BTRFS_FREE_INO_OBJECTID -12ULL
/* dummy objectid represents multiple objectids */
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
/*
* All files have objectids in this range.
*/
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
#define BTRFS_LAST_FREE_OBJECTID -256ULL
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
/*
* the device items go into the chunk tree. The key is in the form
* [ 1 BTRFS_DEV_ITEM_KEY device_id ]
*/
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
#define BTRFS_BTREE_INODE_OBJECTID 1
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
/*
* we can actually store much bigger names, but lets not confuse the rest
* of linux
*/
#define BTRFS_NAME_LEN 255
/* 32 bytes in various csum fields */
#define BTRFS_CSUM_SIZE 32
/* csum types */
#define BTRFS_CSUM_TYPE_CRC32 0
static int btrfs_csum_sizes[] = { 4, 0 };
/* four bytes for CRC32 */
#define BTRFS_EMPTY_DIR_SIZE 0
#define BTRFS_FT_UNKNOWN 0
#define BTRFS_FT_REG_FILE 1
#define BTRFS_FT_DIR 2
#define BTRFS_FT_CHRDEV 3
#define BTRFS_FT_BLKDEV 4
#define BTRFS_FT_FIFO 5
#define BTRFS_FT_SOCK 6
#define BTRFS_FT_SYMLINK 7
#define BTRFS_FT_XATTR 8
#define BTRFS_FT_MAX 9
/*
* The key defines the order in the tree, and so it also defines (optimal)
* block layout.
*
* objectid corresponds to the inode number.
*
* type tells us things about the object, and is a kind of stream selector.
* so for a given inode, keys with type of 1 might refer to the inode data,
* type of 2 may point to file data in the btree and type == 3 may point to
* extents.
*
* offset is the starting byte offset for this key in the stream.
*
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
* in cpu native order. Otherwise they are identical and their sizes
* should be the same (ie both packed)
*/
struct btrfs_disk_key {
__le64 objectid;
u8 type;
__le64 offset;
} __attribute__ ((__packed__));
struct btrfs_key {
u64 objectid;
u8 type;
u64 offset;
} __attribute__ ((__packed__));
struct btrfs_mapping_tree {
struct extent_map_tree map_tree;
};
struct btrfs_dev_item {
/* the internal btrfs device id */
__le64 devid;
/* size of the device */
__le64 total_bytes;
/* bytes used */
__le64 bytes_used;
/* optimal io alignment for this device */
__le32 io_align;
/* optimal io width for this device */
__le32 io_width;
/* minimal io size for this device */
__le32 sector_size;
/* type and info about this device */
__le64 type;
/* expected generation for this device */
__le64 generation;
/*
* starting byte of this partition on the device,
* to allow for stripe alignment in the future
*/
__le64 start_offset;
/* grouping information for allocation decisions */
__le32 dev_group;
/* seek speed 0-100 where 100 is fastest */
u8 seek_speed;
/* bandwidth 0-100 where 100 is fastest */
u8 bandwidth;
/* btrfs generated uuid for this device */
u8 uuid[BTRFS_UUID_SIZE];
/* uuid of FS who owns this device */
u8 fsid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_stripe {
__le64 devid;
__le64 offset;
u8 dev_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_chunk {
/* size of this chunk in bytes */
__le64 length;
/* objectid of the root referencing this chunk */
__le64 owner;
__le64 stripe_len;
__le64 type;
/* optimal io alignment for this chunk */
__le32 io_align;
/* optimal io width for this chunk */
__le32 io_width;
/* minimal io size for this chunk */
__le32 sector_size;
/* 2^16 stripes is quite a lot, a second limit is the size of a single
* item in the btree
*/
__le16 num_stripes;
/* sub stripes only matter for raid10 */
__le16 sub_stripes;
struct btrfs_stripe stripe;
/* additional stripes go here */
} __attribute__ ((__packed__));
#define BTRFS_FREE_SPACE_EXTENT 1
#define BTRFS_FREE_SPACE_BITMAP 2
struct btrfs_free_space_entry {
__le64 offset;
__le64 bytes;
u8 type;
} __attribute__ ((__packed__));
struct btrfs_free_space_header {
struct btrfs_disk_key location;
__le64 generation;
__le64 num_entries;
__le64 num_bitmaps;
} __attribute__ ((__packed__));
static inline unsigned long btrfs_chunk_item_size(int num_stripes)
{
BUG_ON(num_stripes == 0);
return sizeof(struct btrfs_chunk) +
sizeof(struct btrfs_stripe) * (num_stripes - 1);
}
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
/*
* File system states
*/
/* Errors detected */
#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
#define BTRFS_BACKREF_REV_MAX 256
#define BTRFS_BACKREF_REV_SHIFT 56
#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
BTRFS_BACKREF_REV_SHIFT)
#define BTRFS_OLD_BACKREF_REV 0
#define BTRFS_MIXED_BACKREF_REV 1
/*
* every tree block (leaf or node) starts with this header.
*/
struct btrfs_header {
/* these first four must match the super block */
u8 csum[BTRFS_CSUM_SIZE];
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
__le64 bytenr; /* which block this node is supposed to live in */
__le64 flags;
/* allowed to be different from the super from here on down */
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
__le64 generation;
__le64 owner;
__le32 nritems;
u8 level;
} __attribute__ ((__packed__));
#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
sizeof(struct btrfs_header)) / \
sizeof(struct btrfs_key_ptr))
#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) - \
sizeof(struct btrfs_file_extent_item))
#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
sizeof(struct btrfs_item) -\
sizeof(struct btrfs_dir_item))
/*
* this is a very generous portion of the super block, giving us
* room to translate 14 chunks with 3 stripes each.
*/
#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
#define BTRFS_LABEL_SIZE 256
/*
* just in case we somehow lose the roots and are not able to mount,
* we store an array of the roots from previous transactions
* in the super.
*/
#define BTRFS_NUM_BACKUP_ROOTS 4
struct btrfs_root_backup {
__le64 tree_root;
__le64 tree_root_gen;
__le64 chunk_root;
__le64 chunk_root_gen;
__le64 extent_root;
__le64 extent_root_gen;
__le64 fs_root;
__le64 fs_root_gen;
__le64 dev_root;
__le64 dev_root_gen;
__le64 csum_root;
__le64 csum_root_gen;
__le64 total_bytes;
__le64 bytes_used;
__le64 num_devices;
/* future */
__le64 unsed_64[4];
u8 tree_root_level;
u8 chunk_root_level;
u8 extent_root_level;
u8 fs_root_level;
u8 dev_root_level;
u8 csum_root_level;
/* future and to align */
u8 unused_8[10];
} __attribute__ ((__packed__));
/*
* the super block basically lists the main trees of the FS
* it currently lacks any block count etc etc
*/
struct btrfs_super_block {
u8 csum[BTRFS_CSUM_SIZE];
/* the first 4 fields must match struct btrfs_header */
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
__le64 bytenr; /* this block number */
__le64 flags;
/* allowed to be different from the btrfs_header from here own down */
__le64 magic;
__le64 generation;
__le64 root;
__le64 chunk_root;
__le64 log_root;
/* this will help find the new super based on the log root */
__le64 log_root_transid;
__le64 total_bytes;
__le64 bytes_used;
__le64 root_dir_objectid;
__le64 num_devices;
__le32 sectorsize;
__le32 nodesize;
__le32 leafsize;
__le32 stripesize;
__le32 sys_chunk_array_size;
__le64 chunk_root_generation;
__le64 compat_flags;
__le64 compat_ro_flags;
__le64 incompat_flags;
__le16 csum_type;
u8 root_level;
u8 chunk_root_level;
u8 log_root_level;
struct btrfs_dev_item dev_item;
char label[BTRFS_LABEL_SIZE];
__le64 cache_generation;
/* future expansion */
__le64 reserved[31];
u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
} __attribute__ ((__packed__));
/*
* Compat flags that we support. If any incompat flags are set other than the
* ones specified below then we will fail to mount
*/
#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
#define BTRFS_FEATURE_INCOMPAT_SUPP \
(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO)
/*
* A leaf is full of items. offset and size tell us where to find
* the item in the leaf (relative to the start of the data area)
*/
struct btrfs_item {
struct btrfs_disk_key key;
__le32 offset;
__le32 size;
} __attribute__ ((__packed__));
/*
* leaves have an item area and a data area:
* [item0, item1....itemN] [free space] [dataN...data1, data0]
*
* The data is separate from the items to get the keys closer together
* during searches.
*/
struct btrfs_leaf {
struct btrfs_header header;
struct btrfs_item items[];
} __attribute__ ((__packed__));
/*
* all non-leaf blocks are nodes, they hold only keys and pointers to
* other blocks
*/
struct btrfs_key_ptr {
struct btrfs_disk_key key;
__le64 blockptr;
__le64 generation;
} __attribute__ ((__packed__));
struct btrfs_node {
struct btrfs_header header;
struct btrfs_key_ptr ptrs[];
} __attribute__ ((__packed__));
/*
* btrfs_paths remember the path taken from the root down to the leaf.
* level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
* to any other levels that are present.
*
* The slots array records the index of the item or block pointer
* used while walking the tree.
*/
struct btrfs_path {
struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
int slots[BTRFS_MAX_LEVEL];
/* if there is real range locking, this locks field will change */
int locks[BTRFS_MAX_LEVEL];
int reada;
/* keep some upper locks as we walk down */
int lowest_level;
/*
* set by btrfs_split_item, tells search_slot to keep all locks
* and to force calls to keep space in the nodes
*/
unsigned int search_for_split:1;
unsigned int keep_locks:1;
unsigned int skip_locking:1;
unsigned int leave_spinning:1;
unsigned int search_commit_root:1;
};
/*
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
struct btrfs_extent_item {
__le64 refs;
__le64 generation;
__le64 flags;
} __attribute__ ((__packed__));
struct btrfs_extent_item_v0 {
__le32 refs;
} __attribute__ ((__packed__));
#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
sizeof(struct btrfs_item))
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
/* following flags only apply to tree blocks */
/* use full backrefs for extent pointers in the block */
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
/*
* this flag is only used internally by scrub and may be changed at any time
* it is only declared here to avoid collisions
*/
#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
struct btrfs_tree_block_info {
struct btrfs_disk_key key;
u8 level;
} __attribute__ ((__packed__));
struct btrfs_extent_data_ref {
__le64 root;
__le64 objectid;
__le64 offset;
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_shared_data_ref {
__le32 count;
} __attribute__ ((__packed__));
struct btrfs_extent_inline_ref {
u8 type;
__le64 offset;
} __attribute__ ((__packed__));
/* old style backrefs item */
struct btrfs_extent_ref_v0 {
__le64 root;
__le64 generation;
__le64 objectid;
__le32 count;
} __attribute__ ((__packed__));
/* dev extents record free space on individual devices. The owner
* field points back to the chunk allocation mapping tree that allocated
* the extent. The chunk tree uuid field is a way to double check the owner
*/
struct btrfs_dev_extent {
__le64 chunk_tree;
__le64 chunk_objectid;
__le64 chunk_offset;
__le64 length;
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));
struct btrfs_inode_ref {
__le64 index;
__le16 name_len;
/* name goes here */
} __attribute__ ((__packed__));
struct btrfs_timespec {
__le64 sec;
__le32 nsec;
} __attribute__ ((__packed__));
enum btrfs_compression_type {
BTRFS_COMPRESS_NONE = 0,
BTRFS_COMPRESS_ZLIB = 1,
BTRFS_COMPRESS_LZO = 2,
BTRFS_COMPRESS_TYPES = 2,
BTRFS_COMPRESS_LAST = 3,
};
struct btrfs_inode_item {
/* nfs style generation number */
__le64 generation;
/* transid that last touched this inode */
__le64 transid;
__le64 size;
__le64 nbytes;
__le64 block_group;
__le32 nlink;
__le32 uid;
__le32 gid;
__le32 mode;
__le64 rdev;
__le64 flags;
/* modification sequence number for NFS */
__le64 sequence;
/*
* a little future expansion, for more than this we can
* just grow the inode item and version it
*/
__le64 reserved[4];
struct btrfs_timespec atime;
struct btrfs_timespec ctime;
struct btrfs_timespec mtime;
struct btrfs_timespec otime;
} __attribute__ ((__packed__));
struct btrfs_dir_log_item {
__le64 end;
} __attribute__ ((__packed__));
struct btrfs_dir_item {
struct btrfs_disk_key location;
__le64 transid;
__le16 data_len;
__le16 name_len;
u8 type;
} __attribute__ ((__packed__));
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
struct btrfs_root_item {
struct btrfs_inode_item inode;
__le64 generation;
__le64 root_dirid;
__le64 bytenr;
__le64 byte_limit;
__le64 bytes_used;
__le64 last_snapshot;
__le64 flags;
__le32 refs;
struct btrfs_disk_key drop_progress;
u8 drop_level;
u8 level;
} __attribute__ ((__packed__));
/*
* this is used for both forward and backward root refs
*/
struct btrfs_root_ref {
__le64 dirid;
__le64 sequence;
__le16 name_len;
} __attribute__ ((__packed__));
#define BTRFS_FILE_EXTENT_INLINE 0
#define BTRFS_FILE_EXTENT_REG 1
#define BTRFS_FILE_EXTENT_PREALLOC 2
struct btrfs_file_extent_item {
/*
* transaction id that created this extent
*/
__le64 generation;
/*
* max number of bytes to hold this extent in ram
* when we split a compressed extent we can't know how big
* each of the resulting pieces will be. So, this is
* an upper limit on the size of the extent in ram instead of
* an exact limit.
*/
__le64 ram_bytes;
/*
* 32 bits for the various ways we might encode the data,
* including compression and encryption. If any of these
* are set to something a given disk format doesn't understand
* it is treated like an incompat flag for reading and writing,
* but not for stat.
*/
u8 compression;
u8 encryption;
__le16 other_encoding; /* spare for later use */
/* are we inline data or a real extent? */
u8 type;
/*
* disk space consumed by the extent, checksum blocks are included
* in these numbers
*/
__le64 disk_bytenr;
__le64 disk_num_bytes;
/*
* the logical offset in file blocks (no csums)
* this extent record is for. This allows a file extent to point
* into the middle of an existing extent on disk, sharing it
* between two snapshots (useful if some bytes in the middle of the
* extent have changed
*/
__le64 offset;
/*
* the logical number of file blocks (no csums included). This
* always reflects the size uncompressed and without encoding.
*/
__le64 num_bytes;
} __attribute__ ((__packed__));
struct btrfs_csum_item {
u8 csum;
} __attribute__ ((__packed__));
/* different types of block groups (and chunks) */
#define BTRFS_BLOCK_GROUP_DATA (1 << 0)
#define BTRFS_BLOCK_GROUP_SYSTEM (1 << 1)
#define BTRFS_BLOCK_GROUP_METADATA (1 << 2)
#define BTRFS_BLOCK_GROUP_RAID0 (1 << 3)
#define BTRFS_BLOCK_GROUP_RAID1 (1 << 4)
#define BTRFS_BLOCK_GROUP_DUP (1 << 5)
#define BTRFS_BLOCK_GROUP_RAID10 (1 << 6)
#define BTRFS_NR_RAID_TYPES 5
struct btrfs_block_group_item {
__le64 used;
__le64 chunk_objectid;
__le64 flags;
} __attribute__ ((__packed__));
struct btrfs_space_info {
u64 flags;
u64 total_bytes; /* total bytes in the space,
this doesn't take mirrors into account */
u64 bytes_used; /* total bytes used,
this doesn't take mirrors into account */
u64 bytes_pinned; /* total bytes pinned, will be freed when the
transaction finishes */
u64 bytes_reserved; /* total bytes the allocator has reserved for
current allocations */
u64 bytes_readonly; /* total bytes that are read only */
u64 bytes_may_use; /* number of bytes that may be used for
delalloc/allocations */
u64 disk_used; /* total bytes used on disk */
u64 disk_total; /* total bytes on disk, takes mirrors into
account */
/*
* we bump reservation progress every time we decrement
* bytes_reserved. This way people waiting for reservations
* know something good has happened and they can check
* for progress. The number here isn't to be trusted, it
* just shows reclaim activity
*/
unsigned long reservation_progress;
unsigned int full:1; /* indicates that we cannot allocate any more
chunks for this space */
unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
unsigned int flush:1; /* set if we are trying to make space */
unsigned int force_alloc; /* set if we need to force a chunk
alloc for this space */
struct list_head list;
/* for block groups in our same type */
struct list_head block_groups[BTRFS_NR_RAID_TYPES];
spinlock_t lock;
struct rw_semaphore groups_sem;
wait_queue_head_t wait;
};
struct btrfs_block_rsv {
u64 size;
u64 reserved;
struct btrfs_space_info *space_info;
spinlock_t lock;
unsigned int full:1;
};
/*
* free clusters are used to claim free space in relatively large chunks,
* allowing us to do less seeky writes. They are used for all metadata
* allocations and data allocations in ssd mode.
*/
struct btrfs_free_cluster {
spinlock_t lock;
spinlock_t refill_lock;
struct rb_root root;
/* largest extent in this cluster */
u64 max_size;
/* first extent starting offset */
u64 window_start;
struct btrfs_block_group_cache *block_group;
/*
* when a cluster is allocated from a block group, we put the
* cluster onto a list in the block group so that it can
* be freed before the block group is freed.
*/
struct list_head block_group_list;
};
enum btrfs_caching_type {
BTRFS_CACHE_NO = 0,
BTRFS_CACHE_STARTED = 1,
BTRFS_CACHE_FAST = 2,
BTRFS_CACHE_FINISHED = 3,
};
enum btrfs_disk_cache_state {
BTRFS_DC_WRITTEN = 0,
BTRFS_DC_ERROR = 1,
BTRFS_DC_CLEAR = 2,
BTRFS_DC_SETUP = 3,
BTRFS_DC_NEED_WRITE = 4,
};
struct btrfs_caching_control {
struct list_head list;
struct mutex mutex;
wait_queue_head_t wait;
struct btrfs_work work;
struct btrfs_block_group_cache *block_group;
u64 progress;
atomic_t count;
};
struct btrfs_block_group_cache {
struct btrfs_key key;
struct btrfs_block_group_item item;
struct btrfs_fs_info *fs_info;
struct inode *inode;
spinlock_t lock;
u64 pinned;
u64 reserved;
u64 bytes_super;
u64 flags;
u64 sectorsize;
u64 cache_generation;
unsigned int ro:1;
unsigned int dirty:1;
unsigned int iref:1;
int disk_cache_state;
/* cache tracking stuff */
int cached;
struct btrfs_caching_control *caching_ctl;
u64 last_byte_to_unpin;
struct btrfs_space_info *space_info;
/* free space cache stuff */
struct btrfs_free_space_ctl *free_space_ctl;
/* block group cache stuff */
struct rb_node cache_node;
/* for block groups in the same raid type */
struct list_head list;
/* usage count */
atomic_t count;
/* List of struct btrfs_free_clusters for this block group.
* Today it will only have one thing on it, but that may change
*/
struct list_head cluster_list;
};
struct reloc_control;
struct btrfs_device;
struct btrfs_fs_devices;
struct btrfs_delayed_root;
struct btrfs_fs_info {
u8 fsid[BTRFS_FSID_SIZE];
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
struct btrfs_root *extent_root;
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
struct btrfs_root *dev_root;
struct btrfs_root *fs_root;
struct btrfs_root *csum_root;
/* the log root tree is a directory of all the other log roots */
struct btrfs_root *log_root_tree;
spinlock_t fs_roots_radix_lock;
struct radix_tree_root fs_roots_radix;
/* block group cache stuff */
spinlock_t block_group_cache_lock;
struct rb_root block_group_cache_tree;
/* keep track of unallocated space */
spinlock_t free_chunk_lock;
u64 free_chunk_space;
struct extent_io_tree freed_extents[2];
struct extent_io_tree *pinned_extents;
/* logical->physical extent mapping */
struct btrfs_mapping_tree mapping_tree;
/*
* block reservation for extent, checksum, root tree and
* delayed dir index item
*/
struct btrfs_block_rsv global_block_rsv;
/* block reservation for delay allocation */
struct btrfs_block_rsv delalloc_block_rsv;
/* block reservation for metadata operations */
struct btrfs_block_rsv trans_block_rsv;
/* block reservation for chunk tree */
struct btrfs_block_rsv chunk_block_rsv;
/* block reservation for delayed operations */
struct btrfs_block_rsv delayed_block_rsv;
struct btrfs_block_rsv empty_block_rsv;
u64 generation;
u64 last_trans_committed;
/*
* this is updated to the current trans every time a full commit
* is required instead of the faster short fsync log commits
*/
u64 last_trans_log_full_commit;
unsigned long mount_opt:20;
unsigned long compress_type:4;
u64 max_inline;
u64 alloc_start;
struct btrfs_transaction *running_transaction;
wait_queue_head_t transaction_throttle;
wait_queue_head_t transaction_wait;
wait_queue_head_t transaction_blocked_wait;
wait_queue_head_t async_submit_wait;
struct btrfs_super_block *super_copy;
struct btrfs_super_block *super_for_commit;
struct block_device *__bdev;
struct super_block *sb;
struct inode *btree_inode;
struct backing_dev_info bdi;
struct mutex tree_log_mutex;
struct mutex transaction_kthread_mutex;
struct mutex cleaner_mutex;
struct mutex chunk_mutex;
struct mutex volume_mutex;
/*
* this protects the ordered operations list only while we are
* processing all of the entries on it. This way we make
* sure the commit code doesn't find the list temporarily empty
* because another function happens to be doing non-waiting preflush
* before jumping into the main commit.
*/
struct mutex ordered_operations_mutex;
struct rw_semaphore extent_commit_sem;
struct rw_semaphore cleanup_work_sem;
struct rw_semaphore subvol_sem;
struct srcu_struct subvol_srcu;
spinlock_t trans_lock;
/*
* the reloc mutex goes with the trans lock, it is taken
* during commit to protect us from the relocation code
*/
struct mutex reloc_mutex;
struct list_head trans_list;
struct list_head hashers;
struct list_head dead_roots;
struct list_head caching_block_groups;
spinlock_t delayed_iput_lock;
struct list_head delayed_iputs;
atomic_t nr_async_submits;
atomic_t async_submit_draining;
atomic_t nr_async_bios;
atomic_t async_delalloc_pages;
atomic_t open_ioctl_trans;
/*
* this is used by the balancing code to wait for all the pending
* ordered extents
*/
spinlock_t ordered_extent_lock;
/*
* all of the data=ordered extents pending writeback
* these can span multiple transactions and basically include
* every dirty data page that isn't from nodatacow
*/
struct list_head ordered_extents;
/*
* all of the inodes that have delalloc bytes. It is possible for
* this list to be empty even when there is still dirty data=ordered
* extents waiting to finish IO.
*/
struct list_head delalloc_inodes;
/*
* special rename and truncate targets that must be on disk before
* we're allowed to commit. This is basically the ext3 style
* data=ordered list.
*/
struct list_head ordered_operations;
/*
* there is a pool of worker threads for checksumming during writes
* and a pool for checksumming after reads. This is because readers
* can run with FS locks held, and the writers may be waiting for
* those locks. We don't want ordering in the pending list to cause
* deadlocks, and so the two are serviced separately.
*
* A third pool does submit_bio to avoid deadlocking with the other
* two
*/
struct btrfs_workers generic_worker;
struct btrfs_workers workers;
struct btrfs_workers delalloc_workers;
struct btrfs_workers endio_workers;
struct btrfs_workers endio_meta_workers;
struct btrfs_workers endio_meta_write_workers;
struct btrfs_workers endio_write_workers;
struct btrfs_workers endio_freespace_worker;
struct btrfs_workers submit_workers;
struct btrfs_workers caching_workers;
struct btrfs_workers readahead_workers;
/*
* fixup workers take dirty pages that didn't properly go through
* the cow mechanism and make them safe to write. It happens
* for the sys_munmap function call path
*/
struct btrfs_workers fixup_workers;
struct btrfs_workers delayed_workers;
struct task_struct *transaction_kthread;
struct task_struct *cleaner_kthread;
int thread_pool_size;
struct kobject super_kobj;
struct completion kobj_unregister;
int do_barriers;
int closing;
int log_root_recovering;
int enospc_unlink;
int trans_no_join;
u64 total_pinned;
/* protected by the delalloc lock, used to keep from writing
* metadata until there is a nice batch
*/
u64 dirty_metadata_bytes;
struct list_head dirty_cowonly_roots;
struct btrfs_fs_devices *fs_devices;
/*
* the space_info list is almost entirely read only. It only changes
* when we add a new raid type to the FS, and that happens
* very rarely. RCU is used to protect it.
*/
struct list_head space_info;
struct reloc_control *reloc_ctl;
spinlock_t delalloc_lock;
u64 delalloc_bytes;
/* data_alloc_cluster is only used in ssd mode */
struct btrfs_free_cluster data_alloc_cluster;
/* all metadata allocations go through this cluster */
struct btrfs_free_cluster meta_alloc_cluster;
/* auto defrag inodes go here */
spinlock_t defrag_inodes_lock;
struct rb_root defrag_inodes;
atomic_t defrag_running;
spinlock_t ref_cache_lock;
u64 total_ref_cache_size;
u64 avail_data_alloc_bits;
u64 avail_metadata_alloc_bits;
u64 avail_system_alloc_bits;
u64 data_alloc_profile;
u64 metadata_alloc_profile;
u64 system_alloc_profile;
unsigned data_chunk_allocations;
unsigned metadata_ratio;
void *bdev_holder;
/* private scrub information */
struct mutex scrub_lock;
atomic_t scrubs_running;
atomic_t scrub_pause_req;
atomic_t scrubs_paused;
atomic_t scrub_cancel_req;
wait_queue_head_t scrub_pause_wait;
struct rw_semaphore scrub_super_lock;
int scrub_workers_refcnt;
struct btrfs_workers scrub_workers;
/* filesystem state */
u64 fs_state;
struct btrfs_delayed_root *delayed_root;
/* readahead tree */
spinlock_t reada_lock;
struct radix_tree_root reada_tree;
/* next backup root to be overwritten */
int backup_root_index;
};
/*
* in ram representation of the tree. extent_root is used for all allocations
* and for the extent tree extent_root root.
*/
struct btrfs_root {
struct extent_buffer *node;
struct extent_buffer *commit_root;
struct btrfs_root *log_root;
struct btrfs_root *reloc_root;
struct btrfs_root_item root_item;
struct btrfs_key root_key;
struct btrfs_fs_info *fs_info;
struct extent_io_tree dirty_log_pages;
struct kobject root_kobj;
struct completion kobj_unregister;
struct mutex objectid_mutex;
spinlock_t accounting_lock;
struct btrfs_block_rsv *block_rsv;
/* free ino cache stuff */
struct mutex fs_commit_mutex;
struct btrfs_free_space_ctl *free_ino_ctl;
enum btrfs_caching_type cached;
spinlock_t cache_lock;
wait_queue_head_t cache_wait;
struct btrfs_free_space_ctl *free_ino_pinned;
u64 cache_progress;
struct inode *cache_inode;
struct mutex log_mutex;
wait_queue_head_t log_writer_wait;
wait_queue_head_t log_commit_wait[2];
atomic_t log_writers;
atomic_t log_commit[2];
unsigned long log_transid;
unsigned long last_log_commit;
unsigned long log_batch;
pid_t log_start_pid;
bool log_multiple_pids;
u64 objectid;
u64 last_trans;
/* data allocations are done in sectorsize units */
u32 sectorsize;
/* node allocations are done in nodesize units */
u32 nodesize;
/* leaf allocations are done in leafsize units */
u32 leafsize;
u32 stripesize;
u32 type;
u64 highest_objectid;
/* btrfs_record_root_in_trans is a multi-step process,
* and it can race with the balancing code. But the
* race is very small, and only the first time the root
* is added to each transaction. So in_trans_setup
* is used to tell us when more checks are required
*/
unsigned long in_trans_setup;
int ref_cows;
int track_dirty;
int in_radix;
u64 defrag_trans_start;
struct btrfs_key defrag_progress;
struct btrfs_key defrag_max;
int defrag_running;
char *name;
/* the dirty list is only used by non-reference counted roots */
struct list_head dirty_list;
struct list_head root_list;
spinlock_t orphan_lock;
struct list_head orphan_list;
struct btrfs_block_rsv *orphan_block_rsv;
int orphan_item_inserted;
int orphan_cleanup_state;
spinlock_t inode_lock;
/* red-black tree that keeps track of in-memory inodes */
struct rb_root inode_tree;
/*
* radix tree that keeps track of delayed nodes of every inode,
* protected by inode_lock
*/
struct radix_tree_root delayed_nodes_tree;
/*
* right now this just gets used so that a root has its own devid
* for stat. It may be used for more later
*/
dev_t anon_dev;
int force_cow;
};
struct btrfs_ioctl_defrag_range_args {
/* start of the defrag operation */
__u64 start;
/* number of bytes to defrag, use (u64)-1 to say all */
__u64 len;
/*
* flags for the operation, which can include turning
* on compression for this one defrag
*/
__u64 flags;
/*
* any extent bigger than this will be considered
* already defragged. Use 0 to take the kernel default
* Use 1 to say every single extent must be rewritten
*/
__u32 extent_thresh;
/*
* which compression method to use if turning on compression
* for this defrag operation. If unspecified, zlib will
* be used
*/
__u32 compress_type;
/* spare for later */
__u32 unused[4];
};
/*
* inode items have the data typically returned from stat and store other
* info about object characteristics. There is one for every file and dir in
* the FS
*/
#define BTRFS_INODE_ITEM_KEY 1
#define BTRFS_INODE_REF_KEY 12
#define BTRFS_XATTR_ITEM_KEY 24
#define BTRFS_ORPHAN_ITEM_KEY 48
/* reserve 2-15 close to the inode for later flexibility */
/*
* dir items are the name -> inode pointers in a directory. There is one
* for every name in a directory.
*/
#define BTRFS_DIR_LOG_ITEM_KEY 60
#define BTRFS_DIR_LOG_INDEX_KEY 72
#define BTRFS_DIR_ITEM_KEY 84
#define BTRFS_DIR_INDEX_KEY 96
/*
* extent data is for file data
*/
#define BTRFS_EXTENT_DATA_KEY 108
/*
* extent csums are stored in a separate tree and hold csums for
* an entire extent on disk.
*/
#define BTRFS_EXTENT_CSUM_KEY 128
/*
* root items point to tree roots. They are typically in the root
* tree used by the super block to find all the other trees
*/
#define BTRFS_ROOT_ITEM_KEY 132
/*
* root backrefs tie subvols and snapshots to the directory entries that
* reference them
*/
#define BTRFS_ROOT_BACKREF_KEY 144
/*
* root refs make a fast index for listing all of the snapshots and
* subvolumes referenced by a given root. They point directly to the
* directory item in the root that references the subvol
*/
#define BTRFS_ROOT_REF_KEY 156
/*
* extent items are in the extent map tree. These record which blocks
* are used, and how many references there are to each block
*/
#define BTRFS_EXTENT_ITEM_KEY 168
#define BTRFS_TREE_BLOCK_REF_KEY 176
#define BTRFS_EXTENT_DATA_REF_KEY 178
#define BTRFS_EXTENT_REF_V0_KEY 180
#define BTRFS_SHARED_BLOCK_REF_KEY 182
#define BTRFS_SHARED_DATA_REF_KEY 184
/*
* block groups give us hints into the extent allocation trees. Which
* blocks are free etc etc
*/
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
#define BTRFS_DEV_EXTENT_KEY 204
#define BTRFS_DEV_ITEM_KEY 216
#define BTRFS_CHUNK_ITEM_KEY 228
/*
* string items are for debugging. They just store a short string of
* data in the FS
*/
#define BTRFS_STRING_ITEM_KEY 253
/*
* Flags for mount options.
*
* Note: don't forget to add new options to btrfs_show_options()
*/
#define BTRFS_MOUNT_NODATASUM (1 << 0)
#define BTRFS_MOUNT_NODATACOW (1 << 1)
#define BTRFS_MOUNT_NOBARRIER (1 << 2)
#define BTRFS_MOUNT_SSD (1 << 3)
#define BTRFS_MOUNT_DEGRADED (1 << 4)
#define BTRFS_MOUNT_COMPRESS (1 << 5)
#define BTRFS_MOUNT_NOTREELOG (1 << 6)
#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
#define BTRFS_MOUNT_NOSSD (1 << 9)
#define BTRFS_MOUNT_DISCARD (1 << 10)
#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
#define BTRFS_MOUNT_RECOVERY (1 << 18)
#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
BTRFS_MOUNT_##opt)
/*
* Inode flags
*/
#define BTRFS_INODE_NODATASUM (1 << 0)
#define BTRFS_INODE_NODATACOW (1 << 1)
#define BTRFS_INODE_READONLY (1 << 2)
#define BTRFS_INODE_NOCOMPRESS (1 << 3)
#define BTRFS_INODE_PREALLOC (1 << 4)
#define BTRFS_INODE_SYNC (1 << 5)
#define BTRFS_INODE_IMMUTABLE (1 << 6)
#define BTRFS_INODE_APPEND (1 << 7)
#define BTRFS_INODE_NODUMP (1 << 8)
#define BTRFS_INODE_NOATIME (1 << 9)
#define BTRFS_INODE_DIRSYNC (1 << 10)
#define BTRFS_INODE_COMPRESS (1 << 11)
#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
/* some macros to generate set/get funcs for the struct fields. This
* assumes there is a lefoo_to_cpu for every type, so lets make a simple
* one for u8:
*/
#define le8_to_cpu(v) (v)
#define cpu_to_le8(v) (v)
#define __le8 u8
#define read_eb_member(eb, ptr, type, member, result) ( \
read_extent_buffer(eb, (char *)(result), \
((unsigned long)(ptr)) + \
offsetof(type, member), \
sizeof(((type *)0)->member)))
#define write_eb_member(eb, ptr, type, member, result) ( \
write_extent_buffer(eb, (char *)(result), \
((unsigned long)(ptr)) + \
offsetof(type, member), \
sizeof(((type *)0)->member)))
#ifndef BTRFS_SETGET_FUNCS
#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
u##bits btrfs_##name(struct extent_buffer *eb, type *s); \
void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val);
#endif
#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
static inline u##bits btrfs_##name(struct extent_buffer *eb) \
{ \
type *p = page_address(eb->first_page); \
u##bits res = le##bits##_to_cpu(p->member); \
return res; \
} \
static inline void btrfs_set_##name(struct extent_buffer *eb, \
u##bits val) \
{ \
type *p = page_address(eb->first_page); \
p->member = cpu_to_le##bits(val); \
}
#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
static inline u##bits btrfs_##name(type *s) \
{ \
return le##bits##_to_cpu(s->member); \
} \
static inline void btrfs_set_##name(type *s, u##bits val) \
{ \
s->member = cpu_to_le##bits(val); \
}
BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
start_offset, 64);
BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
io_align, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
io_width, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
sector_size, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
dev_group, 32);
BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
seek_speed, 8);
BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
bandwidth, 8);
BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
generation, 64);
static inline char *btrfs_device_uuid(struct btrfs_dev_item *d)
{
return (char *)d + offsetof(struct btrfs_dev_item, uuid);
}
static inline char *btrfs_device_fsid(struct btrfs_dev_item *d)
{
return (char *)d + offsetof(struct btrfs_dev_item, fsid);
}
BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
{
return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
}
BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
stripe_len, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
io_align, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
io_width, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
sector_size, 32);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
num_stripes, 16);
BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
sub_stripes, 16);
BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
int nr)
{
unsigned long offset = (unsigned long)c;
offset += offsetof(struct btrfs_chunk, stripe);
offset += nr * sizeof(struct btrfs_stripe);
return (struct btrfs_stripe *)offset;
}
static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
}
static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
}
static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
struct btrfs_chunk *c, int nr)
{
return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
}
/* struct btrfs_block_group_item */
BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
used, 64);
BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
used, 64);
BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
struct btrfs_block_group_item, chunk_objectid, 64);
BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
struct btrfs_block_group_item, chunk_objectid, 64);
BTRFS_SETGET_FUNCS(disk_block_group_flags,
struct btrfs_block_group_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(block_group_flags,
struct btrfs_block_group_item, flags, 64);
/* struct btrfs_inode_ref */
BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
/* struct btrfs_inode_item */
BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
static inline struct btrfs_timespec *
btrfs_inode_atime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, atime);
return (struct btrfs_timespec *)ptr;
}
static inline struct btrfs_timespec *
btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, mtime);
return (struct btrfs_timespec *)ptr;
}
static inline struct btrfs_timespec *
btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
{
unsigned long ptr = (unsigned long)inode_item;
ptr += offsetof(struct btrfs_inode_item, ctime);
return (struct btrfs_timespec *)ptr;
}
BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
/* struct btrfs_dev_extent */
BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
chunk_tree, 64);
BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
chunk_objectid, 64);
BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
chunk_offset, 64);
BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
{
unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
return (u8 *)((unsigned long)dev + ptr);
}
BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
generation, 64);
BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
static inline void btrfs_tree_block_key(struct extent_buffer *eb,
struct btrfs_tree_block_info *item,
struct btrfs_disk_key *key)
{
read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
}
static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
struct btrfs_tree_block_info *item,
struct btrfs_disk_key *key)
{
write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
}
BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
root, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
objectid, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
offset, 64);
BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
count, 32);
BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
count, 32);
BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
type, 8);
BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
offset, 64);
static inline u32 btrfs_extent_inline_ref_size(int type)
{
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
type == BTRFS_SHARED_BLOCK_REF_KEY)
return sizeof(struct btrfs_extent_inline_ref);
if (type == BTRFS_SHARED_DATA_REF_KEY)
return sizeof(struct btrfs_shared_data_ref) +
sizeof(struct btrfs_extent_inline_ref);
if (type == BTRFS_EXTENT_DATA_REF_KEY)
return sizeof(struct btrfs_extent_data_ref) +
offsetof(struct btrfs_extent_inline_ref, offset);
BUG();
return 0;
}
BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
generation, 64);
BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
/* struct btrfs_node */
BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
}
static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
int nr, u64 val)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
}
static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
}
static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
int nr, u64 val)
{
unsigned long ptr;
ptr = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
}
static inline unsigned long btrfs_node_key_ptr_offset(int nr)
{
return offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nr;
}
void btrfs_node_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr);
static inline void btrfs_set_node_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
unsigned long ptr;
ptr = btrfs_node_key_ptr_offset(nr);
write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
struct btrfs_key_ptr, key, disk_key);
}
/* struct btrfs_item */
BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
static inline unsigned long btrfs_item_nr_offset(int nr)
{
return offsetof(struct btrfs_leaf, items) +
sizeof(struct btrfs_item) * nr;
}
static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb,
int nr)
{
return (struct btrfs_item *)btrfs_item_nr_offset(nr);
}
static inline u32 btrfs_item_end(struct extent_buffer *eb,
struct btrfs_item *item)
{
return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
}
static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_end(eb, btrfs_item_nr(eb, nr));
}
static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_offset(eb, btrfs_item_nr(eb, nr));
}
static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
{
return btrfs_item_size(eb, btrfs_item_nr(eb, nr));
}
static inline void btrfs_item_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
struct btrfs_item *item = btrfs_item_nr(eb, nr);
read_eb_member(eb, item, struct btrfs_item, key, disk_key);
}
static inline void btrfs_set_item_key(struct extent_buffer *eb,
struct btrfs_disk_key *disk_key, int nr)
{
struct btrfs_item *item = btrfs_item_nr(eb, nr);
write_eb_member(eb, item, struct btrfs_item, key, disk_key);
}
BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
/*
* struct btrfs_root_ref
*/
BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
/* struct btrfs_dir_item */
BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
static inline void btrfs_dir_item_key(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_disk_key *key)
{
read_eb_member(eb, item, struct btrfs_dir_item, location, key);
}
static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_disk_key *key)
{
write_eb_member(eb, item, struct btrfs_dir_item, location, key);
}
BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
num_entries, 64);
BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
num_bitmaps, 64);
BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
generation, 64);
static inline void btrfs_free_space_key(struct extent_buffer *eb,
struct btrfs_free_space_header *h,
struct btrfs_disk_key *key)
{
read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
}
static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
struct btrfs_free_space_header *h,
struct btrfs_disk_key *key)
{
write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
}
/* struct btrfs_disk_key */
BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
objectid, 64);
BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
struct btrfs_disk_key *disk)
{
cpu->offset = le64_to_cpu(disk->offset);
cpu->type = disk->type;
cpu->objectid = le64_to_cpu(disk->objectid);
}
static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
struct btrfs_key *cpu)
{
disk->offset = cpu_to_le64(cpu->offset);
disk->type = cpu->type;
disk->objectid = cpu_to_le64(cpu->objectid);
}
static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
struct btrfs_key *key, int nr)
{
struct btrfs_disk_key disk_key;
btrfs_node_key(eb, &disk_key, nr);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
struct btrfs_key *key, int nr)
{
struct btrfs_disk_key disk_key;
btrfs_item_key(eb, &disk_key, nr);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
struct btrfs_dir_item *item,
struct btrfs_key *key)
{
struct btrfs_disk_key disk_key;
btrfs_dir_item_key(eb, item, &disk_key);
btrfs_disk_key_to_cpu(key, &disk_key);
}
static inline u8 btrfs_key_type(struct btrfs_key *key)
{
return key->type;
}
static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
{
key->type = val;
}
/* struct btrfs_header */
BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
generation, 64);
BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
{
return (btrfs_header_flags(eb) & flag) == flag;
}
static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
{
u64 flags = btrfs_header_flags(eb);
btrfs_set_header_flags(eb, flags | flag);
return (flags & flag) == flag;
}
static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
{
u64 flags = btrfs_header_flags(eb);
btrfs_set_header_flags(eb, flags & ~flag);
return (flags & flag) == flag;
}
static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
{
u64 flags = btrfs_header_flags(eb);
return flags >> BTRFS_BACKREF_REV_SHIFT;
}
static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
int rev)
{
u64 flags = btrfs_header_flags(eb);
flags &= ~BTRFS_BACKREF_REV_MASK;
flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
btrfs_set_header_flags(eb, flags);
}
static inline u8 *btrfs_header_fsid(struct extent_buffer *eb)
{
unsigned long ptr = offsetof(struct btrfs_header, fsid);
return (u8 *)ptr;
}
static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
{
unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid);
return (u8 *)ptr;
}
static inline int btrfs_is_leaf(struct extent_buffer *eb)
{
return btrfs_header_level(eb) == 0;
}
/* struct btrfs_root_item */
BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
generation, 64);
BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
last_snapshot, 64);
static inline bool btrfs_root_readonly(struct btrfs_root *root)
{
return root->root_item.flags & BTRFS_ROOT_SUBVOL_RDONLY;
}
/* struct btrfs_root_backup */
BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
tree_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
tree_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
tree_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
chunk_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
chunk_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
chunk_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
extent_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
extent_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
extent_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
fs_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
fs_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
fs_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
dev_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
dev_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
dev_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
csum_root, 64);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
csum_root_gen, 64);
BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
csum_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
num_devices, 64);
/* struct btrfs_super_block */
BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
struct btrfs_super_block, sys_chunk_array_size, 32);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
struct btrfs_super_block, chunk_root_generation, 64);
BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
chunk_root, 64);
BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
chunk_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
log_root, 64);
BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
log_root_transid, 64);
BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
log_root_level, 8);
BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
total_bytes, 64);
BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
bytes_used, 64);
BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
sectorsize, 32);
BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
nodesize, 32);
BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
leafsize, 32);
BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
stripesize, 32);
BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
root_dir_objectid, 64);
BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
num_devices, 64);
BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
compat_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
compat_ro_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
incompat_flags, 64);
BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
csum_type, 16);
BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
cache_generation, 64);
static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
{
int t = btrfs_super_csum_type(s);
BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes));
return btrfs_csum_sizes[t];
}
static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
{
return offsetof(struct btrfs_leaf, items);
}
/* struct btrfs_file_extent_item */
BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
static inline unsigned long
btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
{
unsigned long offset = (unsigned long)e;
offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
return offset;
}
static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
{
return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
}
BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
disk_bytenr, 64);
BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
generation, 64);
BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
disk_num_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
offset, 64);
BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
num_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
ram_bytes, 64);
BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
compression, 8);
BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
encryption, 8);
BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
other_encoding, 16);
/* this returns the number of file bytes represented by the inline item.
* If an item is compressed, this is the uncompressed size
*/
static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
struct btrfs_file_extent_item *e)
{
return btrfs_file_extent_ram_bytes(eb, e);
}
/*
* this returns the number of bytes used by the item on disk, minus the
* size of any extent headers. If a file is compressed on disk, this is
* the compressed size
*/
static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
struct btrfs_item *e)
{
unsigned long offset;
offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
return btrfs_item_size(eb, e) - offset;
}
static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
{
if (level == 0)
return root->leafsize;
return root->nodesize;
}
/* helper function to cast into the data area of the leaf. */
#define btrfs_item_ptr(leaf, slot, type) \
((type *)(btrfs_leaf_data(leaf) + \
btrfs_item_offset_nr(leaf, slot)))
#define btrfs_item_ptr_offset(leaf, slot) \
((unsigned long)(btrfs_leaf_data(leaf) + \
btrfs_item_offset_nr(leaf, slot)))
static inline struct dentry *fdentry(struct file *file)
{
return file->f_path.dentry;
}
static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
{
return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
}
static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
{
return mapping_gfp_mask(mapping) & ~__GFP_FS;
}
/* extent-tree.c */
static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
unsigned num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3 * num_items;
}
/*
* Doing a truncate won't result in new nodes or leaves, just what we need for
* COW.
*/
static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
unsigned num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
num_items;
}
void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count);
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *refs, u64 *flags);
int btrfs_pin_extent(struct btrfs_root *root,
u64 bytenr, u64 num, int reserved);
int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes);
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 offset, u64 bytenr);
struct btrfs_block_group_cache *btrfs_lookup_block_group(
struct btrfs_fs_info *info,
u64 bytenr);
void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
u64 btrfs_find_block_group(struct btrfs_root *root,
u64 search_start, u64 search_hint, int owner);
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u32 blocksize,
u64 parent, u64 root_objectid,
struct btrfs_disk_key *key, int level,
u64 hint, u64 empty_size);
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
u64 parent, int last_ref);
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u32 blocksize,
int level);
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner,
u64 offset, struct btrfs_key *ins);
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner, u64 offset,
struct btrfs_key *ins);
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins,
u64 data);
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref);
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref);
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 flags,
int is_data);
int btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset);
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
u64 start, u64 len);
int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset);
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
int btrfs_free_block_groups(struct btrfs_fs_info *info);
int btrfs_read_block_groups(struct btrfs_root *root);
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytes_used,
u64 type, u64 chunk_objectid, u64 chunk_offset,
u64 size);
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 group_start);
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags);
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde);
void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
struct inode *inode);
void btrfs_orphan_release_metadata(struct inode *inode);
int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending);
int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv);
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root);
void btrfs_free_block_rsv(struct btrfs_root *root,
struct btrfs_block_rsv *rsv);
int btrfs_block_rsv_add(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 num_bytes);
int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 num_bytes);
int btrfs_block_rsv_check(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, int min_factor);
int btrfs_block_rsv_refill(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 min_reserved);
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
struct btrfs_block_rsv *dst_rsv,
u64 num_bytes);
void btrfs_block_rsv_release(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 num_bytes);
int btrfs_set_block_group_ro(struct btrfs_root *root,
struct btrfs_block_group_cache *cache);
int btrfs_set_block_group_rw(struct btrfs_root *root,
struct btrfs_block_group_cache *cache);
void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
int btrfs_error_unpin_extent_range(struct btrfs_root *root,
u64 start, u64 end);
int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
u64 num_bytes, u64 *actual_bytes);
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type);
int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
/* ctree.c */
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
int level, int *slot);
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
int btrfs_previous_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid,
int type);
int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *new_key);
struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *key, int lowest_level,
int cache_only, u64 min_trans);
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
struct btrfs_key *max_key,
struct btrfs_path *path, int cache_only,
u64 min_trans);
int btrfs_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *parent, int parent_slot,
struct extent_buffer **cow_ret);
int btrfs_copy_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
struct extent_buffer **cow_ret, u64 new_root_objectid);
int btrfs_block_can_be_shared(struct btrfs_root *root,
struct extent_buffer *buf);
int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, u32 data_size);
int btrfs_truncate_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u32 new_size, int from_end);
int btrfs_split_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *new_key,
unsigned long split_offset);
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *new_key);
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_path *p, int
ins_len, int cow);
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *parent,
int start_slot, int cache_only, u64 *last_ret,
struct btrfs_key *progress);
void btrfs_release_path(struct btrfs_path *p);
struct btrfs_path *btrfs_alloc_path(void);
void btrfs_free_path(struct btrfs_path *p);
void btrfs_set_path_blocking(struct btrfs_path *p);
void btrfs_clear_path_blocking(struct btrfs_path *p,
struct extent_buffer *held, int held_rw);
void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path, int slot, int nr);
static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
return btrfs_del_items(trans, root, path, path->slots[0], 1);
}
int setup_items_for_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size,
u32 total_data, u32 total_size, int nr);
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, void *data, u32 data_size);
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size, int nr);
static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *key,
u32 data_size)
{
return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
}
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
void btrfs_drop_snapshot(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv, int update_ref);
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *node,
struct extent_buffer *parent);
static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
{
/*
* Get synced with close_ctree()
*/
smp_mb();
return fs_info->closing;
}
static inline void free_fs_info(struct btrfs_fs_info *fs_info)
{
kfree(fs_info->delayed_root);
kfree(fs_info->extent_root);
kfree(fs_info->tree_root);
kfree(fs_info->chunk_root);
kfree(fs_info->dev_root);
kfree(fs_info->csum_root);
kfree(fs_info->super_copy);
kfree(fs_info->super_for_commit);
kfree(fs_info);
}
/* root-item.c */
int btrfs_find_root_ref(struct btrfs_root *tree_root,
struct btrfs_path *path,
u64 root_id, u64 ref_id);
int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *tree_root,
u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
const char *name, int name_len);
int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *tree_root,
u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
const char *name, int name_len);
int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_key *key);
int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item);
int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item);
int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
btrfs_root_item *item, struct btrfs_key *key);
int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid);
int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
void btrfs_set_root_node(struct btrfs_root_item *item,
struct extent_buffer *node);
void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
/* dir-item.c */
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name,
int name_len, struct inode *dir,
struct btrfs_key *location, u8 type, u64 index);
struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
const char *name, int name_len,
int mod);
struct btrfs_dir_item *
btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
u64 objectid, const char *name, int name_len,
int mod);
struct btrfs_dir_item *
btrfs_search_dir_index_item(struct btrfs_root *root,
struct btrfs_path *path, u64 dirid,
const char *name, int name_len);
struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
struct btrfs_path *path,
const char *name, int name_len);
int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_dir_item *di);
int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
const char *name, u16 name_len,
const void *data, u16 data_len);
struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 dir,
const char *name, u16 name_len,
int mod);
int verify_dir_item(struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_dir_item *dir_item);
/* orphan.c */
int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 offset);
int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 offset);
int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
/* inode-item.c */
int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, u64 index);
int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, u64 *index);
struct btrfs_inode_ref *
btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
const char *name, int name_len,
u64 inode_objectid, u64 ref_objectid, int mod);
int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid);
int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path,
struct btrfs_key *location, int mod);
/* file-item.c */
int btrfs_del_csums(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr, u64 len);
int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u32 *dst);
int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u64 logical_offset, u32 *dst);
int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 pos,
u64 disk_offset, u64 disk_num_bytes,
u64 num_bytes, u64 offset, u64 ram_bytes,
u8 compression, u8 encryption, u16 other_encoding);
int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid,
u64 bytenr, int mod);
int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_ordered_sum *sums);
int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
struct bio *bio, u64 file_start, int contig);
struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, int cow);
int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *path,
u64 isize);
int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
struct list_head *list, int search_commit);
/* inode.c */
struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 len,
int create);
/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
#define ClearPageChecked ClearPageFsMisc
#define SetPageChecked SetPageFsMisc
#define PageChecked PageFsMisc
#endif
/* This forces readahead on a given range of bytes in an inode */
static inline void btrfs_force_ra(struct address_space *mapping,
struct file_ra_state *ra, struct file *file,
pgoff_t offset, unsigned long req_size)
{
page_cache_sync_readahead(mapping, ra, file, offset, req_size);
}
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
int btrfs_set_inode_index(struct inode *dir, u64 *index);
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, struct inode *inode,
const char *name, int name_len);
int btrfs_add_link(struct btrfs_trans_handle *trans,
struct inode *parent_inode, struct inode *inode,
const char *name, int name_len, int add_backref, u64 index);
int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir, u64 objectid,
const char *name, int name_len);
int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode, u64 new_size,
u32 min_type);
int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
struct extent_state **cached_state);
int btrfs_writepages(struct address_space *mapping,
struct writeback_control *wbc);
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
struct btrfs_root *new_root, u64 new_dirid);
int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
size_t size, struct bio *bio, unsigned long bio_flags);
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
int btrfs_readpage(struct file *file, struct page *page);
void btrfs_evict_inode(struct inode *inode);
int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
void btrfs_dirty_inode(struct inode *inode, int flags);
struct inode *btrfs_alloc_inode(struct super_block *sb);
void btrfs_destroy_inode(struct inode *inode);
int btrfs_drop_inode(struct inode *inode);
int btrfs_init_cachep(void);
void btrfs_destroy_cachep(void);
long btrfs_ioctl_trans_end(struct file *file);
struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
struct btrfs_root *root, int *was_new);
struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
size_t pg_offset, u64 start, u64 end,
int create);
int btrfs_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode);
int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode);
int btrfs_orphan_cleanup(struct btrfs_root *root);
void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
int btrfs_invalidate_inodes(struct btrfs_root *root);
void btrfs_add_delayed_iput(struct inode *inode);
void btrfs_run_delayed_iputs(struct btrfs_root *root);
int btrfs_prealloc_file_range(struct inode *inode, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint);
int btrfs_prealloc_file_range_trans(struct inode *inode,
struct btrfs_trans_handle *trans, int mode,
u64 start, u64 num_bytes, u64 min_size,
loff_t actual_len, u64 *alloc_hint);
extern const struct dentry_operations btrfs_dentry_operations;
/* ioctl.c */
long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
void btrfs_update_iflags(struct inode *inode);
void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
int btrfs_defrag_file(struct inode *inode, struct file *file,
struct btrfs_ioctl_defrag_range_args *range,
u64 newer_than, unsigned long max_pages);
/* file.c */
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
struct inode *inode);
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
int skip_pinned);
extern const struct file_operations btrfs_file_operations;
int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
u64 start, u64 end, u64 *hint_byte, int drop_cache);
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct inode *inode, u64 start, u64 end);
int btrfs_release_file(struct inode *inode, struct file *file);
void btrfs_drop_pages(struct page **pages, size_t num_pages);
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
struct page **pages, size_t num_pages,
loff_t pos, size_t write_bytes,
struct extent_state **cached);
/* tree-defrag.c */
int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int cache_only);
/* sysfs.c */
int btrfs_init_sysfs(void);
void btrfs_exit_sysfs(void);
/* xattr.c */
ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
/* super.c */
int btrfs_parse_options(struct btrfs_root *root, char *options);
int btrfs_sync_fs(struct super_block *sb, int wait);
void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
unsigned int line, int errno);
#define btrfs_std_error(fs_info, errno) \
do { \
if ((errno)) \
__btrfs_std_error((fs_info), __func__, __LINE__, (errno));\
} while (0)
/* acl.c */
#ifdef CONFIG_BTRFS_FS_POSIX_ACL
struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
int btrfs_init_acl(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *dir);
int btrfs_acl_chmod(struct inode *inode);
#else
#define btrfs_get_acl NULL
static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *dir)
{
return 0;
}
static inline int btrfs_acl_chmod(struct inode *inode)
{
return 0;
}
#endif
/* relocation.c */
int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_recover_relocation(struct btrfs_root *root);
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *buf,
struct extent_buffer *cow);
void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending,
u64 *bytes_to_reserve);
void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending);
/* scrub.c */
int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
struct btrfs_scrub_progress *progress, int readonly);
int btrfs_scrub_pause(struct btrfs_root *root);
int btrfs_scrub_pause_super(struct btrfs_root *root);
int btrfs_scrub_continue(struct btrfs_root *root);
int btrfs_scrub_continue_super(struct btrfs_root *root);
int btrfs_scrub_cancel(struct btrfs_root *root);
int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev);
int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid);
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
struct btrfs_scrub_progress *progress);
/* reada.c */
struct reada_control {
struct btrfs_root *root; /* tree to prefetch */
struct btrfs_key key_start;
struct btrfs_key key_end; /* exclusive */
atomic_t elems;
struct kref refcnt;
wait_queue_head_t wait;
};
struct reada_control *btrfs_reada_add(struct btrfs_root *root,
struct btrfs_key *start, struct btrfs_key *end);
int btrfs_reada_wait(void *handle);
void btrfs_reada_detach(void *handle);
int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
u64 start, int err);
#endif