kernel_optimize_test/arch/arm/mach-ixp4xx/common.c
Rob Herring e8d36d5dbb ARM: kill off set_irq_flags usage
set_irq_flags is ARM specific with custom flags which have genirq
equivalents. Convert drivers to use the genirq interfaces directly, so we
can kill off set_irq_flags. The translation of flags is as follows:

IRQF_VALID -> !IRQ_NOREQUEST
IRQF_PROBE -> !IRQ_NOPROBE
IRQF_NOAUTOEN -> IRQ_NOAUTOEN

For IRQs managed by an irqdomain, the irqdomain core code handles clearing
and setting IRQ_NOREQUEST already, so there is no need to do this in
.map() functions and we can simply remove the set_irq_flags calls. Some
users also modify IRQ_NOPROBE and this has been maintained although it
is not clear that is really needed. There appears to be a great deal of
blind copy and paste of this code.

Signed-off-by: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Sekhar Nori <nsekhar@ti.com>
Cc: Kevin Hilman <khilman@deeprootsystems.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Cc: Gregory Clement <gregory.clement@free-electrons.com>
Acked-by: Hans Ulli Kroll <ulli.kroll@googlemail.com>
Acked-by: Shawn Guo <shawnguo@kernel.org>
Cc: Sascha Hauer <kernel@pengutronix.de>
Cc: Imre Kaloz <kaloz@openwrt.org>
Acked-by: Krzysztof Halasa <khalasa@piap.pl>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Roland Stigge <stigge@antcom.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Daniel Mack <daniel@zonque.org>
Cc: Haojian Zhuang <haojian.zhuang@gmail.com>
Cc: Robert Jarzmik <robert.jarzmik@free.fr>
Cc: Simtec Linux Team <linux@simtec.co.uk>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Wan ZongShun <mcuos.com@gmail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-omap@vger.kernel.org
Cc: linux-samsung-soc@vger.kernel.org
Tested-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Olof Johansson <olof@lixom.net>
2015-07-28 13:58:13 +02:00

685 lines
16 KiB
C

/*
* arch/arm/mach-ixp4xx/common.c
*
* Generic code shared across all IXP4XX platforms
*
* Maintainer: Deepak Saxena <dsaxena@plexity.net>
*
* Copyright 2002 (c) Intel Corporation
* Copyright 2003-2004 (c) MontaVista, Software, Inc.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/serial.h>
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/io.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/cpu.h>
#include <linux/pci.h>
#include <linux/sched_clock.h>
#include <mach/udc.h>
#include <mach/hardware.h>
#include <mach/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/irq.h>
#include <asm/system_misc.h>
#include <asm/mach/map.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#define IXP4XX_TIMER_FREQ 66666000
/*
* The timer register doesn't allow to specify the two least significant bits of
* the timeout value and assumes them being zero. So make sure IXP4XX_LATCH is
* the best value with the two least significant bits unset.
*/
#define IXP4XX_LATCH DIV_ROUND_CLOSEST(IXP4XX_TIMER_FREQ, \
(IXP4XX_OST_RELOAD_MASK + 1) * HZ) * \
(IXP4XX_OST_RELOAD_MASK + 1)
static void __init ixp4xx_clocksource_init(void);
static void __init ixp4xx_clockevent_init(void);
static struct clock_event_device clockevent_ixp4xx;
/*************************************************************************
* IXP4xx chipset I/O mapping
*************************************************************************/
static struct map_desc ixp4xx_io_desc[] __initdata = {
{ /* UART, Interrupt ctrl, GPIO, timers, NPEs, MACs, USB .... */
.virtual = (unsigned long)IXP4XX_PERIPHERAL_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_PERIPHERAL_BASE_PHYS),
.length = IXP4XX_PERIPHERAL_REGION_SIZE,
.type = MT_DEVICE
}, { /* Expansion Bus Config Registers */
.virtual = (unsigned long)IXP4XX_EXP_CFG_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_EXP_CFG_BASE_PHYS),
.length = IXP4XX_EXP_CFG_REGION_SIZE,
.type = MT_DEVICE
}, { /* PCI Registers */
.virtual = (unsigned long)IXP4XX_PCI_CFG_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_PCI_CFG_BASE_PHYS),
.length = IXP4XX_PCI_CFG_REGION_SIZE,
.type = MT_DEVICE
}, { /* Queue Manager */
.virtual = (unsigned long)IXP4XX_QMGR_BASE_VIRT,
.pfn = __phys_to_pfn(IXP4XX_QMGR_BASE_PHYS),
.length = IXP4XX_QMGR_REGION_SIZE,
.type = MT_DEVICE
},
};
void __init ixp4xx_map_io(void)
{
iotable_init(ixp4xx_io_desc, ARRAY_SIZE(ixp4xx_io_desc));
}
/*
* GPIO-functions
*/
/*
* The following converted to the real HW bits the gpio_line_config
*/
/* GPIO pin types */
#define IXP4XX_GPIO_OUT 0x1
#define IXP4XX_GPIO_IN 0x2
/* GPIO signal types */
#define IXP4XX_GPIO_LOW 0
#define IXP4XX_GPIO_HIGH 1
/* GPIO Clocks */
#define IXP4XX_GPIO_CLK_0 14
#define IXP4XX_GPIO_CLK_1 15
static void gpio_line_config(u8 line, u32 direction)
{
if (direction == IXP4XX_GPIO_IN)
*IXP4XX_GPIO_GPOER |= (1 << line);
else
*IXP4XX_GPIO_GPOER &= ~(1 << line);
}
static void gpio_line_get(u8 line, int *value)
{
*value = (*IXP4XX_GPIO_GPINR >> line) & 0x1;
}
static void gpio_line_set(u8 line, int value)
{
if (value == IXP4XX_GPIO_HIGH)
*IXP4XX_GPIO_GPOUTR |= (1 << line);
else if (value == IXP4XX_GPIO_LOW)
*IXP4XX_GPIO_GPOUTR &= ~(1 << line);
}
/*************************************************************************
* IXP4xx chipset IRQ handling
*
* TODO: GPIO IRQs should be marked invalid until the user of the IRQ
* (be it PCI or something else) configures that GPIO line
* as an IRQ.
**************************************************************************/
enum ixp4xx_irq_type {
IXP4XX_IRQ_LEVEL, IXP4XX_IRQ_EDGE
};
/* Each bit represents an IRQ: 1: edge-triggered, 0: level triggered */
static unsigned long long ixp4xx_irq_edge = 0;
/*
* IRQ -> GPIO mapping table
*/
static signed char irq2gpio[32] = {
-1, -1, -1, -1, -1, -1, 0, 1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, -1, -1,
};
static int ixp4xx_gpio_to_irq(struct gpio_chip *chip, unsigned gpio)
{
int irq;
for (irq = 0; irq < 32; irq++) {
if (irq2gpio[irq] == gpio)
return irq;
}
return -EINVAL;
}
static int ixp4xx_set_irq_type(struct irq_data *d, unsigned int type)
{
int line = irq2gpio[d->irq];
u32 int_style;
enum ixp4xx_irq_type irq_type;
volatile u32 *int_reg;
/*
* Only for GPIO IRQs
*/
if (line < 0)
return -EINVAL;
switch (type){
case IRQ_TYPE_EDGE_BOTH:
int_style = IXP4XX_GPIO_STYLE_TRANSITIONAL;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_EDGE_RISING:
int_style = IXP4XX_GPIO_STYLE_RISING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_EDGE_FALLING:
int_style = IXP4XX_GPIO_STYLE_FALLING_EDGE;
irq_type = IXP4XX_IRQ_EDGE;
break;
case IRQ_TYPE_LEVEL_HIGH:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_HIGH;
irq_type = IXP4XX_IRQ_LEVEL;
break;
case IRQ_TYPE_LEVEL_LOW:
int_style = IXP4XX_GPIO_STYLE_ACTIVE_LOW;
irq_type = IXP4XX_IRQ_LEVEL;
break;
default:
return -EINVAL;
}
if (irq_type == IXP4XX_IRQ_EDGE)
ixp4xx_irq_edge |= (1 << d->irq);
else
ixp4xx_irq_edge &= ~(1 << d->irq);
if (line >= 8) { /* pins 8-15 */
line -= 8;
int_reg = IXP4XX_GPIO_GPIT2R;
} else { /* pins 0-7 */
int_reg = IXP4XX_GPIO_GPIT1R;
}
/* Clear the style for the appropriate pin */
*int_reg &= ~(IXP4XX_GPIO_STYLE_CLEAR <<
(line * IXP4XX_GPIO_STYLE_SIZE));
*IXP4XX_GPIO_GPISR = (1 << line);
/* Set the new style */
*int_reg |= (int_style << (line * IXP4XX_GPIO_STYLE_SIZE));
/* Configure the line as an input */
gpio_line_config(irq2gpio[d->irq], IXP4XX_GPIO_IN);
return 0;
}
static void ixp4xx_irq_mask(struct irq_data *d)
{
if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
*IXP4XX_ICMR2 &= ~(1 << (d->irq - 32));
else
*IXP4XX_ICMR &= ~(1 << d->irq);
}
static void ixp4xx_irq_ack(struct irq_data *d)
{
int line = (d->irq < 32) ? irq2gpio[d->irq] : -1;
if (line >= 0)
*IXP4XX_GPIO_GPISR = (1 << line);
}
/*
* Level triggered interrupts on GPIO lines can only be cleared when the
* interrupt condition disappears.
*/
static void ixp4xx_irq_unmask(struct irq_data *d)
{
if (!(ixp4xx_irq_edge & (1 << d->irq)))
ixp4xx_irq_ack(d);
if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32)
*IXP4XX_ICMR2 |= (1 << (d->irq - 32));
else
*IXP4XX_ICMR |= (1 << d->irq);
}
static struct irq_chip ixp4xx_irq_chip = {
.name = "IXP4xx",
.irq_ack = ixp4xx_irq_ack,
.irq_mask = ixp4xx_irq_mask,
.irq_unmask = ixp4xx_irq_unmask,
.irq_set_type = ixp4xx_set_irq_type,
};
void __init ixp4xx_init_irq(void)
{
int i = 0;
/*
* ixp4xx does not implement the XScale PWRMODE register
* so it must not call cpu_do_idle().
*/
cpu_idle_poll_ctrl(true);
/* Route all sources to IRQ instead of FIQ */
*IXP4XX_ICLR = 0x0;
/* Disable all interrupt */
*IXP4XX_ICMR = 0x0;
if (cpu_is_ixp46x() || cpu_is_ixp43x()) {
/* Route upper 32 sources to IRQ instead of FIQ */
*IXP4XX_ICLR2 = 0x00;
/* Disable upper 32 interrupts */
*IXP4XX_ICMR2 = 0x00;
}
/* Default to all level triggered */
for(i = 0; i < NR_IRQS; i++) {
irq_set_chip_and_handler(i, &ixp4xx_irq_chip,
handle_level_irq);
irq_clear_status_flags(i, IRQ_NOREQUEST);
}
}
/*************************************************************************
* IXP4xx timer tick
* We use OS timer1 on the CPU for the timer tick and the timestamp
* counter as a source of real clock ticks to account for missed jiffies.
*************************************************************************/
static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
/* Clear Pending Interrupt by writing '1' to it */
*IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction ixp4xx_timer_irq = {
.name = "timer1",
.flags = IRQF_TIMER | IRQF_IRQPOLL,
.handler = ixp4xx_timer_interrupt,
.dev_id = &clockevent_ixp4xx,
};
void __init ixp4xx_timer_init(void)
{
/* Reset/disable counter */
*IXP4XX_OSRT1 = 0;
/* Clear Pending Interrupt by writing '1' to it */
*IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND;
/* Reset time-stamp counter */
*IXP4XX_OSTS = 0;
/* Connect the interrupt handler and enable the interrupt */
setup_irq(IRQ_IXP4XX_TIMER1, &ixp4xx_timer_irq);
ixp4xx_clocksource_init();
ixp4xx_clockevent_init();
}
static struct pxa2xx_udc_mach_info ixp4xx_udc_info;
void __init ixp4xx_set_udc_info(struct pxa2xx_udc_mach_info *info)
{
memcpy(&ixp4xx_udc_info, info, sizeof *info);
}
static struct resource ixp4xx_udc_resources[] = {
[0] = {
.start = 0xc800b000,
.end = 0xc800bfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IXP4XX_USB,
.end = IRQ_IXP4XX_USB,
.flags = IORESOURCE_IRQ,
},
};
/*
* USB device controller. The IXP4xx uses the same controller as PXA25X,
* so we just use the same device.
*/
static struct platform_device ixp4xx_udc_device = {
.name = "pxa25x-udc",
.id = -1,
.num_resources = 2,
.resource = ixp4xx_udc_resources,
.dev = {
.platform_data = &ixp4xx_udc_info,
},
};
static struct platform_device *ixp4xx_devices[] __initdata = {
&ixp4xx_udc_device,
};
static struct resource ixp46x_i2c_resources[] = {
[0] = {
.start = 0xc8011000,
.end = 0xc801101c,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_IXP4XX_I2C,
.end = IRQ_IXP4XX_I2C,
.flags = IORESOURCE_IRQ
}
};
/*
* I2C controller. The IXP46x uses the same block as the IOP3xx, so
* we just use the same device name.
*/
static struct platform_device ixp46x_i2c_controller = {
.name = "IOP3xx-I2C",
.id = 0,
.num_resources = 2,
.resource = ixp46x_i2c_resources
};
static struct platform_device *ixp46x_devices[] __initdata = {
&ixp46x_i2c_controller
};
unsigned long ixp4xx_exp_bus_size;
EXPORT_SYMBOL(ixp4xx_exp_bus_size);
static int ixp4xx_gpio_direction_input(struct gpio_chip *chip, unsigned gpio)
{
gpio_line_config(gpio, IXP4XX_GPIO_IN);
return 0;
}
static int ixp4xx_gpio_direction_output(struct gpio_chip *chip, unsigned gpio,
int level)
{
gpio_line_set(gpio, level);
gpio_line_config(gpio, IXP4XX_GPIO_OUT);
return 0;
}
static int ixp4xx_gpio_get_value(struct gpio_chip *chip, unsigned gpio)
{
int value;
gpio_line_get(gpio, &value);
return value;
}
static void ixp4xx_gpio_set_value(struct gpio_chip *chip, unsigned gpio,
int value)
{
gpio_line_set(gpio, value);
}
static struct gpio_chip ixp4xx_gpio_chip = {
.label = "IXP4XX_GPIO_CHIP",
.direction_input = ixp4xx_gpio_direction_input,
.direction_output = ixp4xx_gpio_direction_output,
.get = ixp4xx_gpio_get_value,
.set = ixp4xx_gpio_set_value,
.to_irq = ixp4xx_gpio_to_irq,
.base = 0,
.ngpio = 16,
};
void __init ixp4xx_sys_init(void)
{
ixp4xx_exp_bus_size = SZ_16M;
platform_add_devices(ixp4xx_devices, ARRAY_SIZE(ixp4xx_devices));
gpiochip_add(&ixp4xx_gpio_chip);
if (cpu_is_ixp46x()) {
int region;
platform_add_devices(ixp46x_devices,
ARRAY_SIZE(ixp46x_devices));
for (region = 0; region < 7; region++) {
if((*(IXP4XX_EXP_REG(0x4 * region)) & 0x200)) {
ixp4xx_exp_bus_size = SZ_32M;
break;
}
}
}
printk("IXP4xx: Using %luMiB expansion bus window size\n",
ixp4xx_exp_bus_size >> 20);
}
/*
* sched_clock()
*/
static u64 notrace ixp4xx_read_sched_clock(void)
{
return *IXP4XX_OSTS;
}
/*
* clocksource
*/
static cycle_t ixp4xx_clocksource_read(struct clocksource *c)
{
return *IXP4XX_OSTS;
}
unsigned long ixp4xx_timer_freq = IXP4XX_TIMER_FREQ;
EXPORT_SYMBOL(ixp4xx_timer_freq);
static void __init ixp4xx_clocksource_init(void)
{
sched_clock_register(ixp4xx_read_sched_clock, 32, ixp4xx_timer_freq);
clocksource_mmio_init(NULL, "OSTS", ixp4xx_timer_freq, 200, 32,
ixp4xx_clocksource_read);
}
/*
* clockevents
*/
static int ixp4xx_set_next_event(unsigned long evt,
struct clock_event_device *unused)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
*IXP4XX_OSRT1 = (evt & ~IXP4XX_OST_RELOAD_MASK) | opts;
return 0;
}
static int ixp4xx_shutdown(struct clock_event_device *evt)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK;
opts &= ~IXP4XX_OST_ENABLE;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_set_oneshot(struct clock_event_device *evt)
{
unsigned long opts = IXP4XX_OST_ENABLE | IXP4XX_OST_ONE_SHOT;
unsigned long osrt = 0;
/* period set by 'set next_event' */
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_set_periodic(struct clock_event_device *evt)
{
unsigned long opts = IXP4XX_OST_ENABLE;
unsigned long osrt = IXP4XX_LATCH & ~IXP4XX_OST_RELOAD_MASK;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static int ixp4xx_resume(struct clock_event_device *evt)
{
unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK;
unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK;
opts |= IXP4XX_OST_ENABLE;
*IXP4XX_OSRT1 = osrt | opts;
return 0;
}
static struct clock_event_device clockevent_ixp4xx = {
.name = "ixp4xx timer1",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.rating = 200,
.set_state_shutdown = ixp4xx_shutdown,
.set_state_periodic = ixp4xx_set_periodic,
.set_state_oneshot = ixp4xx_set_oneshot,
.tick_resume = ixp4xx_resume,
.set_next_event = ixp4xx_set_next_event,
};
static void __init ixp4xx_clockevent_init(void)
{
clockevent_ixp4xx.cpumask = cpumask_of(0);
clockevents_config_and_register(&clockevent_ixp4xx, IXP4XX_TIMER_FREQ,
0xf, 0xfffffffe);
}
void ixp4xx_restart(enum reboot_mode mode, const char *cmd)
{
if (mode == REBOOT_SOFT) {
/* Jump into ROM at address 0 */
soft_restart(0);
} else {
/* Use on-chip reset capability */
/* set the "key" register to enable access to
* "timer" and "enable" registers
*/
*IXP4XX_OSWK = IXP4XX_WDT_KEY;
/* write 0 to the timer register for an immediate reset */
*IXP4XX_OSWT = 0;
*IXP4XX_OSWE = IXP4XX_WDT_RESET_ENABLE | IXP4XX_WDT_COUNT_ENABLE;
}
}
#ifdef CONFIG_PCI
static int ixp4xx_needs_bounce(struct device *dev, dma_addr_t dma_addr, size_t size)
{
return (dma_addr + size) > SZ_64M;
}
static int ixp4xx_platform_notify_remove(struct device *dev)
{
if (dev_is_pci(dev))
dmabounce_unregister_dev(dev);
return 0;
}
#endif
/*
* Setup DMA mask to 64MB on PCI devices and 4 GB on all other things.
*/
static int ixp4xx_platform_notify(struct device *dev)
{
dev->dma_mask = &dev->coherent_dma_mask;
#ifdef CONFIG_PCI
if (dev_is_pci(dev)) {
dev->coherent_dma_mask = DMA_BIT_MASK(28); /* 64 MB */
dmabounce_register_dev(dev, 2048, 4096, ixp4xx_needs_bounce);
return 0;
}
#endif
dev->coherent_dma_mask = DMA_BIT_MASK(32);
return 0;
}
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (dev_is_pci(dev))
mask &= DMA_BIT_MASK(28); /* 64 MB */
if ((mask & DMA_BIT_MASK(28)) == DMA_BIT_MASK(28)) {
dev->coherent_dma_mask = mask;
return 0;
}
return -EIO; /* device wanted sub-64MB mask */
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#ifdef CONFIG_IXP4XX_INDIRECT_PCI
/*
* In the case of using indirect PCI, we simply return the actual PCI
* address and our read/write implementation use that to drive the
* access registers. If something outside of PCI is ioremap'd, we
* fallback to the default.
*/
static void __iomem *ixp4xx_ioremap_caller(phys_addr_t addr, size_t size,
unsigned int mtype, void *caller)
{
if (!is_pci_memory(addr))
return __arm_ioremap_caller(addr, size, mtype, caller);
return (void __iomem *)addr;
}
static void ixp4xx_iounmap(volatile void __iomem *addr)
{
if (!is_pci_memory((__force u32)addr))
__iounmap(addr);
}
#endif
void __init ixp4xx_init_early(void)
{
platform_notify = ixp4xx_platform_notify;
#ifdef CONFIG_PCI
platform_notify_remove = ixp4xx_platform_notify_remove;
#endif
#ifdef CONFIG_IXP4XX_INDIRECT_PCI
arch_ioremap_caller = ixp4xx_ioremap_caller;
arch_iounmap = ixp4xx_iounmap;
#endif
}